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Inverse problems for boundary triples with applications

by

B. M. Brown (Cardiff), M. Marletta (Cardiff),
S. Naboko (St. Petersburg) and I. Wood (Canterbury)

Abstract. This paper discusses the inverse problem of how much information on an
operator can be determined/detected from ‘measurements on the boundary’. Our focus is
on non-selfadjoint operators and their detectable subspaces (these determine the part of
the operator ‘visible’ from ‘boundary measurements’).

We show results in an abstract setting, where we consider the relation between the M -
function (the abstract Dirichlet to Neumann map or the transfer matrix in system theory)
and the resolvent bordered by projections onto the detectable subspaces. More specifically,
we investigate questions of unique determination, reconstruction, analytic continuation
and jumps across the essential spectrum.

The abstract results are illustrated by examples of Schrödinger operators, matrix-
differential operators and, mostly, by multiplication operators perturbed by integral oper-
ators (the Friedrichs model), where we use a result of Widom to show that the detectable
subspace can be characterized in terms of an eigenspace of a Hankel-like operator.

1. Introduction. In this paper we consider inverse problems in a bound-
ary triple setting involving a formally adjoint pair of operators A and Ã [35].
We define, and develop formulae for, the detectable subspaces associated
with the information available from the abstract Dirichlet to Neumann maps
or Titchmarsh–Weyl functions M(λ) (see Definitions 2.2 and 2.7). Our focus
is on non-selfadjoint operators, but some of the results are new even in the
symmetric case.

In the formally symmetric case V. Derkach and M. Malamud [21] (see also
Ryzhov [44]) show that if the reducing subspace corresponding to the simple
part of the operator (which is a special case of the detectable subspace) is the
whole Hilbert space, then the operator can be reconstructed up to unitary
equivalence. In terms of the Q-function, this result was proved earlier by
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M. Krĕın, H. Langer and B. Textorius [33, 34]. These kinds of results go
back to M. Livšic who proved the reconstruction up to unitary equivalence
of the simple part of an operator from its characteristic function [14]. If the
underlying operator is not symmetric, but the detectable subspace is the
whole Hilbert space, then the M -function determines the operators of an
adjoint pair up to weak equivalence [37]. However, weak equivalence does
not preserve the spectral properties of the operators. Improving the result
on weak equivalence in some special cases is the topic of [4–6, 28].

In the last decade there has been an explosion of research on opera-
tors in the setting of boundary triples, in particular around their appli-
cation to partial differential equations, usually in the selfadjoint case (see
e.g. [1–3, 7–12, 15, 17, 21–25, 27, 28, 32, 36, 41, 42, 44]). In the PDE case,
the main challenge was to describe concrete choices of boundary mappings.
Classical ‘trace’ and ‘normal derivative’ do not have the requisite properties;

for instance, boundary integrals of the form
	
∂Ω

{
∂u
∂nv − u

∂v
∂n

}
cannot gener-

ally be separated into a difference of two convergent integrals in the manner
suggested by the notation. Two different approaches have been used to over-
come this: one involves considering such expressions on sets of sufficiently
smooth functions and then taking closures [7], requiring the additional ab-
stract concept of quasi-boundary triple; the other involves replacing the
normal derivative by a regularized version thereof [17] and allows standard
boundary triples to be used directly. Some interesting ODE applications
have also appeared, such as the common eigenvalue problem [40]. General-
izations to relations have been studied e.g. in [20, 38].

Ryzhov’s study of abstract inverse problems [44] mentions regular ellip-
tic PDEs as an illustration. However there are the fundamental differences
between Schrödinger operators in dimension d = 1 [13] and dimension d > 1:
for d > 1, the potential can be uniquely recovered from the knowledge of
the Dirichlet to Neumann map at a single value of the spectral parame-
ter [29, 47, 48]. The fact that this is not true for d = 1 indicates that ab-
stract techniques may require more data than are really necessary in some
concrete settings, and must be supplemented by a detailed study of the
concrete operators to which they will be applied.

In this paper we examine the extent to which the following questions can
be answered at an abstract level and in specific examples.

(1) Is the function M(λ) uniquely determined from the knowledge of
resolvents reduced to the detectable subspace?

(2) To what extent can the bordered resolvent, i.e. the resolvent bordered

by projections onto the detectable subspaces related to A and Ã, be
determined from M(λ)?
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(3) What can be said about the relationship between analytic continu-
ation of M(λ) and analytic continuation of the bordered resolvent?

(4) What is the relationship between the rank of the jump in M(λ)
and the rank of the jump in the bordered resolvent across a line of
essential spectrum, without loss of generality the real axis, when one
has a limiting absorption principle?

(5) To what extent can the detectable subspace be explicitly described
in specific examples?

The paper is arranged as follows. Section 2 introduces concepts that will
be needed throughout the paper: boundary triples,M -functions, solution op-
erators and the detectable subspace. Section 3 shows the concrete realizations
of these abstract objects for Schrödinger operators, Hain–Lüst-type opera-
tors and the Friedrichs model. In Section 4, we prove that the M -function
is uniquely determined by one bordered resolvent. Moreover, it can be re-
constructed from one bordered resolvent and two closed solution operator
ranges or by two bordered resolvents associated with different boundary
conditions. We show that the bordered resolvent can be determined from
the M -function and a family of solution operator ranges. Section 5 exam-
ines simultaneous analytic continuation of the M -function and bordered
resolvents, significantly extending the results on this in [16]. Section 6 deals
with jumps of the M -function and the bordered resolvent across the es-
sential spectrum. We show that the multiplicity of the a.c. spectrum of
the operator reduced to the detectable subspaces coincides with the rank
of the jump of the M -function. Section 7 determines the detectable sub-
space and the relation between the M -function and bordered resolvent for
different parameters of the Friedrichs model. We consider the Friedrichs
model as a key example for the development of the theory of detectable
subspaces, because it allows a precise description of the structure of the
detectable subspace in many cases, while exhibiting such a variety of be-
haviours that one can hardly expect to obtain a description of the space
in all cases in unique terms. In particular, it shows that the reconstruction
of the detectable part of the operator from the M -function, well-known
for Sturm–Liouville problems [13, 39], is not always possible (see e.g. Re-
mark 7.17).

2. Preliminaries: the detectable subspace. This section introduces
concepts and notation that will be used throughout the article, and extends
some results from previous papers which are needed later to develop the
theory. We make the following assumptions.

(1) A, Ã are closed, densely defined operators in a Hilbert space H.

(2) A, Ã are an adjoint pair, i.e. A∗ ⊇ Ã and Ã∗ ⊇ A.
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Proposition 2.1 (Lyantse, Storozh, ’83 [35]). For each adjoint pair of
closed densely defined operators on H, there exist “boundary spaces” H, K
and “trace operators”

Γ1 : D(Ã∗)→ H, Γ2 : D(Ã∗)→ K, Γ̃1 : D(A∗)→ K, Γ̃2 : D(A∗)→ H

such that for u ∈ D(Ã∗) and v ∈ D(A∗) we have an abstract Green formula

(2.1) 〈Ã∗u, v〉H − 〈u,A∗v〉H = 〈Γ1u, Γ̃2v〉H − 〈Γ2u, Γ̃1v〉K.

The trace operators Γ1, Γ2, Γ̃1 and Γ̃2 are bounded with respect to the graph
norm. The pair (Γ1, Γ2) is surjective onto H × K and (Γ̃1, Γ̃2) is surjective
onto K ×H. Moreover,

(2.2) D(A) = D(Ã∗) ∩ kerΓ1 ∩ kerΓ2, D(Ã) = D(A∗) ∩ ker Γ̃1 ∩ ker Γ̃2.

The collection {H ⊕ K, (Γ1, Γ2), (Γ̃1, Γ̃2)} is called a boundary triple for the

adjoint pair A, Ã.

Malamud and Mogilevskii [38] use this setting to define WeylM -functions
associated with boundary triples. In [17], we used a slightly different setting
in which the boundary conditions and Weyl function contain an additional
operator B ∈ L(K,H). We now recall the main concepts from [17] for the
convenience of the reader.

Definition 2.2. Let B ∈ L(K,H) and B̃ ∈ L(H,K). We define exten-

sions of A and Ã (respectively) by

AB := Ã∗|ker(Γ1−BΓ2) and Ã
B̃

:= A∗|
ker(Γ̃1−B̃Γ̃2)

.

In the following, we assume ρ(AB) 6= ∅, in particular AB is a closed operator.
For λ ∈ ρ(AB), we define the M -function via MB(λ) : Ran(Γ1−BΓ2)→ K:

MB(λ)(Γ1 −BΓ2)u = Γ2u for all u ∈ ker(Ã∗ − λ),

and for λ ∈ ρ(Ã
B̃

), we define M̃
B̃

(λ) : Ran(Γ̃1 − B̃Γ̃2)→ H by

M̃
B̃

(λ)(Γ̃1 − B̃Γ̃2)v = Γ̃2v for all v ∈ ker(A∗ − λ).

It will follow from Lemma 2.5 that MB(λ) and M̃
B̃

(λ) are well defined

for λ ∈ ρ(AB) and λ ∈ ρ(Ã
B̃

), respectively. Moreover, in our situation

Ran(Γ1 − BΓ2) = H and Ran(Γ̃1 − B̃Γ̃2) = K, so the M -functions are
defined on the whole spaces.

Definition 2.3 (Solution operator). For λ ∈ ρ(AB), we define the linear

operator Sλ,B : Ran(Γ1 −BΓ2)→ ker(Ã∗ − λ) by

(2.3) (Ã∗ − λ)Sλ,Bf = 0, (Γ1 −BΓ2)Sλ,Bf = f,
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i.e. Sλ,B = ((Γ1 − BΓ2)|
ker(Ã∗−λ)

)−1. For λ ∈ ρ(Ã∗B), we define the linear

operator S̃λ,B∗ : Ran(Γ̃1 −B∗Γ̃2)→ ker(A∗ − λ) by

(2.4) (A∗ − λ)S̃λ,B∗f = 0, (Γ̃1 −B∗Γ̃2)S̃λ,B∗f = f.

All the following results have a corresponding version for the quantities
M̃
B̃

, S̃λ,B∗ etc. obtained from the formally adjoint problem.

Remark 2.4. (1) As we are not interested in characterizing all closed ex-
tensions of A, in this paper we will assume for simplicity that B ∈ L(K,H).
A discussion of all closed extensions of A in the boundary triple setting can
be found in [15].

(2) Note that MB(λ) = Γ2Sλ,B.

(3) M -functions with different boundary conditions are related by the
Aronszajn–Donoghue formula (cf. also (2.12)):

(2.5) MB(λ) = (I +MB(λ)(B −C))MC(λ) = MC(λ)(I + (B −C)MB(λ)).

The following lemma summarizes [16, Lemma 2.4 and Corollary 2.5].

Lemma 2.5.

(1) Sλ,B is well-defined for λ ∈ ρ(AB).
(2) For each f ∈ Ran(Γ1 − BΓ2) the map from ρ(AB) to H given by

λ 7→ Sλ,Bf is analytic.
(3) For λ, λ0 ∈ ρ(AB) we have Sλ,B = Sλ0,B + (λ−λ0)(AB −λ)−1Sλ0,B.

The difference of two resolvents can be related to the M -function by
Krein-type resolvent formulae, such as

(2.6) (AC − λ)−1 − (AB − λ)−1

= Sλ,C(I + (B − C)MB(λ))(Γ1 −BΓ2)(AC − λ)−1

= Sλ,C(I + (B − C)MB(λ))(C −B)Γ2(AC − λ)−1

for B,C ∈ L(K,H) and λ ∈ ρ(AB) ∩ ρ(AC) (see [16, Theorem 2.6]).

The following formula already appears in some proofs in [16, 17], but
due to its importance in our later analysis, we state it here.

Lemma 2.6. For all F ∈ D(Ã∗), v ∈ D(A∗) and λ ∈ ρ(AB) we have

(2.7) 〈F − (AB − λ)−1(Ã∗ − λ)F, (A∗ − λI)v〉
= 〈MB(λ)f, (Γ̃1 −B∗Γ̃2)v〉K − 〈f, Γ̃2v〉H

where f = (Γ1 −BΓ2)F .

We are now ready to define one of the main concepts of the paper, the
detectable subspaces, introduced in [16].
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Definition 2.7. Fix µ0 6∈ σ(AB). We define the spaces

SB = Span
δ 6∈σ(AB)

(AB − δI)−1 RanSµ0,B,(2.8)

TB = Span
µ 6∈σ(AB)

RanSµ,B,(2.9)

and similarly

S̃B∗ = Span
δ 6∈σ(ÃB∗ )

(ÃB∗ − δI)−1 Ran S̃µ̃,B∗ ,(2.10)

T̃B∗ = Span
µ6∈σ(ÃB∗ )

Ran S̃µ,B∗ .(2.11)

We call SB and S̃B∗ the detectable subspaces.

Remark 2.8. Note that the definition of the detectable subspace is
reminiscent of the notion of complete non-selfadjointness of an operator
in Hilbert space [49]. The Langer decomposition of an operator into its
selfadjoint and completely non-selfadjoint reducing parts is similar to the
reduction of our operator to the detectable subspace. Indeed, in (2.8) we
develop by the resolvent of AB the range of a solution operator, while in
the construction of the “completely non-selfadjoint subspace” one has to
develop the range of the “imaginary part” of an operator by its resolvent.

We now consider the dependence of these spaces on µ0 and B.

Proposition 2.9.

(1) Let B ∈ L(K,H). Assume that there is a sequence (zn)n∈N in C with
|zn| → ∞ and (‖zn(AB − znI)−1‖)n∈N bounded. Then SB = TB. In
particular, SB is independent of µ0.

(2) Let B,C ∈ L(K,H). If ρ(AB) ∪ ρ(AC) ⊆ ρ(AB) ∩ ρ(AC), then
TB = TC .

(3) Suppose that for all B,C ∈ L(K,H), we have

ρ(AB) ∪ ρ(AC) ⊆ ρ(AB) ∩ ρ(AC).

Then TB = Spanλ∈Λ ker(Ã∗ − λ), where Λ =
⋃
C∈L(K,H) ρ(AC).

Proof. (1) This is shown in [16, Lemma 3.1].

(2) From [17, Proposition 4.5] we have

(2.12) Sλ,C(I − (C −B)Γ2Sλ,B) = Sλ,B,

we note that RanSλ,B = RanSλ,C whenever λ ∈ ρ(AB) ∩ ρ(AC). Now
assume λ ∈ ρ(AB) ∩ σ(AC). We need to show that RanSλ,B ⊆ T ′ where

T ′ = Span
µ∈ρ(AB)∩ρ(AC)

RanSµ,B.
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By assumption, there exists a sequence (λn)n∈N in ρ(AB) ∩ ρ(AC) with
λn → λ. Let u = Sλ,Bf . We have

Sλn,B − Sλ,B = (λn − λ)(AB − λn)−1Sλ,B.

Therefore,

‖Sλn,Bf − Sλ,Bf‖ ≤ |λn − λ| ‖(AB − λn)−1‖ ‖Sλ,Bf‖.
As n → ∞, ‖(AB − λn)−1‖ → ‖(AB − λ)−1‖ < ∞, so Sλn,Bf → Sλ,Bf ,
which completes the proof.

(3) This follows immediately from the previous part of the proposition.

Remark 2.10. We note that the conditions in parts (1) and (3) of
the proposition are satisfied in many interesting cases, in particular that
of ‘weak’ perturbations of selfadjoint operators.

Throughout the remainder of this article, we will assume that the spaces

SB and TB coincide, are independent of B and equal Spanλ∈Λ ker(Ã∗ − λ).
To avoid cumbersome notation, we shall denote all these spaces by S. We
shall also denote SB by S and TB by T when no confusion can arise. We
will refer to S as the detectable subspace.

In [16, Lemma 3.4], it is shown that S is a regular invariant space of the

resolvent of the operator AB, that is, (AB − µI)−1S = S for all µ ∈ ρ(AB).

From (2.8) and Proposition 2.9(3), we get

(2.13) S⊥ =
⋂

B, λ∈ρ(AB)

kerS∗λ,B.

Moreover, from [17, Proposition 3.9] we have

kerS∗λ,B = ker(Γ̃2(ÃB∗ − λ)−1).

Now assume that h ∈ S⊥. Then Γ̃2(ÃB∗ − λ)−1h = 0 for all suitable B
and λ. Fixing B and λ and setting

(2.14) yB = (ÃB∗ − λ)−1h,

we get Γ̃2yB = 0 and hence Γ̃1yB = B∗Γ̃2yB = 0, so yB satisfies any homo-
geneous boundary condition and lies in the domain of the minimal operator.
Hence,

(2.15) S⊥ = {h ∈ H : ∀B∗, λ ∈ ρ(ÃB∗), Γ̃i(ÃB∗ − λ)−1h = 0 for i = 1, 2}.
Remark 2.11. Determining the detectable subspace S is closely related

to the problem of observability in systems theory. Indeed, from (2.13) and
(2.15) the space S⊥ coincides (at least formally) with the ‘non-observable for
all time’ subspace N(Θ) of a system Θ = (A,B,C,D) (see [46]), in which

A = ÃB∗ , B = S̃λ0,B∗ for some λ0 ∈ ρ(ÃB∗), C = Γ̃2(Ã∗ − λ0), D = 0,
though there are several differences between these notions:
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(1) The corresponding system can be highly awkward to construct and
involves unbounded operators.

(2) In systems theory the subspace of non-observable states is generated
by the resolvent in one half-plane only (corresponding to positive times t
only). In our construction, the spectral parameter runs through the whole
resolvent set. It is known that when the resolvent set consists of several
disconnected domains, developing the linear set by the resolvent essentially
depends on the choice of component.

(3) We do not require the operator ÃB∗ to be the generator of a semi-
group. In particular, the resolvent set may have a complicated geometrical
structure. If ÃB∗ is a generator, the resolvent in (2.15) can be replaced by
the positive and negative time semigroups.

Despite these differences, the similarity to the observability problem may
be fruitful for analysing detectability. For more connections between bound-
ary triples and systems theory, we refer to [45].

3. Three concrete applications. In this section we examine three
different operators which will be used to illustrate the power and also the
limitations of the theory. For the first example we show that S is the whole
underlying Hilbert space; for the second we refer the reader to some previous
work, which shows that S may or may not be the whole space; for the third
example, we present the M -function and the resolvent, in preparation for the
more substantial work in Section 7, which shows that the characterization
of S may be very subtle for this seemingly innocuous model.

3.1. Schrödinger problems. For complex-valued q ∈ L∞(0, 1), con-
sider

(3.1) Lu =

(
− d2

dx2
+ q

)
u and L̃u =

(
− d2

dx2
+ q

)
u on [0, 1].

Let Au = Lu and Ãu = L̃u with D(A) = D(Ã) = H2
0 (0, 1). Then Ã∗u = Lu

and A∗u = L̃u with D(Ã∗) = D(A∗) = H2(0, 1), and for u, v ∈ H2(0, 1),

〈Ã∗u, v〉 − 〈u,A∗v〉 = 〈Γ1u, Γ2v〉 − 〈Γ2u, Γ1v〉,

where

Γ1u =

(
−u′(1)

u′(0)

)
, Γ2u =

(
u(1)

u(0)

)
.

In particular, Γ1 = Γ̃1, Γ2 = Γ̃2 and H = K = C2.

Then the following result is proved in [18, Section 3.1]:

Proposition 3.1. For the Schrödinger operator we have S = L2(0, 1).
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Similarly, the result that the detectable subspace is the whole space
is true for Schrödinger operators on the whole line or half-line, even with
operator-valued coefficients [26] and for higher-dimensional cases [12].

3.2. Hain–Lüst-type operators. Let

(3.2) Ã∗ =

(
− d2

dx2
+ q(x) w̃(x)

w(x) u(x)

)
and A∗ =

(
− d2

dx2
+ q(x) w(x)

w̃(x) u(x)

)
,

where q, u, w̃ and w are L∞-functions, and the domain of the operators is
given by

(3.3) D(Ã∗) = D(A∗) = H2(0, 1)× L2(0, 1).

It is then easy to see that〈
Ã∗
(
y

z

)
,

(
f

g

)〉
−
〈(

y

z

)
, A∗

(
f

g

)〉

=

〈
Γ1

(
y

z

)
, Γ2

(
f

g

)〉
−
〈
Γ2

(
y

z

)
, Γ1

(
f

g

)〉
,

where

H = K = C2, Γ1

(
y

z

)
=

(
−y′(1)

y′(0)

)
, Γ2

(
y

z

)
=

(
y(1)

y(0)

)
.

Some information on S for these operators is available in [16]. In particular
we show there that if w = w̃ then S ⊆ L2(0, 1) ⊕ L2(w−1({0})c) (where
Ωc denotes the complement of a set Ω) and so if w vanishes on a set of
positive measure then S is not the whole underlying space. A more detailed
investigation of detectable subspaces for Hain–Lüst-type operators can be
found in [18]. In particular, a full analysis of the detectable subspace for the
case ww̃ = 0 is developed there.

3.3. The Friedrichs model. We consider in L2(R) the operator A with
domain D(A) equal to the set

(3.4)
{
f ∈ L2(R) : xf(x) ∈ L2(R), lim

R→∞

R�

−R
f(x) dx exists and is zero

}
,

and given by the expression

(3.5) (Af)(x) = xf(x) + 〈f, φ〉ψ(x),

where φ, ψ are in L2(R). Observe that since the constant function 1 does
not lie in L2(R), the domain of A is dense.

We first collect some results from [16], where more details and proofs
can be found:
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Lemma 3.2. The adjoint of A is given on the domain

(3.6) D(A∗) = {f ∈ L2(R) : ∃cf ∈ C : xf(x)− cf1 ∈ L2(R)}
by the formula

(3.7) A∗f = xf(x)− cf1 + 〈f, ψ〉φ.

Since cf = limR→∞(2R)−1
	R
−R xf(x) dx is uniquely determined, we can

define trace operators Γ1 and Γ2 on D(A∗) as follows:

(3.8) Γ1u = lim
R→∞

R�

−R
u(x) dx, Γ2u = cu.

Note that Γ1u =
	
R(u(x)− cu1 sign(x)(x2 + 1)−1/2) dx, which is the expres-

sion used in [16].

Lemma 3.3. The operators Γ1 and Γ2 are bounded relative to A∗ and the
following ‘Green identity’ holds:

(3.9) 〈A∗f, g〉 − 〈f,A∗g〉 = Γ1fΓ2g − Γ2fΓ1g + 〈f, ψ〉〈φ, g〉 − 〈f, φ〉〈ψ, g〉.

We introduce an operator Ã in which the roles of φ and ψ are exchanged:
D(Ã) = D(A) and

(3.10) (Ãf)(x) = xf(x) + 〈f, ψ〉φ(x).

In view of Lemma 3.2 we immediately see that D(Ã∗) = D(A∗) and that

(3.11) (Ã∗f)(x) = xf(x)− cf1 + 〈f, φ〉ψ(x).

Thus Ã∗ is an extension of A, A∗ is an extension of Ã, and the following
result is easily proved.

Lemma 3.4. We have

(3.12) A = Ã∗|kerΓ1∩kerΓ2 and Ã = A∗|kerΓ1∩kerΓ2 ;

moreover, the Green formula (3.9) can be modified to

(3.13) 〈A∗f, g〉 − 〈f, Ã∗g〉 = Γ1fΓ2g − Γ2fΓ1g.

We finish our review from [16] with the M -function and the resolvent:

Lemma 3.5. Suppose that =λ 6= 0. Then f ∈ ker(Ã∗ − λ) if

(3.14) f(x) = Γ2f

[
1

x− λ
− 〈(t− λ)−1, φ〉

D(λ)

ψ(x)

x− λ

]
.

Here

(3.15) D(λ) = 1 +
�

R

1

x− λ
ψ(x)φ(x) dx.
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Moreover the Titchmarsh–Weyl coefficient MB(λ) is given by

(3.16) MB(λ) =

[
sign(=λ)πi− 〈(t− λ)−1, ψ〉〈(t− λ)−1, φ〉

D(λ)
−B

]−1

.

For the resolvent, we have (AB − λ)f = g if and only if

f(x) =
g(x)

x− λ
− 1

D(λ)

ψ(x)

x− λ

〈
g

t− λ
, φ

〉
(3.17)

+ cf

[
1

x− λ
− 1

D(λ)

ψ(x)

x− λ

〈
1

t− λ
, φ

〉]
with

(3.18) cf = MB(λ)

[
−
〈

1

t− λ
, g

〉
+

1

D(λ)

〈
g

t− λ
, φ

〉〈
1

t− λ
, ψ

〉]
.

These expressions will be needed in Section 7.

Remark 3.6. There is another approach to the Friedrichs model, via
Fourier transforms, which may appear more natural. This turns the multi-
plication operator into a first order differential operator, while the boundary
operators are given in terms of the right and left limits at 0 (see [19]).

4. Relation between M-function and resolvent on S. Having in-
troduced some concrete examples in the previous section, we now turn our
attention to what can be shown in the general setting. Our aim is to study
the relation between MB(λ) and the bordered resolvent P

S̃
(AB − λ)−1|S

where for any subspace M , PM denotes the orthogonal projection onto M .

4.1. Information on the M-function contained in a single resol-
vent. We first look at gaining information on the M -function from know-
ledge of the resolvent for a single boundary-condition operatorB. Our results
are of two types, concerning uniqueness and reconstruction. The distinction
lies in the fact that the proof of a uniqueness result may not provide a con-
structive procedure for recovering the M -function. Reconstruction results
are stronger: the Gel’fand–Levitan approach to inverse Schrödinger prob-
lems, for instance, consists of a reconstruction result, using integral equa-
tions. In the abstract setting considered here, we encounter cases for which
we have a uniqueness result but no reconstruction procedure.

Our first theorem concerns uniqueness only.

Theorem 4.1. Let λ ∈ ρ(AB). Then P
S̃

(AB − λ)−1|S uniquely deter-

mines MB(λ). In particular, if also λ ∈ ρ(AC), then P
S̃

(AB − λ)−1|S =

P
S̃

(AC − λ)−1|S implies that MB(λ) = MC(λ), and if additionally λ ∈
ρ(A∞), then B = C. Here, A∞ = Ã∗|kerΓ2.



252 B. M. Brown et al.

Proof. Assume M̂B(λ) is a different M -function for the same problem.

By surjectivity of the trace operators there exist F ∈ D(Ã∗) and v ∈ D(A∗)
such that

〈MB(λ)(Γ1−BΓ2)F, (Γ̃1−B∗Γ̃2)v〉K 6= 〈M̂B(λ)(Γ1−BΓ2)F, (Γ̃1−B∗Γ̃2)v〉K.

Setting h = Sµ,B(Γ1 − BΓ2)F ∈ S and h̃ = S̃µ̃,B∗(Γ̃1 − B∗Γ̃2)v ∈ S̃ and
using (2.7), we find that

〈(I − (AB − λ)−1(µ− λ))h, (µ̃− λ̄)h̃〉

has two different values. Therefore, 〈(AB−λ)−1h, h̃〉 has two different values,
yielding a contradiction.

If P
S̃

(AB − λ)−1|S = P
S̃

(AC − λ)−1|S , then by the argument above

〈MB(λ)(Γ1−BΓ2)F, (Γ̃1−B∗Γ̃2)v〉K = 〈MC(λ)(Γ1−BΓ2)F, (Γ̃1−B∗Γ̃2)v〉K.

Choosing F and v such that Γ2F = Γ̃2v = 0 and Γ1F and Γ̃1v are arbitrary,
we obtain

〈MB(λ)Γ1F, Γ̃1v〉K = 〈MC(λ)Γ1F, Γ̃1v〉K,
so MB(λ) = MC(λ). If λ ∈ ρ(A∞), then RanMB(λ) = K and kerMC(λ)
= {0}, so from (2.5) we get B = C.

In the case of the Friedrichs model, we shall show in a forthcoming
paper that reconstruction of MB(λ) is also possible under the hypotheses of
Theorem 4.1. In the completely abstract case, so far, we have only been able
to develop a reconstruction method to recover MB(λ) from one bordered
resolvent on S if some additional information is added. Note that from the
knowledge of the resolvent and the range of one solution operator we can
explicitly reconstruct S. More precisely, we have the following result.

Theorem 4.2. Assume we know S, P
S̃

(AB − λ)−1|S and the two sets

RanSµ,B, Ran S̃µ̃,B∗ for some (µ, µ̃) with µ, µ̃ ∈ ρ(AB). Then we can recon-
struct MB(λ) uniquely if B is known.

Proof. For h ∈ RanSµ,B and h̃ ∈ Ran S̃µ̃,B∗ , consider

H(h, h̃) = 〈(I − (AB − λ)−1(µ− λ))h, (µ̃− λ)h̃〉.

By assumption, we know H(h, h̃). Varying h in RanSµ,B, we see that

(Γ1 − BΓ2)h runs through the whole of H; if we vary h̃ in Ran S̃µ̃,B∗ , the

values (Γ̃1−B∗Γ̃2)h̃ run through the whole of K and Γ̃2h̃ through the whole
of H. Using Lemma 2.6 we deduce for a dense set of h, h̃ that

H(h, h̃) = 〈MB(λ)(Γ1 −BΓ2)h, (Γ̃1 −B∗Γ̃2)h̃〉K − 〈(Γ1 −BΓ2)h, Γ̃2h̃〉H,
which allows reconstruction of the M -function.
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A key hypothesis of Theorem 4.2 is the assumption that we know the
closed ranges of the solution operators. We now examine how strong a hy-
pothesis this may be, considering first the Friedrichs model.

Proposition 4.3. Assume we know RanSλ,B and Ran S̃µ,B∗ for some
λ, µ for the Friedrichs model. Moreover, assume RanSλ,B 6= Span

{
1

x−λ
}

and

Ran S̃µ,B∗ 6= Span
{

1
x−µ

}
(which is true for generic φ, ψ). Then the operator

is uniquely determined.

Proof. Assume we know RanSλ,B and Ran S̃µ,B∗ for some λ, µ. Choose
u and v in the ranges with cu = 1 and cv = 1; from (3.14) we have

u(x) =
1

x− λ
− 〈(t− λ)−1, φ〉

D(λ)

ψ(x)

x− λ

v(x) =
1

x− µ
− 〈(t− µ)−1, ψ〉

D(µ)

φ(x)

x− µ
.

As one of the functions φ, ψ is only determined up to a scalar factor, we
may normalize φ so that 〈(t− λ)−1, φ〉 = D(λ). This allows us to determine
ψ from the first expression, which also gives us 〈(t−µ)−1, ψ〉, so φ(x)/D(µ)
is known. Solving v(x) for φ(x), we get

(4.1) φ(x) = (1− (x− µ)v(x))
D(µ)

〈(t− µ)−1, ψ〉
.

Multiplying by (x− λ)−1D(λ)−1 and integrating in x, we can determine the
product D(µ)D(λ)−1 from our normalization of φ.

Inserting (4.1) into D(λ) = 1+ 〈(x−λ)−1, ψφ〉, we get a second equation
relating D(λ) and D(µ), allowing us to determine D(µ) and hence φ(x).

Remark 4.4. Note that if RanSλ,B = Span
{

1
x−λ

}
or Ran S̃µ,B∗ =

Span
{

1
x−µ

}
, it is clear from (3.14) and (3.16) that the M -function in general

does not contain sufficient information to recover φ and ψ.

The following shows that there is nothing like the result of Proposition
4.3 for Hain–Lüst operators, and therefore no similar result can hold in the
abstract setting.

Proposition 4.5. Assume we know RanSλ,B and Ran S̃µ,B∗ for some

λ, µ for the Hain–Lüst operator Ã∗ in (3.2). Then Ã∗ is not uniquely deter-
mined.

Proof. It is sufficient to show the claim for the case when the coefficients
of the operator are real. Knowing the ranges of the solution operators cor-
responds to knowing the kernels of the maximal operators, and hence two
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linearly independent solutions to each of the following equations:

(4.2)

(
− d2

dx2
+ q(x) w(x)

w̃(x) u(x)

)(
y1

z1

)
= λ

(
y1

z1

)
,

(
− d2

dx2
+ q(x) w̃(x)

w(x) u(x)

)(
y2

z2

)
= µ

(
y2

z2

)
.

Write the pairs of solutions as (y1, z1), (ŷ1, ẑ1), and (y2, z2), (ŷ2, ẑ2), respec-
tively. Since

z1 =
w̃y1

u− λ
, ẑ1 =

w̃ŷ1

u− λ
, z2 =

wy2

u− µ
, ẑ2 =

wŷ2

u− µ
,

setting α = w̃
u−λ and β = w

u−µ , we can write this as a linear system for q, w,
w̃ and u. A calculation shows that the corresponding matrix does not have
full rank for any α and β, so the system is not uniquely solvable.

4.2. Reconstruction from two bordered resolvents. By allow-
ing ourselves information from two bordered resolvents belonging to dif-
ferent boundary conditions, we obtain reconstruction procedures for the
M -function.

Theorem 4.6. Assume P
S̃

(AB−λ)−1|S and P
S̃

(AC−λ)−1|S are known.

In addition, assume that

(i) Γ2(AC − λ)−1S and Γ̃2(AC − λ)−∗S̃ are known,

(ii) Γ2(AC − λ)−1S is dense in H, and Γ̃2(AC − λ)−∗S̃ is dense in K,
(iii) Ran(B − C) is dense in H, and ker(B − C) = {0}.

Then MB(λ) can be recovered.

Proof. Let λ ∈ ρ(AB) ∩ ρ(AC). Then the Krein formula (2.6) gives

(AB −λ)−1− (AC −λ)−1 = Sλ,C(I + (B−C)MB(λ))(B−C)Γ2(AC −λ)−1.

Now let f ∈ S̃ and g ∈ S. Then we know

〈f, (AB − λ)−1g〉 − 〈f, (AC − λ)−1g〉.
Using (2.6), we obtain

〈f, (AB − λ)−1g〉 − 〈f, (AC − λ)−1g〉
= 〈f, Sλ,C(I + (B − C)MB(λ))(B − C)Γ2(AC − λ)−1g〉
= 〈Γ̃2(AC − λ)−∗f, (I + (B − C)MB(λ))(B − C)Γ2(AC − λ)−1g〉
= 〈Γ̃2(AC − λ)−∗f, (B − C)Γ2(AC − λ)−1g〉

+ 〈(B − C)∗Γ̃2(AC − λ)−∗f,MB(λ)(B − C)Γ2(AC − λ)−1g〉.
Our assumptions now allow us to recover MB(λ).
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Remark 4.7. Alternatively, knowing the projection to S̃ of the deriva-
tive of the resolvent with respect to the boundary condition and one resol-
vent restricted to S will suffice, because for C = B + εD we deduce from
(2.6) that

(AB − λ)−1 − (AC − λ)−1

ε
→ Sλ,BDΓ2(AB − λ)−1 as ε→ 0.

If we now have the assumption of density of DΓ2(AB−λ)−1S, then for f ∈ S
and g ∈ S̃, since

〈Sλ,BDΓ2(AB − λ)−1f, g〉 = 〈DΓ2(AB − λ)−1f, Γ̃2(AB − λ)−∗g〉,
and 〈Sλ,BDΓ2(AB − λ)−1f, g〉 is known from the derivative, while
DΓ2(AB − λ)−1f is known from the restricted resolvent, knowing the pro-

jection of the derivative to S̃ corresponds to knowing Γ̃2(AB − λ)−∗|
S̃

.

4.3. Information on the resolvent from the M-function. The fol-
lowing result gives some insight into the problem of reconstructing AB from
MB(λ). From some examples given later, we will see that the knowledge of
MB(λ) does not allow the reconstruction of the bordered resolvent.

Theorem 4.8. Assume we know MB(λ) for all λ ∈ ρ(AB), RanSµ,B for

all µ ∈ Λ, and Ran S̃µ̃,B∗ for all µ̃ ∈ Λ̃, where Λ ⊆ ρ(AB) and Λ̃ ⊆ ρ(A ∗B)
are dense subsets. Then we can find P

S̃
(AB − λ)−1PS for all λ ∈ ρ(AB).

Proof. Let µ ∈ Λ and µ̃ ∈ Λ̃. Consider (2.7) for any F ∈ RanSµ,B and

v ∈ Ran S̃µ̃,B∗ . Then

〈F − (AB − λ)−1(Ã∗ − λ)F, (A∗ − λI)v〉
= 〈F − (AB − λ)−1(µ− λ)F, (µ̃− λI)v〉
= −〈(Γ1 −BΓ2)F, Γ̃2v〉H + 〈MB(λ)(Γ1 −BΓ2)F, (Γ̃1 −B∗Γ̃2)v〉K.

We know the r.h.s. of this equation for any F ∈ RanSµ,B, v ∈ Ran S̃µ̃,B∗
and λ ∈ ρ(AB), so we know

〈F − (AB − λ)−1(µ− λ)F, (µ̃− λI)v〉.
Choosing λ 6= µ and λ 6= µ̃, we know

〈(AB − λ)−1F, v〉 = 〈P
S̃

(AB − λ)−1PSF, v〉

for any F ∈ RanSµ,B, v ∈ Ran S̃µ̃,B∗ and λ ∈ ρ(AB) \ ({µ} ∪ {µ̃}). By
continuity, we know it for all λ ∈ ρ(AB).

As Span{RanSµ,B : µ ∈ Λ} is dense in S and Span{Ran S̃µ̃,B∗ : µ̃ ∈ Λ̃}
is dense in S̃, the boundedness of P

S̃
(AB − λ)−1PS gives the result.
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5. Analytic continuation. We now discuss the relationship between
the analytic continuation of MB(λ) and the analytic continuation of the
bordered resolvent of AB, both initially defined on the resolvent set of AB.

Theorem 5.1. Let µ, µ̃ ∈ ρ(AB). Assume that for any F ∈ RanSµ,B
and v ∈ Ran S̃µ̃,B∗,

〈(AB − λ)−1|SF, v〉
admits an analytic continuation to some domain D of the complex plane
(possibly on a different Riemann sheet). Then MB(·) admits an analytic
continuation to the same domain D.

Proof. Given f ∈ H and f̃ ∈ K, choose F = Sµ,Bf and v = S̃µ̃,B∗ f̃ .
Then (2.7) becomes

〈F − (µ− λ)(AB − λ)−1F, (µ̃− λ)v〉 = −〈f, Γ̃2v〉H + 〈MB(λ)f, f̃〉K,
and the l.h.s. admits an analytic continuation, so the r.h.s. does as well.

Lemma 5.2. For µ ∈ ρ(AB),(
d

dλ
S·,B

)
(µ) = (AB − µ)−1Sµ,B.

Proof. From Lemma 2.5, we have

Sλ,Bf − Sµ,Bf
λ− µ

= (AB − λ)−1Sµ,Bf,

which immediately proves the assertion.

The next result is a generalization of [16, Theorem 3.5].

Theorem 5.3. Assume MB(·) admits an analytic continuation to some
domain D of the complex plane (possibly on a different Riemann sheet). Let
µ, µ̃ ∈ ρ(AB). Then 〈(AB − λ)−1|SF, v〉 admits an analytic continuation to

the same domain D for any F ∈ RanSµ,B and v ∈ Ran S̃µ̃,B∗, apart from

possible simple poles at µ and µ̃. If µ = µ̃, a pole of order 2 is possible at
this point.

Proof. Let F ∈ RanSµ,B and v ∈ Ran S̃µ̃,B∗ . By assumption the r.h.s. of
(2.7) admits an analytic continuation, hence so does the l.h.s., which is given
by 〈F −(µ−λ)(AB−λ)−1F, (µ̃−λ)v〉. Since 〈F, (µ̃−λ)v〉 is clearly analytic,
we see that (µ−λ)(µ̃−λ)〈(AB−λ)−1F, v〉 is analytic, which gives the desired
result.

Remark 5.4. We can extend the set of those vectors for which

〈(AB − λ)−1|SF, v〉
admits an analytic continuation by developing vectors on both sides by tak-
ing linear combinations and using the resolvents of AB and ÃB∗ respectively.
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However, we should not expect the result to extend to the whole of S (or S̃),
and therefore the bordered resolvent will not necessarily admit an analytic
continuation.

It is interesting to note that poles of 〈(AB − λ)−1|SF, v〉 at µ and µ̃
do arise in concrete examples, though they may sometimes be cancelled by
other terms.

Example 5.5. Let H±2 denote the Hardy classes (see [30]). Let µ ∈ C−
and µ̃ ∈ C+. Consider an example of the Friedrichs model from Section 3.3,
where φ ∈ H−2 and ψ ∈ H+

2 are rational functions with poles in suitable

half-planes such that ψ(λ)φ(λ) does not have poles at µ or µ̃. Then let

Fµ :=
1

x− µ
∈ H+

2 ∩ ker(Ã∗ − µ), vµ̃ :=
1

x− µ̃
∈ H−2 ∩ ker(A∗ − µ̃).

We consider the analytic continuation of the functions 〈(AB − ·)−1Fµ, vµ̃〉
and MB(·) from the upper to the lower half-plane. From (2.7), for λ ∈ C+

we get

(5.1) (λ− µ)(λ− µ̃)〈(AB − λ)−1Fµ, vµ̃〉
= −〈MB(λ)(Γ1 −BΓ2)Fµ, (Γ̃1 −B∗Γ̃2)vµ̃〉

+ 〈(Γ1 −BΓ2)Fµ, Γ̃2vµ̃)〉+ 〈Fµ, (µ̃− λ)vµ̃〉.

Now, (Γ̃1 −B∗Γ̃2)vµ̃ = πi−B∗, Γ̃2vµ = 1, and

〈Fµ, vµ̃〉 =

〈
1

x− µ
,

1

x− µ̃

〉
= 0,

(Γ1 −BΓ2)Fµ = (Γ1 −BΓ2)
1

x− µ
= −πi−B.

Thus (5.1) gives

(λ− µ)(λ− µ̃)〈(AB − λ)−1Fµ, vµ̃〉 = −MB(λ)(πi+B)(πi+B)− πi−B
= −(πi+B)(MB(λ)(πi+B) + 1),

or

〈(AB − λ)−1Fµ, vµ̃〉 = −(πi+B)(MB(λ)(πi+B) + 1)

(λ− µ)(λ− µ̃)
(5.2)

=

−2πi

[
πi−B
πi+B

− 2πiψ(λ)φ(λ)

]−1

(λ− µ)(λ− µ̃)
.
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From (3.16) we get

MB(λ) =

[
πi+

4π2ψ(λ)φ(λ)

1 + 2πiψ(λ)φ(λ)
−B

]−1

=

[
−πi−B +

2πi

1 + 2πiψ(λ)φ(λ)

]−1

.

Thus the function MB(·) admits an analytic continuation to the lower half-
plane, while the analytic continuation of 〈(AB − ·)−1Fµ, vµ̃〉 given by (5.2)

has poles at µ and µ̃.

In the case when B 6= −πi, to cancel the poles in (5.2) we need to choose

poles of the analytic continuation of ψ(λ)φ(λ) to lie at µ and µ̃. Note: the
poles appearing in Theorem 5.3 should not be confused with resonances
(poles of the analytic continuation of MB). Here the resonances are due to

zeroes of πi−B
πi+B − 2πiψ(λ)φ(λ) in (5.2).

6. Abstract theory: relation between jumps of MB and bor-
dered resolvent. We consider the case in which AB and A∗B have essential
spectrum lying on the real axis; we wish to examine in what sense MB(λ)
jumps across the real axis, and how this may be related to a jump in the
resolvent (AB − λ)−1. We started investigating this question in [17, Sec-
tion 5], where we showed that under certain hypotheses existence of a jump
for the resolvent is equivalent to existence of a jump for the M -function.
Here we go much further, investigating the rank of the jump (corresponding
to the multiplicity of the a.c. spectrum) under relaxed assumptions. This is
an important step in the development of a scattering theory for the kinds
of operators under consideration.

Assumption 1. We assume that there exist countable families {fi}i∈I
and {wj}j∈Ĩ inH and K respectively, whose closed linear spans areH and K,

and that for these families the inner products 〈MB(λ)fi, wj〉 lie in both
the Nevanlinna classes N(C±). This implies that they have non-tangential
boundary values 〈MB(k± i0)fi, wj〉 for a.e. k ∈ R. The class N(C±) consists
of all meromorphic functions on C± which can be represented as the quotient
of two bounded analytic functions in the corresponding half-plane (see [31]).

Our first result is that this assumption is equivalent to an assumption
on the resolvent.

Lemma 6.1. The functions 〈MB(λ)fi, wj〉 lie in N(C±) if and only if, for

all µ 6∈ σ(AB) and µ̃ 6∈ σ(ÃB∗), the functions 〈(AB − λ)−1Sµ,Bfi, S̃µ̃,B∗wj〉
lie in N(C±).
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Proof. Starting with the fundamental identity

〈(Ã∗ − λ)u, v〉 − 〈u, (A∗ − λ)v〉 = 〈Γ1u, Γ̃2v〉 − 〈Γ2u, Γ̃1v〉
and making the choices u = (AB − λ)−1Sµ,Bfi, v = S̃µ̃,B∗wj leads to

(6.1) 〈Sµ,Bfi, wj〉 − 〈(AB − λ)−1Sµ,Bfi, (µ̃− λ)S̃µ̃,B∗wj〉
= 〈Γ2(AB − λ)−1Sµ,Bfi, Γ̃1S̃µ̃,B∗wj〉 − 〈Γ2(AB − λ)−1Sµ,Bfi, Γ̃1S̃µ̃,B∗wj〉.

If the functions 〈MB(λ)fi, wj〉 lie in N(C±) then, thanks to the identity

(6.2) MB(λ) = Γ2(I + (λ− µ)(AB − λ)−1)Sµ,B,

the terms 〈Γ2(AB − λ)−1Sµ,Bfi, ·〉 appearing in (6.1) also lie in N(C±), so

〈(AB − λ)−1Sµ,Bfi, (µ̃− λ)S̃µ̃,B∗wj〉

lies in N(C±). This implies that 〈(AB−λ)−1Sµ,Bfi, S̃µ̃,B∗wj〉 lies in N(C±).
The converse result is immediate from equation (6.2): if inner products

of the form
〈(AB − λ)−1Sµ,Bfi, S̃µ̃,B∗wj〉

lie in N(C±) then so do the inner products 〈MB(λ)fi, wj〉.
Theorem 6.2. Suppose that Assumption 1 holds and

(6.3) ε|〈MB(k ± iε)f, w〉| → 0 as ε↘ 0

for a.e. k ∈ R and for f , w in a dense countable subset of the boundary
spaces. Choose sets {µi}i∈I , {µ̃j}j∈Ĩ non-real and outside σ(AB). Let Fi =

Sµi,Bfi and vj = S̃µ̃j ,B∗wj. Then for a.e. k ∈ R,

rank
(
[P{vj}(AB − λ)−1P{Fi}]λ=k

)
= rank

(
[P{wj}MB(λ)P{fi}]λ=k

)
,

where P{vj} and P{wj} denote the projections onto the indicated one-dimen-
sional spaces, and [·]λ=k denotes the jump between λ = k+ iε and λ = k− iε
as ε↘ 0.

In order to prove Theorem 6.2 we require the following lemma.

Lemma 6.3. The collections {Fi}i∈I and {vj}j∈Ĩ from Theorem 6.2 are
both linearly independent.

Proof. We give the proof for {Fi}i∈I ; the remaining case is similar. As-
sume that there are some constants αi such that

∑
i αiFi = 0. Let ζ ∈ C; ap-

plying (Ã∗−ζ)k for some k ∈ N we get
∑

i αi(µi−ζ)kFi = 0. First, assume all
the µi are distinct. Then we can choose i0 and ζ such that |µi0−ζ| > |µi−ζ|
for i 6= i0. Letting k → ∞ we deduce that αi0Fi0 = 0. Proceeding in this
way we get αi = 0 for all i as long as the µi are distinct.

If we have a collection of µi which are all equal, say for i ∈ J , where J
is some index set, then we can prove that for some appropriately chosen ζ
we have 0 =

∑
i∈J αi(µi − ζ)kSµi,Bfi, giving Sµ`,B

∑
i∈J αifi = 0 for ` ∈ J .



260 B. M. Brown et al.

This implies that
∑

i∈J αifi = 0, and hence αi = 0 for all i ∈ J , by linear
independence of the {fi}.

Corollary 6.4. The collections {(µi−k)Fi} and {(µ̃j −k)vj} are both

linearly independent as long as µi 6= k and µ̃j 6= k for all i, j.

Proof of Theorem 6.2. We use the fundamental identity (2.7), which
yields

(6.4) 〈Fi − (AB − λ)−1(Ã∗ − λ)Fi, (A
∗ − λI)vj〉

= −〈fi, Γ̃2vj〉H + 〈MB(λ)fi, wj〉K

for all i ∈ I, j ∈ Ĩ and λ = k + iε. The jump at k of the right hand side
is clearly given by [〈MB(k)fi, wj〉K], which for convenience we denote by
〈[MB](k)fi, wj〉K. By our assumptions on the {fi} and {wj}, this is non-zero
if and only if [MB](k) 6= 0.

Now consider the left hand side of (6.4). Clearly, 〈Fi, (A∗ − λI)vj〉 has
no jump. For

(6.5) G(λ) := 〈(AB − λ)−1Fi, A
∗vj〉+ 〈(AB − λ)−1Ã∗Fi, vj〉

the negative of the remaining term on the left hand side of (6.4) is

(6.6) 〈(AB − λ)−1(Ã∗ − λ)Fi, (A
∗ − λ)vj〉

= 〈(AB − λ)−1Ã∗Fi, A
∗vj〉 − λG(λ) + |λ|2〈(AB − λ)−1Fi, vj〉.

Observe that [λG(λ)] = k[G](k) + limε↘0 iε(G(k+ iε) +G(k− iε)). We shall
prove later that

(6.7) lim
ε↘0

ε〈(AB − λ)−1Fi, vj〉 = 0 for a.e. k.

This implies [λG(λ)] = k[G](k) and

[|λ|2〈(AB − λ)−1Fi, vj〉] = k2〈[(AB − λ)−1]Fi, vj〉;

hence, from (6.6), the formula

−[〈(AB−λ)−1(Ã∗−λ)Fi, (A
∗−λ)vj〉] = 〈[(AB−λ)−1](Ã∗−k)Fi, (A

∗−k)vj〉

gives the jump of the left hand side of (6.4). Therefore

(6.8) −(µi − k)(µ̃j − k)〈[(AB − λ)−1]Fi, vj〉 = 〈[MB](k)fi, wj〉K,

from which our result follows.

It remains to establish (6.7). Returning to (6.4) we have

−(µi − λ)(µ̃j − λ)〈(AB − λ)−1Fi, vj〉

= (µ̃j − λ)〈Fi, vj〉 − 〈fi, Γ̃2vj〉H + 〈MB(λ)fi, wj〉K,
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whence

〈(AB − λ)−1Fi, vj〉| ≤
|µ̃j − λ| |〈Fi, vj〉|+ |〈fi, Γ̃2vj〉H|+ |〈MB(λ)fi, wj〉K|

|µi − λ| |µ̃j − λ|
.

Thus (6.7) is an immediate consequence of the hypothesis that (6.3) holds
for a.e. k ∈ R.

Theorem 6.5. Let {fi}i∈I and {wj}j∈Ĩ be linearly independent vectors

whose spans are dense in H and K respectively. Let {µ`}`∈J and {µ̃ν}ν∈J̃
be collections of distinct strictly complex numbers dense in C \ σ(AB) and

C \ σ(A∗B) respectively. Define Fi,` = Sµ`,Bfi, vj,ν = S̃µ̃ν ,B∗wj. Then:

(i) The collections {Fi,`}i∈I, `∈J and {vj,ν}j∈Ĩ, ν∈J̃ are both linearly in-

dependent and their spans are dense in S and S̃ respectively.
(ii) For N,M ∈ N let PN,S and P

M,S̃
denote projections onto the N - and

M -dimensional subspaces of S and S̃, respectively, spanned by N of
the Fi,` and M of the vj,ν respectively, chosen so that limN→∞ PN,S
= I and limM→∞ P

M,S̃
= I, in the sense of strong convergence. Let

E1 = {k ∈ R : [MB](k) exists in the weak topology},

E2 =
{
k ∈ R : lim

ε↘0
ε|〈MB(k ± iε)fi, wj〉| = 0 for all i, j

}
.

Then [P
M,S̃

(AB−λ)−1PN,S ](k) exists for any k ∈ E1∩E2; moreover

lim
N,M→∞

rank([P
M,S̃

(AB − λ)−1PN,S ]|λ=k)

exists and is equal to rank([MB](k)).

Proof. (i) The fact that the closed linear spans of the sets {Fi,`}i∈I,`∈J
and {vj,ν}j∈Ĩ,ν∈J̃ are S and S̃ follows immediately from the definitions of

S and S̃ together with the fact that the closed linear spans of {fi}i∈I and
{wj}j∈Ĩ are H and K respectively. It only remains to establish linear inde-

pendence. Assume that there exist constants αi,` such that
∑

i,` αi,`Fi,` = 0.

This means that
∑

i,` αi,`Sµ`,Bfi = 0. Applying Ã∗ k times yields∑
i,`

αi,`µ
k
l Fi,` =

∑
`

µkl
∑
i

αi,`Fi,` = 0, k = 0, 1, 2, . . . .

Since the µl are distinct this yields
∑

i αi,`Fi,` = 0 for all `. This means
Sµ`,B

∑
i αi,`fi = 0, and since Sµ`,B has a left inverse this implies

∑
i αi,`fi

= 0. But the {fi} are linearly independent, so αi,` = 0 for all i and `.
(ii) Let PN,S denote the projection onto N of the Fi,`, and P

M,S̃
denote

the projection onto M of the vj,ν , chosen in each case to be such that PN,S
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and P
M,S̃

converge strongly to the identity. Let PN ′ and P̃M ′ denote the

projections onto the spaces spanned by the corresponding fi, of which there
will be N ′ ≤ N , and wj , of which there will be M ′ ≤M . Since k ∈ E1 ∩E2

we may invoke (6.8) from the proof of Theorem 6.2 and deduce that

− (µ` − k)(µ̃ν − k)〈[P
M,S̃

(AB − λ)−1PN,S ]λ=kFi,`, vj,ν〉

= 〈[P̃M ′MB(λ)PN ′ ]λ=kfi, wj〉.
As k ∈ R we know that µ` 6= k and µ̃ν 6= k, so we define Xi,` = (µ` − k)Fi,`
and Yj,ν = −(µ̃ν − k)vj,ν . The vectors {Xi,`} and {Yj,ν} are both linearly

independent, and for all ` ∈ J and ν ∈ J̃ we have

〈[P
M,S̃

(AB − λ)−1PN,S ]λ=kXi,`, Yj,ν〉 = 〈[P̃M ′MB(λ)PN ′ ]λ=kfi, wj〉.

Define M1 to be the matrix with entries

〈[P
M,S̃

(AB − λ)−1PN,S ]λ=kXi,`, Yj,ν〉,

ordered by incrementing ` and ν before i and j, and M2 to be the matrix
with entries 〈[P̃M ′MB(λ)PN ′ ]λ=kfi, wj〉. It follows from the definition of the
Kronecker product that M1 = M2 ⊗ E, in which E is the matrix whose
entries are all equal to 1. By consideration of the singular values of the
Kronecker product (E has only one non-zero singular value) it follows that
M1 and M2 have the same rank, and hence that

rank([P
M,S̃

(AB − λ)−1PN,S ]λ=k) = rank([P̃M ′MB(λ)PN ′ ]λ=k).

If we define

rank([P
S̃

(AB − λ)−1PS ]λ=k) := lim
M,N→∞

rank([P
M,S̃

(AB − λ)−1PN,S ]λ=k)

and exploit the fact that the {fi}i∈I and {vj}j∈Ĩ exhaust H and K respec-
tively, then it follows that

rank([P
S̃

(AB − λ)−1PS ]λ=k) = rank([MB(λ)]λ=k).

7. The detectable subspace for the Friedrichs model. All our
results so far have involved important hypotheses about detectable sub-
spaces or about projections or restrictions of resolvents on to detectable
subspaces. We have already mentioned the concrete description of these
spaces for Schrödinger and Hain–Lüst operators in Section 3 (Proposition
3.1 for the Schrödinger case and the discussion in Subsection 3.2 for Hain–
Lüst). We now turn our attention to their description for the seemingly
innocuous Friedrichs model. We shall present a very clean characterization
of detectable subspaces in terms of an eigenspace of a Hankel-like operator
(see Theorem 7.4). This will form the basis of concrete calculations in the
second half of this section, including the computation of the defect number
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def(S) := dim(S⊥) in a particular case. We start with an elementary unique-
ness lemma, which is proved in [19]; it also follows from a more general result
of Widom [50, pp. 134-135].

Lemma 7.1. Let

G(µ) =

{
G+(µ), µ ∈ C+,

G−(µ), µ ∈ C−,

with G± ∈ H±1 + H±2 := {G1 + G2 : G1 ∈ H±1 , G2 ∈ H±2 }. Then the jump
across the real axis satisfies [G] ≡ 0 if and only if G ≡ 0.

We introduce the notation ·̂ for the Cauchy or Borel transform given by

(7.1) φ̂(λ) =

〈
1

t− λ
, φ

〉
, ψ̂(λ) =

〈
1

t− λ
, ψ

〉
and P± : L2(R)→ H±2 (R) for the Riesz projections given by

(7.2) P±f(k) = ± 1

2πi
lim
ε→0

f̂(k ± iε) = ± 1

2πi
lim
ε→0

�

R

f(x)

x− (k ± iε)
dx,

where the limit is to be understood in L2(R) (see [30]). Here, H+
p (R) and

H−p (R) denote the Hardy spaces of boundary values of p-integrable func-
tions in the upper and lower complex half-plane, respectively. To simplify
notation, we also sometimes write (f̂)±(k) = f̂(k ± i0) := 2πiP±f(k).

We next give a characterization of the space S, or more precisely its
orthogonal complement.

Proposition 7.2. Let P± be the Riesz projections defined in (7.2). Let
D(λ) be as in (3.15). Denote by D±(λ) its restriction to C± and by D± the
boundary values of these functions on R (which exist a.e., cf. [30, 43]).

(1) Let φ, ψ ∈ L2. Then g ∈ S⊥ if and only if

(7.3) P+g −
2πi

D+
(P+φ)P+(ψg) = 0 and P−g +

2πi

D−
(P−φ)P−(ψg) = 0,

if and only if

(7.4)

{
(i) (P+φ)P+(ψg)

D+
∈ H+

2 , (ii) (P−φ)P−(ψg)
D−

∈ H−2 ,
(iii) g − 2πi

D+
(P+φ)P+(ψg) + 2πi

D−
(P−φ)P−(ψg) = 0 (a.e.).

(2) If φ ∈ L2 and ψ ∈ L2 ∩ L∞, or φ, ψ ∈ L2 ∩ L4, then g ∈ S⊥ if and
only if any of the following three equivalent conditions holds:

[D+ − 2πi(P+φ)ψ]g = 2πiφ[ψP−g − P−(ψg)] (a.e.),(7.5)

[D+ − 2πi(P+φ)ψ]g = 2πiφ[−ψP+g + P+(ψg)] (a.e.),(7.6)

[D+ − 2πi(P+φ)ψ]g = 2πiφ[P+(ψP−g)− P−(ψP+g)] (a.e.).(7.7)
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Remark 7.3. (1) The second part of the proposition allows us to replace
all three conditions (i)–(iii) in (7.4) with a single pointwise condition under
mild extra assumptions on φ and/or ψ.

(2) Note that the operator [P+(ψP−g) − P−(ψP+g)] in the last charac-

terization of S⊥ is the difference of two Hankel operators.

Proof of Proposition 7.2. (i) Noting the form of elements from RanSλ,B
in (3.14), we get

S⊥ = {g ∈ L2(R) : ∀µ /∈ R, F±(µ) = 0},
where

F±(µ) :=

〈
1

x− µ
, g

〉
− 1

D(µ)

〈
1

x− µ
, φ

〉〈
1

x− µ
ψ, g

〉
and the index ± indicates which half-plane µ lies in. Then

(7.8) F±(µ) = ĝ(µ)− 1

D(µ)
φ̂(µ)ψ̂g(µ).

First assume g ∈ S⊥. Let µ ∈ C±\{D(µ) = 0}. Then F±(µ) = 0 is equivalent
to

(7.9) (P±g)(µ) = ± 2πi

D±(µ)
(P±φ)(µ)P±(ψg)(µ).

This proves the first implication in the statement.
As the zeroes of D(µ) in C± form a discrete set, the right hand side of

(7.9) lies in H±2 , showing (i) and (ii). Since g = P+g+P−g, we also get (iii).
For the reverse implications, simply apply P+ and P− to g as given in (iii).

(ii) We first show the equivalence in (7.5). Let g ∈ S⊥ and apply P± to
part (iii) of (7.4), keeping parts (i) and (ii) in mind. Then

P+g −
2πi

D+
(P+φ)P+(ψg) = 0 and P−g +

2πi

D−
(P−φ)P−(ψg) = 0.

Since D± only have discrete zeroes, this is equivalent to

D±P±(g)∓ 2πi(P±φ)P±(ψg) = 0.

In particular, on R,

D+P+(g)− 2πi(P+φ)P+(ψg) = −D−P−(g)− 2πi(P−φ)P−(ψg) (a.e.).

Since for the boundary values on R we have D− = 1− 2πiP−(ψφ) = D+ −
2πiψφ a.e., this is equivalent to

D+(P+(g) + P−(g))− 2πi(P+φ)P+(ψg)

= 2πiψφP−(g)− 2πi(P−φ)P−(ψg) (a.e.),

which can be rewritten as

D+g − 2πi(P+φ)ψg = 2πiψφP−(g)− 2πiφP−(ψg) (a.e.),

giving the right hand side of (7.5).
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On the other hand, assume the right hand side of (7.5) holds. Retracing
the steps above gives

F̃+ := D+P+(g)− 2πi(P+φ)P+(ψg)(7.10)

= −D−P−(g)− 2πi(P−φ)P−(ψg) =: F̃− (a.e.).

Using Hölder’s inequality and boundedness of the Riesz projections P± :
Lp → Lp for 1 < p < ∞ for the cases p = 4/3, p = 2 and p = 4 (see
the proof of Proposition 7.6 for more details), our conditions on ψ and φ

guarantee that F̃± ∈ H±1 + H±2 . Moreover, (7.10) states that [F̃ ] = 0. By

Lemma 7.1 we have F̃ = 0 and so

D+P+(g)− 2πi(P+φ)P+(ψg) = 0 and D−P−(g) + 2πi(P−φ)P−(ψg) = 0.

Thus all conditions on the right hand side of (7.3) are satisfied and g ∈ S⊥.

The identity P− = I −P+ then gives (7.6), and a similarly simple calcu-
lation leads to (7.7).

As an immediate consequence of (7.5), we get

Theorem 7.4. Assume φ ∈ L2 and ψ ∈ L2 ∩ L∞, or φ, ψ ∈ L2 ∩ L4,
and let (1)

D = {u ∈ L2(R) : [−P+(ψφ) + P+(φ)ψ]u+ φ[ψP− − P−ψ]u ∈ L2(R)}.

Define the operator L on the domain D(L) := D by

(7.11) Lu = [−P+(ψφ) + P+(φ)ψ]u+ φ[ψP− − P−ψ]u.

Then S 6= L2(R) iff 1/(2πi) ∈ σp(L) and S⊥ = ker(L− 1/(2πi)).

Furthermore, let η ∈ L∞(R) be a function such that η(k) 6= 0 a.e. and
η[−P+(ψφ) + P+(φ)ψ], ηψφ, ηφ ∈ L∞(R). Define the operator L in L2(R)
by

(7.12) Lu = η

[
− 1

2πi
− P+(ψφ) + P+(φ)ψ

]
u+ ηφ[ψP− − P−ψ]u

with dense domain (2) D(L) = {u ∈ L2(R) : ηφP−(ψu) ∈ L2(R)}. Then

S 6= L2(R) iff 0 ∈ σp(L). Moreover, S⊥ = kerL.

Remark 7.5. Replacing ψ by αψ, we denote the corresponding de-
tectable subspace by Sα. Then, under the conditions in the second part
of Proposition 7.2, we get g ∈ S⊥α iff

1

2πiα
g = [−P+(ψφ) + P+(φ)ψ]g + φ[P+ψP− − P−ψP+]g = Lg,

(1) Note that u ∈ L2(R) implies [−P+(ψφ) + P+(φ)ψ]u+ φ[ψP− − P−ψ]u ∈ L1(R).

(2) Note that if ψ ∈ L∞, then D(L) = L2(R).
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where L is the sum of a multiplication operator and the difference of two
Hankel operators multiplied by φ. As in the theorem, we get S⊥α 6= {0} iff
1/(2πiα) ∈ σp(L) and S⊥α is given by the corresponding kernel.

We now consider several special cases that illustrate the different situa-
tions that can arise depending on the support of φ and ψ.

7.1. The case of disjoint supports. In this part we assume that
φψ = 0 almost everywhere, in particular D(λ) ≡ 1, and that either

(7.13) φ ∈ L2(R) and ψ ∈ L2 ∩ L∞, or φ, ψ ∈ L2 ∩ L4.

In some cases (which will be mentioned later), we will require the slightly
stronger condition

(7.14)
φ ∈ L2(R) ∩ L2+ε for some ε > 0 and ψ ∈ L2 ∩ L∞ or φ, ψ ∈ L2 ∩ L4.

Proposition 7.6. Let either φ ∈ L2(R) and ψ ∈ L2 ∩ L∞, or φ, ψ ∈
L2 ∩ L4, be such that φψ = 0. Then

g ∈ S⊥ ⇔ g − 2πi(P+φ)P+(ψg) + 2πi(P−φ)P−(ψg) = 0 (a.e.),(7.15)

⇔ g − 2πiφP+(ψg) + 2πi(P−φ)ψg = 0 (a.e.)(7.16)

Define L0 = 2πi(φP+ψ − (P−φ)ψ) ≡ 2πi(φP+ψ + (P+φ)ψ) on its maximal
domain D(L0) = {u ∈ L2(R) : (φP+ψ+ (P+φ)ψ)u ∈ L2(R)}. Then we have
S = L2(R) if and only if 1 is not an eigenvalue of L0.

Proof. In this case, D(λ) ≡ 1, so (7.15) is equivalent to condition (iii) in
(7.4) and one implication is trivial. By Proposition 7.2 it is sufficient to show
that conditions (i) and (ii) in (7.4) hold. In the present case, they simplify
to

(i′) (P+φ)P+(ψg) ∈ H+
2 and (ii′) (P−φ)P−(ψg) ∈ H−2 .

When φ ∈ L2(R) and ψ ∈ L2∩L∞, we have P+φ ∈ L2(R) and P+(ψg) ∈
L2(R) by boundedness of the Riesz projection P+ : L2(R) → L2(R), so the
product lies in H+

1 (see [30]). On the other hand, if φ, ψ ∈ L2 ∩ L4, then
ψg ∈ L4/3 by Hölder’s inequality, so P+(ψg) ∈ L4/3. Also P+φ ∈ L4, so by
Hölder’s inequality again, the product lies in H+

1 . Similarly (P−φ)P−(ψg)
is in H−1 .

From (7.15), g = 2πi(P+φ)P+(ψg) − 2πi(P−φ)P−(ψg), which gives a
decomposition of g ∈ L2(R) into its unique H+ and H− components, whence
we obtain (i′) and (ii′).

Now,

g = 2πi(P+φ)P+(ψg)− 2πi(P−φ)P−(ψg) = 2πi[(P+φ)P+ψ − (P−φ)P−ψ]g

= 2πi[φP+ψ − (P−φ)(P+ψ + P−ψ)]g = L0g,

which shows (7.16) and the statement about L0.
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Remark 7.7. Note that D(L0) is dense in L2(R) if φ, ψ ∈ L2 ∩ L4 or if
φ ∈ L2+ε for some ε > 0 and ψ ∈ L2 ∩ L∞, as it contains L2 ∩ L∞.

Theorem 7.8. Define the sets (3) Ωψ = {x ∈ R : ψ(x) 6= 0}, Ωφ =

{x ∈ R : φ(x) 6= 0} and Ω = R \ (Ωψ ∪Ωφ). Then g ∈ S⊥ iff g ∈ L2(R) and

(a) χΩφg(k) = φ(k)ψ̂χΩψg(k + i0),

(b) χΩψg(k)
(
1− φ̂(k − i0)ψ(k)

)
= 0,(7.17)

(c) g|Ω = 0.

Let Ωψ,0 = {k ∈ R : φ̂(k − i0)ψ(k) = 1}. Then, additionally:

(i) If Ωψ,0 has zero measure, then S = L2(R).

(ii) Assume (7.14). If Ωψ,0 has non-zero measure, then S⊥ 6= {0}. More-
over,

S ⊆ {f ∈ L2(R) : f = ψ(f̂φ)− on Ωψ,0}.

(iii) Assume φ, ψ ∈ L2 ∩ L∞. Then

S = {f ∈ L2(R) : f = ψ(f̂φ)− on Ωψ,0}.

Remark 7.9. (1) Note that (7.17) shows that g|Ωψ completely deter-
mines g|Ωφ .

(2) Condition (7.17) gives an additional restriction on g|Ωψ , requiring

that φ(k)ψ̂χΩψg(k + i0) ∈ L2(Ωφ).

(3) Condition (7.14) implies (via the Hölder inequality and boundedness
of P+ : Lp → Lp for 1 < p < ∞) that for g ∈ (L2 ∩ L∞)(Ωψ) we have

φ(k)ψ̂χΩψg(k + i0) ∈ L2(Ωφ).

Proof of Theorem 7.8. We recall that R = Ωφ ∪Ωψ ∪Ω. Without loss of

generality, we may assume Ωφ ∩Ωψ = ∅. Suppose g ∈ S⊥. Using (7.16), we
then have three cases:

• k ∈ Ωφ. Then 0 = g(k) − φ(k)ψ̂χΩψg(k + i0). Hence, χΩφg(k) =

φ(k)ψ̂χΩψg(k + i0) and so g|Ωψ completely determines g|Ωφ .

• k ∈ Ωψ. Then 0 = g(k)−φ̂(k−i0)ψ(k)g(k). Hence, almost everywhere,

(7.18) χΩψg(k)(1− φ̂(k − i0)ψ(k)) = 0.

• k ∈ Ω. Then g|Ω = 0.

(3) Note that Ωψ, Ωφ are only defined up to a set of Lebesgue measure zero, but
this is sufficient for our purpose. Also, they may be much smaller than the support of the
functions.
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This gives three necessary and sufficient conditions for g to lie in S⊥. We
now prove statements (i)–(iii).

(i) If φ̂(k − i0)ψ(k) 6= 1 for almost every k ∈ Ωψ, (7.17)(b) implies that
g|Ωψ = 0, and so by (7.17) we have g|Ωφ = 0, whence g ≡ 0 and S = L2(R).

(ii) Choose g on Ωψ,0 to be an arbitrary non-zero (L2 ∩ L∞)(Ωψ,0)-
function (in the case when φ ∈ L2+ε, ψ ∈ L∞, we may even choose g ar-
bitrary in (L2 ∩ L2(2+ε)/ε)(Ωψ,0)). Extending g by zero to Ωψ and then
using Hölder’s inequality and boundedness of P+, we automatically get

φ(ψ̂χΩψg)+ ∈ L2(R). This then determines g on Ωψ from (7.17), and ex-

tending g to Ω by 0 we have g ∈ S⊥.

Now let f ∈ S and choose g ∈ (L2 ∩ L∞)(Ωψ,0). Then

0 =
�

R

fg =
�

Ωψ,0

fg +
�

Ωφ

fg =
�

Ωψ,0

fg +
�

Ωφ

fφ(ψ̂g)+

=
�

Ωψ,0

fg +
�

R

fφ(ψ̂g)+ =
�

Ωψ,0

fg −
�

R

(f̂φ)−ψg

=
�

Ωψ,0

fg −
�

Ωψ,0

(f̂φ)−ψg =
�

Ωψ,0

(
f − ψ(f̂φ)−

)
g,

from which it follows that g 7→
	
Ωψ,0

(f − ψ(f̂φ)−)g is a bounded linear

functional for all g in the dense set (L2 ∩ L∞)(Ωψ,0). Hence, ψ(f̂φ)− is in

L2(Ωψ,0), and we see that f ∈ S must satisfy f = ψ(f̂φ)− on L2(Ωψ,0).

(iii) If ψ and φ are both bounded, then choosing g ∈ L2 ∩ L∞(Ωψ,0)
and determining g on Ωφ from (7.17) will give a dense set of g in S⊥, as

g 7→ φ(ψ̂g)+ is bounded. The calculation in (ii) can then be repeated for a
dense set of g in S⊥, which gives the needed equality.

Example 7.10. Let I and I ′ be disjoint closed intervals in R. Choose
φ ∈ L∞ with suppφ ∈ I such that

�

R

φ(x)

x− k
dx 6= 0 for k ∈ I ′.

Define

ψ(k) =


(�

R

φ(x)

x− k
dx

)−1

for k ∈ I ′,

0 otherwise.

Then ψ ∈ L∞, φψ = 0 and φ̂(k−i0)ψ(k) = 1. Therefore, by Theorem 7.8(ii),

S⊥ 6= {0}.
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Theorem 7.11. Assume (7.14). Then S = L2(R)⇔ 1−ψ(φ̂)(k+i0) 6= 0
for a.e. k ∈ R. Moreover,

def(S) = dim(S⊥) =

{
0 if S = L2(R),

∞ otherwise.

Proof. From (7.16), we have

g ∈ S⊥ ⇔ g(k)− φ(k)(ψ̂g)+ − (φ̂)−ψg = 0 a.e.(7.19)

⇔ (1− ψ(̂φ)+)(g − φ(ψ̂g)+) = 0 a.e.

We have two cases: In the first, g−φ(ψ̂g)+ = 0 a.e. Then multiplying by
ψ and using the condition on the supports, we get ψg = 0 and hence g = 0.

In the second case, g − φ · 2πiP+(ψg) 6≡ 0. Then there exists a set E of

positive measure such that g−φ·2πiP+(ψg) 6= 0 onE and (1−ψ(φ̂))|E = 0 a.e.
We now show that if there exists a set E of positive measure such that

(1−ψ(φ̂)+)|E = 0 a.e., then S⊥ 6= {0}. Note first that E ⊂ Ωψ. Choose any
non-zero g̃ ∈ (L2 ∩ L∞)(E), g̃ 6= 0 and continue it to R by zero. Define

g(k) =


g̃(k), k ∈ E,

0, k ∈ Ωψ\E,

φ2πiP+(ψg̃), k /∈ Ωψ.

By (7.19), to show g ∈ S⊥ we only require g ∈ L2. This follows immediately
from the condition (7.14). From the freedom in the choice of g̃, it is clear
that def(S) is infinite.

To obtain the following results on complete detectability, i.e. S = L2(R),
we first prove a lemma.

Lemma 7.12. Let f : R → C be measurable. For each α ∈ C, let Eα :=
{x ∈ R : f(x) = α}. Then the set {α ∈ C : |Eα| > 0} is countable.

Proof. Notice that {α ∈ C : |Eα| > 0} =
⋃∞
n=1{α ∈ C : |Eα| >

1/n}. Assume this set is uncountable. Then there exists ε0 such that J :=
{α ∈ C : |Eα| > ε0} is uncountable. Moreover, if α 6= α′, then Eα ∩Eα′ = ∅.
Now C ⊃

⋃
α∈J Eα is a disjoint union of uncountably many sets of measure

greater than ε0. Choose f̃α = χ
Ẽα

where Ẽα ⊆ Eα with |Ẽα| = ε0. Then

‖f̃α‖ =
√
ε0 and f̃α ⊥ f̃α′ for α 6= α′, contradicting separability of L2(R2);

therefore {α ∈ C : |Eα| > 0} is countable.

Theorem 7.13.

(1) Complete detectability is generic in the following sense. Replace ψ
by αψ for α ∈ C (or φ by αφ); then for all α outside a countable set
E0 we have Sα = L2(R), where Sα is as defined in Remark 7.5.
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(2) For small perturbations, if ψ ∈ L∞ and P+φ or P−φ ∈ L∞, replacing
ψ by αψ where α ∈ C, we get Sα = L2(R) for sufficiently small |α|.

Proof. (1) This is immediate from Theorem 7.11 with the help of Lemma
7.12.

(2) From (7.16), we have g ∈ S⊥ if and only if

(7.20) g(k)− φ(k)ψ̂g(k + i0)− φ̂(k − i0)ψ(k)g(k) = 0.

Multiplying by ψ(k), and setting gψ := ψg, we get

(7.21) gψ(k) = ψ(k)φ̂(k − i0)gψ(k).

Hence, unless ψ(k)φ̂(k − i0) = 1 on a set of non-zero measure, we have
gψ ≡ 0, which by (7.20) gives g ≡ 0, and therefore S = L2(R). Now, as
φψ = 0,

αψ(k)φ̂(k − i0) = −2πiαψ(k)P−φ = 2πiαψ(k)P+φ.

Assuming ψ ∈ L∞ and P+φ or P−φ in L∞, we see that Sα = L2(R) for

sufficiently small |α|, since then |αψ(k)φ̂(k − i0)| < 1 and (7.21) implies
gψ ≡ 0.

We next give a specific example with disjoint supports which illustrates
some of the abstract results. The lengthy calculations can be found in [19].

Remark 7.14. Suppose that I and I ′ are disjoint closed intervals such
that I ′ lies to the left of I. Let

φ = χI and ψ(x) = χI′(x) ·
(�
I

dt

t− x

)−1

.

By (quite extensive) explicit calculations, the following may be proved:

(1) In this case S 6= L2(R) with def(S) =∞, while S̃ = L2(R).
(2) The jump of the M -function across the real axis at k is given by

[M−1
B (k)] =


2πi, k ∈ R \ (I ∪ I ′),
2πi(1− ψ̂(k)), k ∈ I,

0, k ∈ I ′.
Moreover, the bordered resolvent P

S̃
(AB−λ)−1PS jumps at k ∈ R iff k /∈ I ′,

i.e. the location of the jumps of the bordered resolvent coincides with the
jumps of MB. (Compare to Theorem 6.5, where we can only border the
resovent by finite-dimensional projections.)

7.2. Results when φ and ψ are not disjointly supported. We
present some initial results for the more general case when φ and ψ do not
necessarily have disjoint supports. We plan to address this question in more
detail in a forthcoming paper.
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Theorem 7.15.

(1) Let Ωc = {x : φ(x) 6= 0} ∪ {x : ψ(x) 6= 0}. Then g ∈ S⊥ implies
{x : g(x) 6= 0} ⊆ Ωc (up to a set of measure zero). In particular,
S⊥ ⊆ L2(Ωc) and S ⊇ L2(Ω).

(2) Consider ψ = αχI for some constant α and a set I of finite measure,
and assume φ|Ic = 0 a.e. Then S = L2(R).

Proof. (1) Let

(7.22) F± := P±g ∓
2πi

D±
(P±φ)P±(ψg) = 0.

We consider the condition (7.3). Then g ∈ S⊥ implies F± ≡ 0 and [F ] = 0.
On Ω we see that〈

1

x− µ
, φ

〉〈
1

x− µ
ψ, g

〉(
1 +

〈
ψ

x− µ
, φ

〉)−1

is analytic a.e., so its jump is zero. Therefore

2πig(k) =

〈
1

x− µ
, g

〉∣∣∣∣
Ω

= 0 a.e.

and g vanishes a.e. on Ω. Since our conditions are symmetric in φ and ψ,
we immediately also get S̃⊥ ⊆ L2(Ωc).

(2) Consider F± from (7.22). We need to show that if F vanishes, then
so does g. We have

D±(µ) = 1 + α
�

I

φ

x− µ
dx,

so

F±(µ) =

〈
1

x− µ
, g

〉
−
α
	
I

φ
x−µ dx

	
I

g
x−µ dx

1 + α
	
I

φ
x−µ dx

.

Since g ∈ S⊥, the first part of the theorem implies g|Ic = 0 a.e., so

F±(µ) =
�

I

g

x− µ
dx

1

1 + α
	
I

φ
x−µ dx

.

Clearly,
(
1 + α

	
I

φ
x−µ dx

)−1 6= 0 for a.e. µ, so for all µ 6∈ R we have

�

I

g

x− µ
dx =

〈
1

x− µ
, g

〉
= 0.

As in the proof of Lemma 7.1, this implies g ≡ 0.

We finish this subsection by showing that in our situation we can improve
on Theorems 4.1 and 4.6 by recovering the M -function from one bordered
resolvent.
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Theorem 7.16. As before, let Ωψ={x∈R : ψ(x) 6=0} and Ωφ={x ∈ R :
φ(x) 6= 0}. Let Ω = R \ (Ωφ ∪ Ωψ) and assume we know a set of non-zero
measure Ω′ ⊆ Ω. Then MB(λ) can be recovered from one bordered resolvent.

Remark 7.17. The converse is not possible. The asymptotics of the M -

function at i∞ allows us to recover B and thus ψ̂(λ)φ̂(λ) for any λ. However,
only knowing the product makes it impossible, for example, to distinguish
the expression for A from the operator expression obtained by replacing ψ
by φ and φ by ψ, respectively.

Proof of Theorem 7.16. From Theorem 7.15, we know that L2(Ω′) ⊆
S ∩ S̃. Choose v, ṽ ∈ L2(Ω′). By assumption, we know 〈(AB − λ)−1v, ṽ〉.
Noting that vφ = 0 and ṽψ = 0, from (3.17) and (3.18) we get

(7.23) 〈(AB − λ)−1v, ṽ〉 −
〈

v

x− λ
, ṽ

〉
= −MB(λ)

〈
v

x− λ
,1

〉〈
1

x− λ
, ṽ

〉
.

Choosing v, ṽ ≥ 0 and not identically zero, we can divide λ-a.e. to obtain

(7.24) MB(λ) =

〈
v

x−λ , ṽ
〉
−
〈
(AB − λ)−1v, ṽ

〉〈
v

x−λ ,1
〉〈

1
x−λ , ṽ

〉 .
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