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On the set of limit points of conditionally convergent series

by

Szymon Głąb and Jacek Marchwicki (Łódź)

Abstract. Let
∑∞
n=1 xn be a conditionally convergent series in a Banach space and

let τ be a permutation of the natural numbers. We study the set LIM(
∑∞
n=1 xτ(n)) of

all limit points of the sequence (
∑p
n=1 xτ(n))

∞
p=1 of partial sums of the rearranged se-

ries
∑∞
n=1 xτ(n). We give a full characterization of such limit sets in finite-dimensional

spaces. Namely, every such limit set in Rm is either compact and connected, or closed
with all connected components unbounded. On the other hand, each set of one of these
types is the limit set of some rearranged conditionally convergent series. Moreover, this
characterization does not hold in infinite-dimensional spaces.

We show that if
∑∞
n=1 xn has the Rearrangement Property and A is a closed subset

of the closure of the sum range of
∑∞
n=1 xn and it is ε-chainable for every ε > 0, then

there is a permutation τ such that A = LIM(
∑∞
n=1 xτ(n)).

1. Introduction. Let
∑∞

n=1 xn be a conditionally convergent series of
real numbers. For any a < b one can find a permutation σ ∈ S∞ of the natural
numbers such that the sequence (

∑k
n=1 xσ(n))

∞
k=1 of partial sums of the rear-

rangement
∑∞

n=1 xσ(n) has lower limit a and upper limit b. Consequently,
a and b are limit points of the sequence (

∑k
n=1 xσ(n))

∞
k=1. Since |xσ(n)|

tends to zero, the whole interval [a, b] consists of such limit points. This
simple observation shows that the set of all limit points of (

∑k
n=1 xσ(n))

∞
k=1

is closed and connected, and for any closed connected subset I of R and
any conditionally convergent series

∑∞
n=1 xn one can find a rearrangement∑∞

n=1 xσ(n) such that the set of all limit points of its partial sums equals I.
If
∑∞

n=1 xσ(n) diverges to ∞ or to −∞, then the set of its limit points is
empty.

The situation becomes more complicated for conditionally convergent se-
ries in multidimensional Euclidean spaces. One could expect that the limit
sets of all rearrangements are connected or even arcwise connected. It turns
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out that this is not the case. However, some result concerning connectedness
can be proved for multidimensional spaces (see Theorem 3.5).

Let
∑∞

n=1 xn be a series in a Banach space X. Denote by LIM(
∑∞

n=1 xn)
the set of all limit points of the sequence of partial sums of the series,
let

LPS
( ∞∑
n=1

xn

)
=

⋃
σ∈S∞

LIM
( ∞∑
n=1

xσ(n)

)
where S∞ stands for the collection of all bijective maps σ : N → N, and
denote by SR(

∑∞
n=1 xn) the sum range of the series, that is, the set of sums

of all convergent rearrangements of the series. Let us also introduce the fol-
lowing notation. Denote by Σ the collection of all series in X, by Σ0 the
collection of those

∑∞
n=1 xn ∈ Σ with limn→∞ xn = 0, and by Σc the collec-

tion of those
∑∞

n=1 xn ∈ Σ that have a convergent rearrangement, i.e. with
SR(

∑∞
n=1 xn) 6= ∅.

It is easy to see that LIM(
∑∞

n=1 xn) is a closed separable set, and that
for every closed separable set A ⊆ X there is a series

∑∞
n=1 xn ∈ Σ with

LIM(
∑∞

n=1 xn) = A.
Now, let

∑∞
n=1 xn ∈ Σc(Rm). By the Steinitz Theorem the sum range

SR(
∑∞

n=1 xn) is an affine subspace of Rn. The limit sets of series were stud-
ied by Victor Klee [3], who claimed that if A = LIM(

∑∞
n=1 xn), then for

every ε > 0 the ε-shell A(ε) = {x : ‖x − y‖ < ε for some y ∈ A} of A is
connected. Our Example 2.2 shows that this is not true.

A metric space (Y, ρ) is ε-chainable if any points a, b ∈ Y can be joined
by a path x0, x1, . . . , xk ∈ Y such that x0 = a, xk = b and ρ(xi, xi−1) < ε.
Each connected metric space is ε-chainable for every ε > 0 [1, 6.1.D(a)];
moreover, if (Y, ρ) is compact and ε-chainable for every ε > 0, then Y is
connected, the compactness assumption being essential [1, 6.1.D(b)]. Klee
also proved that if

∑∞
n=1 xn ∈ Σc(Rm) and A ⊆ SR(

∑∞
n=1 xn) is closed

and ε-chainable for every ε > 0, then there is σ ∈ S∞ such that A =
LIM(

∑∞
n=1 xσ(n)).

In this article we complete Klee’s result by giving a full characteriza-
tion of limit sets LIM(

∑∞
n=1 xn) for

∑∞
n=1 xn ∈ Σc(Rm). Namely we prove

the following dichotomy (Theorem 3.5): the limit set is either compact and
connected, or any of its connected components is unbounded; moreover, the
closure of the limit set in the one-point compactification of Rm is connected.
The proof uses the fact that the underlying space has finite dimension. More-
over, this dichotomy does not hold for all Banach spaces. More precisely, in
every infinite-dimensional Banach space we construct an example of a condi-
tionally convergent series such that the limit set of some of its rearrangements
consists of two points.
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Theorem 3.5 cannot be reversed in the sense that there is an unbounded,
closed set in the one-dimensional Euclidean space R each of whose connected
components is unbounded but it cannot be a limit set. Namely, set X :=
(−∞,−1] ∪ [1,∞). As mentioned at the beginning, any limit set on the
real line must be connected, and therefore X is not a limit set. However,
Theorem 3.5 can be reversed in higher dimensions. This means that any
compact connected set (or even any closed ε-chainable set for every ε > 0)
in Rm, m ≥ 1, and any closed set in Rm, m ≥ 2, all of whose components
are unbounded, is the limit set of some rearrangement of a conditionally
convergent series.

In the last section we show that if
∑∞

n=1 xn is a series in an arbitrary
Banach space such that

∑∞
n=1 xn has the Rearrangement Property, and A ⊆

SR(
∑∞

n=1 xn) is closed and ε-chainable for every ε > 0, then there is τ ∈ S∞
such that A = LIM(

∑∞
n=1 xτ(n)).

2. Counterexample to Klee’s claim. As mentioned in the Introduc-
tion, Victor Klee [3] claimed that if A = LIM(

∑∞
n=1 xn) for some

∑∞
n=1 xn

∈ Σc, then its ε-shell A(ε) is connected for every ε > 0. This is equivalent
to saying that A is ε-chainable for every ε > 0. Klee used different notation,
but the gap in his argument can be translated into our language as follows.
He argued that it was “evident” that LIM(

∑∞
n=1 xn) cannot consist of two

sets X and Y having disjoint ε-shells X(ε) and Y (ε). However, the following
example shows that this is not true.

According to [4], in finite-dimensional spaces every series
∑∞

n=1 xn ∈ Σ0

with LIM(
∑∞

n=1 xn) 6= ∅ has a convergent rearrangement. Therefore the
problem of characterizing those A ⊆ Rm with LIM(

∑∞
n=1 xn) = A for

some
∑∞

n=1 xn ∈ Σc is equivalent to characterizing those A ⊆ Rm with
LIM(

∑∞
n=1 xn) = A for some

∑∞
n=1 xn ∈ Σ0. This permits us not to care

about the existence of a convergent rearrangement, but only about the con-
dition limn→∞ xn = 0.

For natural numbers n < m we denote by [n,m] the discrete interval
{n, n+ 1, n+ 2, . . . ,m}, and by [n,∞) the set {n, n+ 1, . . . }. Let

∑∞
n=1 xn

∈ Σ0. The partial sums sequence (sn), sn =
∑n

k=1 xk, will be called a walk.
Note that a ∈ LIM(

∑∞
n=1 xn) if for every ε > 0 the walk (sn) hits the

ball B(a, ε). If (sn)∞n=1 is a sequence in Rm, then we call it a walk if some
rearrangement of the series

∑∞
n=1(sn+1− sn) is convergent. A sequence (sn)

of elements of a set X is called an X-walk if

(i) the set {sn : n ∈ N} is dense in X;
(ii) ‖sn+1 − sn‖ → 0.

Observe that conditions (i) and (ii) imply that X is ε-chainable for every
ε > 0.
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Proposition 2.1. Let X ⊆ Rm be dense-in-itself and let (sn) be an
X-walk. Then

∑∞
n=1 xn :=

∑∞
n=1(sn − sn−1) ∈ Σc, where s0 = 0, and

LIM(
∑∞

k=1 xk) = X.

Proof. From (ii) we get
∑∞

n=1 xn ∈ Σ0. Fix x ∈ X. From (i) we know that
x = limn→∞ smn for some increasing sequence {mn}∞n=1 of natural numbers.
Hence x ∈ LIM(

∑∞
n=1 xn), so X ⊆ LIM(

∑∞
n=1 xn). Since LIM(

∑∞
n=1 xn) is

closed, we have X ⊆ LIM(
∑∞

n=1 xn). We also know that each element of
(sn) is in X, so LIM(

∑∞
k=1 xk) ⊆ X. Finally, by the above mentioned paper

[4] of Rosenthal we have
∑∞

n=1 xn ∈ Σc.

Example 2.2. We define a series
∑∞

k=1 yk ∈ Σ(R2).

Step 1. The first two yn’s are (1/2, 0), (1/2, 0).

Step 2. We define the next 1 · 4 + 4 + 1 · 4 elements:

(0, 1/4), . . . , (0, 1/4), (−1/4, 0), . . . , (−1/4, 0), (0,−1/4), . . . , (0,−1/4).
Step 2k+1. In this step we define 2k ·22k+1+22k+1+2k ·22k+1 elements:

(0, 2−2k−1), . . . , (0, 2−2k−1)︸ ︷︷ ︸
2k·22k+1

, (2−2k−1, 0), . . . , (2−2k−1, 0)︸ ︷︷ ︸
22k+1

,

(0,−2−2k−1), . . . , (0,−2−2k−1)︸ ︷︷ ︸
2k·22k+1

.

Step 2k+2. In this step we define (2k+1)·22k+2+22k+2+(2k+1)·22k+2

elements:

(0, 2−2k−2), . . . , (0, 2−2k−2)︸ ︷︷ ︸
(2k+1)·22k+2

, (−2−2k−2, 0), . . . , (−2−2k−2, 0)︸ ︷︷ ︸
22k+2

,

(0,−2−2k−2), . . . , (0,−2−2k−2)︸ ︷︷ ︸
(2k+1)·22k+2

.

Since
∑∞

k=1 yk ∈ Σ0(R2) and (0, 0) ∈ LIM(
∑∞

k=1 yk), we have
∑∞

k=1 yk ∈
Σc(R2). Note that LIM(

∑∞
n=1 yn) equals {0, 1} × [0,∞), so its ε-shell is

disconnected for all ε < 1/2.

Example 2.3. Now we describe a construction in which the limit set
of the series is the closure of the union of infinitely many pairwise disjoint
half-lines {an : n ∈ N} × [0,∞) where (an) is a sequence of distinct real
numbers. This example is similar to Example 2.2, so we only specify the
walk (sn). Since at each step of the construction the walk goes from one
point to another and then back along the same path, the steps of the walk
can be rearranged into an alternating series. Since the lengths of the walk’s
steps tend to zero, the resulting series is convergent. We describe the first
three steps of the construction:
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Fig. 1. The first three steps of the construction of the walk (
∑m
n=1 xn)

∞
m=1 from Ex-

ample 2.2.

Step 1. We start the walk at (a1, 0). Then we move to (a2, 0) along the
line y = 0 using steps of length not greater than 1. Then we go back to
(a1, 0) along the same path.

Step 2. We go upwards to (a1, 1), then along the line y = 1 to (a2, 1),
next downwards to (a2, 0) and back upwards to (a2, 1), then again along
y = 1 to (a3, 1) and downwards to (a3, 0), always using steps no greater
than 1/2. Finally, we go back to (a1, 0) using the same path.

Step 3. In this step first four points (a1, 0), . . . , (a4, 0) are involved,
steps are no greater than 1/4, and to move between the vertical lines x = ai
we use the horizontal line y = 2, etc.

Clearly A := LIM(
∑∞

n=1 xn) ⊇ {an : n ∈ N} × [0,∞). Since A is closed,
we obtain A ⊇ {an : n ∈ N} × [0,∞) = {an : n ∈ N} × [0,∞). To show the
opposite inclusion, let (u, v) /∈ {an : n ∈ N}×[0,∞). If v < 0 then (u, v) /∈ A,
because our walk is in R2 and has a nonnegative second coordinate. If v ≥ 0
and u /∈ {an : n ∈ N} then infn∈N |u − an| = δ > 0. Fix a natural number
m > v+δ. Then the ball B((u, v), δ) contains no elements of our walk defined
at the kth step of the construction for any k ≥ m. Hence (u, v) /∈ A. Finally,
A = {an : n ∈ N} × [0,∞).

Using Example 2.3 we can show that the limit set of a rearrangement
of a conditionally convergent series can have uncountably many unbounded
components. Let E = {a1, a2, . . .} be a countable dense subset of the ternary
Cantor set C. By Example 2.3 one can find a series

∑∞
n=1 xn ∈ Σc such

that LIM(
∑∞

n=1 xn) = {an}∞n=1 × [0,∞) = C × [0,∞). Since C is totally
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disconnected, i.e. each of its components is a singleton, the half-lines {x} ×
[0,∞), x ∈ C, are the components of C × [0,∞).

3. Characterization of limit sets in Euclidean spaces. Let B(0, R)
= {v ∈ Rm : ‖v‖ ≤ R} and S(0, R) = {v ∈ Rm : ‖v‖ = R}. For a topological
space X, we denote by K(X) the set of all nonempty compact subsets of X
equipped with the Vietoris topology (for details see for example [6, p. 66]). It
is well known that the compactness (metrizability, separability) of X implies
the compactness (metrizability, separability) of the hyperspace K(X) and
that the family of all nonempty compact connected subsets of X forms a
closed subset of K(X).

Lemma 3.1. Let X ⊆ Rm be a closed set and let R > 0. Then

Z :=
⋃
{C : C is a component of X ∩B(0, R) such that C ∩ S(0, R) 6= ∅}

is a compact subset of Rm.

Proof. Let (vn) ⊆ Z. Find components Cn of X ∩ B(0, R) such that
Cn∩S(0, R) 6= ∅ and vn ∈ Cn. Pick xn ∈ Cn∩S(0, R). Since K(X∩B(0, R))
is compact, we may assume that Cn tends to some C, vn → v and xn → x.
Then v, x ∈ C and C is connected. Therefore v and x are in the same
component of X ∩B(0, R) which intersects the sphere S(0, R). Thus v ∈ Z,
and consequently Z is compact.

Let X ⊆ Rm be a closed set. We define an equivalence relation E on X
as follows:

xEy ⇔ x and y belong to the same component of X.

We denote by X/E the set of all equivalence classes of E, and by q the
mapping from X to X/E assigning to a point x ∈ X the equivalence class
[x]E ∈ X/E. On X/E we consider the so-called quotient topology consisting
of those U ⊆ X/E such that q−1(U) is open in X. The set X/E equipped
with this topology is called the quotient space, and q : X → X/E is the
natural quotient mapping. The following result important for us can be found
in [1].

Theorem 3.2. For every compact space X, the quotient space X/E is
compact and zero-dimensional.

Lemma 3.3. Let
∑∞

n=1 xn ∈ Σc(Rm). Assume that Y is a nonempty
bounded subset of X := LIM(

∑∞
n=1 xn). If Y (ε) is disjoint from X \ Y for

some ε > 0, then X = Y .

Proof. Note that the closure Z of Y (ε)\Y (ε/2) is a compact set disjoint
from X. Suppose that X \ Y 6= ∅. Consider the set A := {

∑k
n=1 xn : k ∈ N}

∩ Z of those partial sums of
∑∞

n=1 xn which are in Z. Since all elements of
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the nonempty sets Y and X \Y are limit points of the partial sums sequence
{
∑k

n=1 xn}∞k=1, the elements of that sequence walk from Y to X \ Y and
back infinitely many times. Since the lengths of steps ‖xn‖ taken during this
walk tend to zero, the set A is infinite. By compactness of Z we know that A
has a limit point, which in turn is in Z, but this contradicts the fact that
Z ∩X = ∅. Thus X \ Y = ∅ and consequently X = Y .

Denote by a(Rm) the one-point compactification of Rm, that is, to Rm
we add a point ∞. A neighborhood base at each x ∈ Rm consists of open
balls centered at x, and a neighborhood base at ∞ consists of all sets of the
form (Rm \C)∪ {∞} where C is compact in Rm. For A ⊂ a(Rm) we denote
by A∞ the closure of A in a(Rm).

Lemma 3.4. Let {Ci : i ∈ I} be a family of connected and unbounded
subsets of Rm and let C :=

⋃
i∈I Ci. Then

(1) C∞ = C ∪ {∞};
(2) C∞ is connected.

Proof. (1) The set C ∪ {∞} is closed in a(Rm), since (Rm ∪ {∞}) \ (C ∪
{∞}) = Rm \C is open in Rm. Thus C∞ ⊆ C ∪{∞}. Since C is unbounded,
we have ∞ ∈ C∞, and consequently C ∪ {∞} ⊆ C∞.

(2) Note that C ∪ {∞}∞ = C ∪ {∞}—this follows from (1) and the
inclusions C ⊆ C ∪ {∞} ⊆ C ∪ {∞}. It is enough to show that A :=
C ∪{∞} is connected. Suppose to the contrary that there are two nonempty
disjoint open sets U and V with A = (A ∩ U) ∪ (A ∩ V ) and ∞ ∈ U . Set
U ′ := U \ {∞}. Then U ′ is open in Rm. There is a compact set D ⊆ Rm
such that (X \ D) ∪ {∞} = U . Then X \ D = U ′ and V ⊆ D. Since V is
nonempty, there is i ∈ I with V ∩Ci 6= ∅. But then Ci = (V ∩Ci)∪ (U ∩Ci)
and by the connectedness of Ci we obtain Ci ⊆ V ⊆ D, which contradicts
the unboundedness of Ci.

Theorem 3.5. Let
∑∞

n=1 xn∈Σc(Rm). Then the set X=LIM(
∑∞

n=1 xn)
is either compact connected, or a union (finite, countably infinite or uncount-
able) of unbounded closed connected sets; in particular, X∞ is compact and
connected.

Proof. Since X is closed in Rm, we have X∞ = X if X is bounded and
X
∞

= X ∪ {∞} if X is unbounded. On X∞ define an equivalence relation
E given by the decomposition of X∞ into components.

Assume that C is a bounded component of X. There is R > 0 such
that C ⊆ B(0, R) and C ∩ S(0, R) = ∅. Set Z :=

⋃
{C ′ : C ′ is a com-

ponent of X ∩ B(0, R) such that C ′ ∩ S(0, R) 6= ∅}. By Lemma 3.1, Z is
compact in Rm. Set U := (X

∞ ∩ B(0, R)) \ Z. Then U is open in X∞ and
U = q−1(q(U)); therefore q(U) is open inX∞/E. Since C ∈ q(U) andX∞/E
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is zero-dimensional, there is a clopen set V ⊆ X
∞
/E with C ∈ V ⊆ q(U).

Since Z and Y := q−1(V ) are compact, there is ε > 0 with Y (ε) ∩ Z = ∅
and (Y (ε) \ Y ) ∩X∞ = ∅; consequently, Y (ε) ∩X \ Y = ∅. By Lemma 3.3
we find that Z ⊆ X \ Y = ∅. Therefore no component of X ∩B(0, R) inter-
sects S(0, R). Thus X ∩ B(0, R) = q−1(q(X ∩ B(0, R))), and consequently
q(X ∩B(0, R)) is open in X∞/E. Since X∞/E is zero-dimensional, there is
a clopen V with C ∈ V ⊆ q(X ∩B(0, R)). Thus Y := q−1(V ) is clopen and
it contains C. There is ε > 0 such that Y (ε) ⊆ B(0, R), which means that
Y (ε) is disjoint from X \ Y . By Lemma 3.3 we deduce that X is bounded.

We have thus proved that if X has a bounded component, then X is
bounded itself. That means that if X has an unbounded component, then
each of its components is unbounded and, by Lemma 3.4, X∞ is connected,
or equivalently q(X

∞
) = [∞]E . Thus X

∞ is connected in a(Rm) if X is
unbounded.

To finish the proof we need to show that if X is bounded, then it is
connected. If not, there would be two disjoint nonempty clopen subsets Y
and X \ Y of X. But then there would be ε > 0 with Y (ε) ∩ (X \ Y ) = ∅,
contrary to Lemma 3.3.

4. Theorem 3.5 does not hold in infinite-dimensional spaces.
Now we will define a series

∑∞
n=1 xn ∈ Σc(X) in an infinite-dimensional

Banach space X such that LIM(
∑∞

n=1 xn) consists of two points.

Example 4.1. LetX be an infinite-dimensional Banach space and Y ⊂X
be a linear subspace with a normalized Schauder basis {ei : i ∈ N}. Such a
subspace Y exists by Mazur’s Theorem (see for example [2, Theorem 6.3.3]).
For x ∈ Y we write x = (x(1), x(2), . . . ) instead of x =

∑∞
i=1 x(i)ei.

Step 1. We define the first six elements x1, . . . , x6 to be e2, e1, −e2, e2,
−e1, −e2.

Step k + 1. In this step we define six consecutive groups of elements
of the series, each consisting of 2k elements: the elements of the first group
are all equal to 2−kek+2, of the second are all 2−ke1, of the third 2k are
−2−kek+2, of the fourth are 2−kek+2, of the fifth are −2−ke1, and of the last
one are −2−kek+2. Observe that the series can be rearranged to become an
alternating series, and since its term tends to zero, the rearranged series is
convergent.

The sequence of partial sums sm =
∑m

n=1 xn is the following:

e2, e2 + e1, e1, e2 + e1, e2, θ,
1
2e3, e3, e3 +

1
2e1, e3 + e1,

1
2e3 + e1, e1,

1
2e3 + e1, e3 + e1, e3 + 1/2e1, e3,

1
2e3, θ, . . . ,
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1

2k
ek+2,

2

2k
ek+2, . . . , ek+2, ek+2+

1

2k
e1, . . . , ek+2+e1,

2k − 1

2k
ek+2+e1, . . . , e1,

e1 +
1

2k
ek+2, . . . , e1 + ek+2, ek+2 +

2k − 1

2k
e1, . . . , ek+2,

2k − 1

2k
ek+2, . . . , θ, . . . ,

where θ = (0, 0, . . . ).
The walk (sm) has the following properties:

(i) θ and e1 appear in the sequence (sm) infinitely many times;
(ii) for every natural j ≥ 2 there exists p ∈ N such that sm(j) = 0 for

all natural m ≥ p;
(iii) the distance between z = (z(1), z(2), . . .) with z(1) /∈ [0, 1] and the

set {sm : m ∈ N} is positive;
(iv) if sm(1) /∈ {0, 1} then there exists a natural k ≥ 2 such that

sm(k) = 1.

We claim that A := LIM(
∑∞

n=1 xn) = {θ, e1}. By (i) we get θ, e1 ∈ A.
Conditions (ii) and (iii) imply A ⊆ {(a, 0, 0, . . .) : a ∈ [0, 1]}. Indeed, since
z = (z(1), z(2), . . .) ∈ A, by (ii) we get z(i) = 0 for every i ≥ 2. Moreover, if
z(1) > 1 or z(1) < 0 then by (iii) we have z /∈ A.

Now, let a ∈ (0, 1). We will show that a := (a, 0, 0, . . .) /∈ A. One can
find ε > 0 such that (a− ε, a+ ε) ∩ {0, 1} = ∅. We consider the ball B(a, ε)
in X. If z ∈ B(a, ε) ∩ {sm : m ∈ N} then z(1) ∈ (a − ε, a + ε), hence the
first coordinate of z is neither 0 nor 1. Then by (iv) there exists k ≥ 2
such that z(k) = 1, which contradicts the fact that z ∈ B(a, ε). Hence
B(a, ε) ∩ {sm : m ∈ N} = ∅, so a /∈ {sm : m ∈ N}. Since A ⊆ {sm : m ∈ N},
we have a /∈ A. Finally, A = {θ, e1}.

Remark. Roman Wituła called our attention to the fact that he and
his co-authors had found a very similar example of a series with two-point
limit set (see [7]).

5. On the converse of Theorem 3.5. In this section we will prove
that Theorem 3.5 can be reversed: for any compact and connected subset
X of Rm there is a series

∑∞
n=1 xn ∈ Σc with X = LIM(

∑∞
n=1 xn), and

for any closed subset Y of Rm with each component unbounded there is a
series

∑∞
n=1 yn ∈ Σc with Y = LIM(

∑∞
n=1 yn). This shows that Theorem

3.5 gives a full characterization of limit sets in finite-dimensional Banach
spaces.

Theorem 5.1. Let m ∈ N. Assume that X ⊆ Rm is closed and ε-
chainable for every ε > 0. Then there is a series

∑∞
n=1 xn ∈ Σc(Rm) such

that X = LIM(
∑∞

n=1 xn). In particular, the assertion holds if X is compact
and connected.
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Proof. Let (dn) be dense in X. We will construct an X-walk. In the
first step we find a 1-chain inside X between d1 and d2 and denote it a1 =
d1, a2, . . . , ap = d2. We define si = ai for every i ∈ {1, . . . , p}. In the second
step let ap = d2, ap+1, . . . , ap+r = d3 be a 2−1-chain between d2 and d3. We
define si = ai for i ∈ {p + 1, . . . , p + r}. In the third step we consider a
2−2-chain between d3 and d4 and define the next sn’s as before, and so on.
By Proposition 2.1, we obtain the assertion. Finally, note that connected
sets are ε-chainable for every ε > 0.

Theorem 5.2. Let m ≥ 2. Assume that X ⊆ Rm is closed and any
component of X is unbounded. Then there is a series

∑∞
n=1 xn ∈ Σc(Rm)

such that X = LIM(
∑∞

n=1 xn).

Proof. Let X =
⋃
t∈T At, where for every t ∈ T the set At is an un-

bounded component of X. Clearly each At is closed and ε-chainable for
every ε > 0. Let (dn) be dense in X. If di ∈ As, dj ∈ At, At ∩As = ∅, then,
by the connectedness and unboundedness of As and At, there is a sphere
S(0, R) intersecting As and At. Let as ∈ As ∩S(0, R) and at ∈ At ∩S(0, R).
By an ε-chain via S(0, R) from di to dj we mean a concatenation of three
ε-chains: from di to as using elements of As, from as to at using elements of
SR and from dj to at using elements of At. If At = As, then by an ε-chain via
S(0, R) from di to dj we mean just an ε-chain from di to dj using elements
of As.

Let Rn be a sequence of radii tending to∞ such that S(0, Rn) intersects
each component containing d1, . . . , dn+1.

Now let us describe a walk (sn), which, in general, need not be anX-walk:
The first elements of (sn) form a 1/2-chain via S(0, R1) from d1 to d2. In the
kth step of the construction the subsequent elements of (sn) are elements of
a 2−k-chain via S(0, Rk) from dk to dk+1.

We have defined the sequence of partial sums sn =
∑n

i=1 xi of a series∑∞
n=1 xn ∈ Σ0(Rm). Clearly X ⊆ LIM(

∑∞
n=1 xn) ⊆ X ∪

⋃∞
k=1 S(0, Rk).

Since Rk →∞ and the sequence (sn) contains at most finitely many elements
of S(0, Rk) \ X, we obtain the reverse inclusion X ⊇ LIM(

∑∞
n=1 xn). In

particular LIM(
∑∞

n=1 xn) 6= ∅. Thus
∑∞

n=1 xn ∈ Σc(Rm).

As mentioned in the Introduction, the assertion of Theorem 5.2 is not
true if m = 1.

6. When the limit set is a singleton. By definition, if
∑∞

n=1 xn = x0,
then LIM(

∑∞
n=1 xn) = {x0}, since every subsequence of the sequence of

partial sums is convergent to x0. In general the converse need not be true,
which is illustrated by Proposition 6.2 below. However, in finite-dimensional
spaces the above implication can be reversed.



Limit points of conditionally convergent series 231

Theorem 6.1. Let
∑∞

n=1 xn ∈ Σ0(Rm). If LIM(
∑∞

n=1 xn) is a single-
ton {x0}, then

∑∞
n=1 xn converges to x0.

Proof. Suppose that
∑∞

n=1 xn does not converge to x0, so there ex-
ists ε > 0 such that for every k0 ∈ N one can find l ≥ k0 such that
‖
∑l

n=1 xn − x0‖ > ε. This means that there are infinitely many indices
p such that

∑p
n=1 xn /∈ B(x0, ε). On the other hand, since x0 is a limit

point of the series
∑∞

n=1 xn, there exist infinitely many r ∈ N such that∑r
n=1 xn ∈ intB(x0, ε/2). Hence there are infinitely many elements of a

walk (sn) of partial sums in the interior of B(x0, ε/2) and infinitely many
outside the ball B(x0, ε). Since xn → 0, there are infinitely many sn’s in
B = B(x0, ε) \ intB(x0, ε/2). By the compactness of B, it contains a limit
point of (sn), contrary to LIM(

∑∞
n=1 xn) = {x0}.

Note that the assumption xn → 0 cannot be omitted. To see this consider
the series 2−1 + 21 − 21 + 2−2 + 22 − 22 + 2−3 + 23 − 23 + · · · . Clearly 1 is
its only limit point, but the series is not convergent.

Proposition 6.2. Let X be an infinite-dimensional Banach space. There
is a series

∑∞
n=1 xn ∈ Σc(X) such that LIM(

∑∞
n=1 xn) = {θ}, where θ =

(0, 0, . . . ), but
∑∞

n=1 xn diverges.

Proof. The construction we present is very similar to that in the proof
of [2, Theorem 6.4.1]. Let Y ⊂ X be a closed linear subspace of X with
normalized Schauder basis {en}n∈N. As in Example 4.1, for x ∈ Y we write
x = (x(1), x(2), . . . ) instead of x =

∑∞
i=1 x(i)ei.

Step 1. Firstly we define x1 = e1, x2 = −e1.

Step k. In this step we define 2k elements; the first 2k−1 of them are all
equal to 2−n+1ek and the others are equal to −2−n+1ek.

The series
∑∞

n=1 xn is

e1 − e1 + 1
2e2 +

1
2e2 −

1
2e2 −

1
2e2 +

1
4e3

+ 1
4e3 +

1
4e3 +

1
4e3 −

1
4e3 −

1
4e3 −

1
4e3 −

1
4e3 + · · · .

It can be rearranged to become the alternating, convergent series

e1 − e1 + 1
2e2 −

1
2e2 +

1
2e2 −

1
2e2 +

1
4e3 −

1
4e3

+ 1
4e3 −

1
4e3 +

1
4e3 −

1
4e3 +

1
4e3 −

1
4e3 + · · · ,

so
∑∞

n=1 xn ∈ Σc(X).
Thus the walk sn =

∑n
k=1 xk has the following properties:

(1) s2k+1−2 = θ for every k ∈ N;
(2) for every j ∈ N there exists p ∈ N such that sm(j) = 0 for all m ≥ p;
(3) s2k+2k−1−2 = ek for every k ∈ N.
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From (1) we have {θ} ⊆ LIM(
∑∞

n=1 xn) and from (2) we get the reverse inclu-
sion. Hence LIM(

∑∞
n=1 xn)={θ}. From (1) and (3) we obtain ‖s2k+2k−1−2(k)

− s2k+1−2(k)‖ = ‖ek‖ = 1 for every k ∈ N. This means that the sequence
of partial sums of the series is not a Cauchy sequence, and consequently it
diverges.

7. Rearrangement property. For a series
∑∞

n=1 xn in Rk Klee proved
the following fact: if A ⊆ SR(

∑∞
n=1 xn) is closed and ε-chainable for every

ε > 0, then there is τ ∈ S∞ such that A = LIM(
∑∞

n=1 xτ(n)). This is a
strengthening of Theorem 5.1—to see this, take any conditionally convergent
series

∑∞
n=1 xn with SR(

∑∞
n=1 xn) = Rm.

We will show that the above fact holds true in every Banach space pro-
vided

∑∞
n=1 xn has the so-called Rearrangement Property; in fact, we then

prove that if A ⊆ SR(
∑∞

n=1 xn) is closed and ε-chainable for every ε > 0,
then there is τ ∈ S∞ such that A = LIM(

∑∞
n=1 xτ(n)).

Lemma 7.1. Let
∑∞

n=1 xn be a conditionally convergent series in a Ba-
nach space X. Then

SR
( ∞∑
n=1

xn

)
= SR

( ∞∑
n=k+1

xn

)
+

k∑
n=1

xn

for every k ∈ N.

Proof. “⊇” Let k ∈ N and x ∈ SR(
∑∞

n=k+1 xn) +
∑k

n=1 xn. Then there
exists a permutation σ : [k+1,∞)→ [k+1,∞) such that x =

∑∞
n=k+1 xσ(n)+∑k

n=1 xn. Define π(n) = n for n ≤ k and π(n) = σ(n) for n ≥ k + 1. Hence
x =

∑∞
n=1 xπ(n), so x ∈ SR(

∑∞
n=1 xn).

“⊆” Let x ∈ SR(
∑∞

n=1 xn) and k ∈ N. Then there exists a permutation
π : N → N such that x =

∑∞
n=1 xπ(n). Let M = π−1({1, . . . , k}). Then for

every ε > 0 there exists m0 ≥ maxM such that ‖x −
∑m

n=1 xπ(n)‖ < ε for
every m > m0. This means that ‖x −

∑k
n=1 xn −

∑
n∈{1,...,m}\M xπ(n)‖ < ε

for every m > m0. Define a permutation σ : [k + 1,∞) → [k + 1,∞) as
follows: σ(k + l) = π(n) where n is the lth number in the set N \M . Then
x =

∑∞
n=k+1 xσ(n) +

∑k
n=1 xn. Hence x ∈ SR(

∑∞
n=k+1 xn) +

∑k
n=1 xn.

We say that a conditionally convergent series
∑∞

k=1 xk has the Rearrange-
ment Property, or (RP), if for every ε > 0 there are a natural number N(ε)
and a positive real number δ(ε) such that the implication∥∥∥ n∑

i=1

yi

∥∥∥ < δ(ε)⇒
(
max
j≤n
‖

j∑
i=1

yσ(i)‖ < ε for some permutation σ ∈ Sn
)

holds for every finite sequence (yi)
n
i=1 ⊆ (xi)

∞
i=N(ε). The Rearrangement
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Property is widely known and used implicitly by many authors. It appears
explicitly in [2, Lemma 2.3.1] as Property (A), or in [5, p. 65]. Note that if
ε > ε′ > 0, then we can find numbers δ(ε), N(ε) and δ(ε′), N(ε′) as in the
definition of (RP) such that δ(ε) ≥ δ(ε′) and N(ε) ≤ N(ε′). Similarly, having
a decreasing sequence (εn) of positive real numbers, we can find δ(εn), N(εn)
as in the definition of (RP) such that δ(εn) ≥ δ(εn+1) and N(εn) ≤ N(εn+1)
for every n ∈ N.

Lemma 7.2. Assume that
∑∞

n=1 xn is a conditionally convergent series
with (RP) in a Banach space X. Let ε ≥ ε′ > 0 and let δ(ε/2), N(ε/2)
and δ(ε′/2), N(ε′/2) be as in the definition of (RP). Let k ∈ N, a, b ∈
SR(

∑∞
n=1 xn) with

‖a− b‖ < min

{
ε

12
,
1

3
δ

(
ε

2

)}
,

and τ : [1, k]→ N be a partial permutation such that

∥∥∥ k∑
n=1

xτ(n) − a
∥∥∥ ≤ min

{
ε

12
,
1

3
δ

(
ε

2

)}
and rng τ ⊇ [1, N(ε/2)].

Then there exist k′ > k and a partial permutation τ ′ : [1, k′]→ N such that:

(1) τ ′|[1,k] = τ and [1,max rng τ ] ⊆ rng τ ′;
(2) ‖

∑p
n=1 xτ ′(n) − a‖ ≤ ε for p ∈ [k + 1, k′];

(3) ‖
∑k′

n=1 xτ ′(n) − b‖ ≤ min
{
ε′

12 ,
1
3δ
(
ε′

2

)}
;

(4) rng τ ′ ⊇ [1, N(ε′/2)].

Proof. Let k0=max{N(ε′/2), N(ε/2),max rng τ}. Define y=
∑k

n=1 xτ(n)
and z =

∑
n∈{1,...,k0}\{τ(1),...,τ(k)} xn. Hence y + z =

∑k0
n=1 xn. From the

assumption that b ∈ SR(
∑∞

n=1 xn) by Lemma 7.1 we obtain b − (y + z) ∈
SR(

∑∞
n=k0+1 xn). Thus we can find k0 < n1 < · · · < nl such that

y + z + w ∈ B
(
b,min

{
ε′

12
,
1

3
δ

(
ε′

2

)
,
1

3
δ

(
ε

2

)})
,

where w = xn1 + · · ·+ xnl .
Enumerate the set ([1, k0] \ {τ(1), . . . , τ(k)}) ∪ {n1, . . . , nl} as {m1 <

· · · < mk′−k}, where k′ = k0 + l. Hence,

∥∥∥ k′−k∑
i=1

xmi

∥∥∥ = ‖z + w‖ ≤ ‖y − a‖+ ‖a− b‖+ ‖b− (y + z + w)‖.
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Consequently,∥∥∥ k′−k∑
i=1

xmi

∥∥∥ ≤ min

{
ε

12
,
1

3
δ

(
ε

2

)}
+min

{
ε

12
,
1

3
δ

(
ε

2

)}
+min

{
ε′

12
,
1

3
δ

(
ε′

2

)
,
1

3
δ

(
ε

2

)}
≤ δ
(
ε

2

)
.

Since mi ≥ N(ε/2) for i ∈ [1, k′ − k] and ‖
∑k′−k

i=1 xmi‖ ≤ δ(ε/2), by (RP)

there is a permutation σ ∈ Sk′−k such that ‖
∑j

i=1 xmσ(i)‖ ≤ ε/2 for every
j ∈ [1, k′ − k]. Define τ ′(n) = τ(n) for n ≤ k and τ ′(n) = mσ(n−k) for
n ∈ [k + 1, k′]. Then for every p ∈ [k + 1, k′] we have∥∥∥ p∑

n=1

xτ ′(n) − a
∥∥∥ =

∥∥∥ k∑
n=1

xτ(n) +

p∑
n=k+1

xτ ′(n) − a
∥∥∥

≤ ‖y − a‖+
∥∥∥ p∑
n=k+1

xτ ′(n)

∥∥∥
≤ min

{
ε

12
,
1

3
· δ
(
ε

2

)}
+
ε

2
< ε,

which gives (2).
Now we check (1), (3) and (4). Note that the numbers 1, . . . , k0 are

among τ ′(1), . . . , τ ′(k′) and k0 ≥ max rng τ . Therefore we have (1). Since∑k′

n=1 xτ ′(n) = y + z + w and ‖y + z + w − b‖ ≤ min
{
ε′

12 ,
1
3δ
(
ε′

2

)}
, we

obtain (3). Condition (4) follows from the fact that if n /∈ rng τ ′, then
n > k0 ≥ N(ε′/2).

Lemma 7.3. Let A be a separable subset of a Banach space such that A
is ε-chainable for every ε > 0. Let (ηi) be a sequence of positive numbers.
Then there is a sequence (dn) dense in A with the property that there is an
increasing sequence (li) of natural numbers such that {dli , dli+1, . . . , dli+1

} is
an ηi-chain for every i.

Proof. Since A is separable, there are v1, v2, . . . such that A={vn :n∈N}.
Then one can find an ηi-chain dli , dli+1, . . . , dli+1

of elements of A with
dli = vi and dli+1

= vi+1 for any i ∈ N. Clearly the sequence (dn)
∞
n=1 is

as desired.

Lemma 7.4. Let A be a separable and ε-chainable (for every ε > 0)
subset of a Banach space. Assume that {di : i ∈ N} is a dense subset of A
and (εi) is a sequence of positive numbers tending to zero. If (xi) is such that
‖xi − di‖ < εi for every i ∈ N, then LIM(xi) = A where LIM(xi) denotes
the set of all limit points of the sequence (xi).
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Proof. If A is a singleton, then di = a, A = {a} and xi → a. Then
LIM(xi) = {a} = A. Assume that A has at least two elements. Clearly A
is dense-in-itself. Fix i ∈ N. There is a sequence (djk)

∞
k=1 such that j1 <

j2 < · · · and ‖djk−di‖ < εjk . Then xjk → di, and consequently di ∈ LIM(xi).
Since the set LIM(xi) is closed, we have A ⊆ LIM(xi).

Note that for every k almost every element of (xi) is in the εk-shell of A.
Thus A ⊇ LIM(xi).

Theorem 7.5. Let
∑∞

n=1 xn be a conditionally convergent series with
(RP) in a Banach space X. Then for every A ⊆ SR(

∑∞
n=1 xn) which is

closed and ε-chainable for every ε > 0, there exists a permutation τ ∈ S∞
such that A = LIM(

∑∞
n=1 xτ(n)).

Proof. Let εi = 2−i. We fix numbers δ(εi/2), N(εi/2) as in the definition
of (RP) such that δ(εi/2) ≥ δ(εi+1/2) and N(εi/2) ≤ N(εi+1/2) for every
i ∈ N. Since A is separable and ε-chainable for every ε > 0, using Lemma 7.3,
let A = {dn : n ∈ N}, where for every i ∈ N the elements dli , dli+1, . . . , dli+1

form an ηi-chain for some 1 = l1 < l2 < · · · , where ηi = min
{
εi
48 ,

1
12 · δ

(
εi
2

)}
.

Note that (ηi) is a nonincreasing sequence of positive real numbers.
Inductively we define natural numbers 1 = k1 < k2 < · · · , one-to-one

functions τi : [1, ki+1]→ N and d′1, d′2, . . . fulfilling the following conditions:

(i) τi ⊆ τi+1;
(ii) [1,max rng τi] ⊆ rng τi+1;
(iii) ‖

∑p
n=1 xτi(n)− d′i−1‖ < εj for p ∈ [ki+1, ki+1] and i ∈ [lj +1, lj+1];

(iv) d′i ∈ SR(
∑∞

n=1 xn), ‖d′i − di‖ < ηj for i ∈ [lj , lj+1 − 1];
(v) ‖

∑ki+1

n=1 xτi(n) − d′i‖ < 4ηj for i ∈ [lj , lj+1 − 1];
(vi) rng τi ⊇ [1, N(εj/2)] for i ∈ [lj , lj+1 − 1].

Define x =
∑N(ε1/2)

n=1 xn. Let d′1 ∈ SR(
∑∞

n=1 xn) be such that ‖d1 − d′1‖
< η1. Hence from Lemma 7.1 we get d′1 − x ∈ SR(

∑∞
N(ε1/2)+1 xn). Let

π : [N(ε1/2) + 1,∞)→ [N(ε1/2) + 1,∞) be a bijection such that d′1 − x =∑∞
n=N(ε1/2)+1 xπ(n). One can find a natural number k2 > N(ε1/2) which

satisfies ‖d′1 − x −
∑k2

n=N(ε1/2)+1 xπ(n)‖ ≤ η1. Define τ1(k) = k for k ≤
N(ε1/2) and τ1(k) = π(k) for k ∈ [N(ε1/2) + 1, k2]. Conditions (i)–(vi)
are fulfilled for τ1, d′1, k1, k2: we need not check (i) and (ii), condition (iii)
has to be checked for i ≥ l1 + 1 = 2, and (iv)–(vi) are fulfilled since
l1 = 1.

Assume now that we have already defined τ1, . . . , τi, k1 < · · · < ki+1 and
d′1, . . . , d

′
i fulfilling (i)–(vi). Find d′i+1 such that (iv) holds. We use Lemma

7.2 for a = d′i, b = d′i+1, τ = τi, ε = εj where lj ≤ i ≤ lj+1− 1, ε′ = εq where
lq − 1 ≤ i ≤ lq+1 − 2, and k = ki+1; note that j = q if lj ≤ i < lj+1 − 1,
that is, if i /∈ {ls − 1 : s ≥ 1}, otherwise i = lj+1 − 1 implies that q = j + 1.
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Let us check the assumptions of Lemma 7.2. By (iv) and (vi) we obtain
a, b ∈ SR(

∑∞
n=1 xn) and rng τ ⊇ [1, N(ε/2)]. Since dlj , dlj+1, . . . , dlj+1

form
an ηj-chain, by (iv) we obtain

‖a− b‖ ≤ ‖di − d′i‖+ ‖di − di+1‖+ ‖di+1 − d′i+1‖ ≤ ηj + ηj + ηj < 4ηj

= min

{
ε

12
,
1

3
δ

(
ε

2

)}
.

By (v) we obtain ‖
∑k

n=1 xτ(n) − a‖ ≤ 4ηj = min
{
ε
12 ,

1
3δ
(
ε
2

)}
. Now, using

Lemma 7.2 we find ki+2 > ki+1 and a function τi+1 : [1, ki+2]→ N such that

(1) τi+1|[1,ki+1] = τi and [1,max rng τi] ⊆ rng τi+1;
(2) ‖

∑p
n=1 xτi+1(n)−d′i‖ ≤ εj for p ∈ [ki+1+1, ki+2] and i ∈ [lj , lj+1−1];

(3) ‖
∑ki+2

n=1 xτi+1(n) − d′i+1‖ ≤ 4ηq for i ∈ [lq − 1, lq+1 − 2];
(4) rng τi+1 ⊇ [1, N(εq/2)] for i ∈ [lq − 1, lq+1 − 2].

Note that τ1, . . . , τi+1, k1 < · · · < ki+2 and d′1, . . . , d′i+1 fulfill (i)–(vi): By (1)
we obtain (i) and (ii). Since the condition i+1 ∈ [lj+1, lj+1] is equivalent to
i ∈ [lj , lj+1 − 1], we obtain (iii). The element d′i+1 has already been chosen
to fulfill (iv). Conditions (3) and (4) are exactly (v) and (vi) for i+ 1.

Let τ =
⋃
i≥1 τi : N → N. Then (i) implies that τ is one-to-one. Con-

dition (ii) implies that τ is onto N, and consequently τ ∈ S∞. By (iii)
and (iv) the distance between A and

∑p
n=1 xτ(n) is less than 1/2j for al-

most every p ∈ N. Thus LIM(
∑∞

n=1 xτ(n)) ⊆ A. By (iv) and (v) we obtain
‖
∑ki+1

n=1 xτ(n) − di‖ < 5ηj < εj for i ∈ [lj , lj+1 − 1]. Thus by Lemma 7.4 we
get A = LIM((

∑ki+1

n=1 xτ(n))
∞
i=1) ⊆ LIM(

∑∞
n=1 xτ(n)).

It is well-known that every conditionally convergent series of elements in
a finite-dimensional Banach space has (RP) (for details see [2, Chapter 2]).
Thus, Klee’s result mentioned at the beginning of this section is a partic-
ular case of Theorem 7.5. Combining the methods used in the proofs of
Theorems 7.5 and 5.2 one can prove the following strengthening of Theo-
rem 5.2.

Corollary 7.6. Let m ≥ 2. Assume that SR(
∑∞

n=1 xn) = Rm, X ⊆ Rm
is closed and any component of X is unbounded. Then X = LIM(

∑∞
n=1 xσ(n))

for some σ ∈ S∞.

Note that singletons are trivially ε-chainable for every ε > 0. Fix a ∈
SR(

∑∞
n=1 xn). Using Theorem 7.5 for A ⊆ SR(

∑∞
n=1 xn) such that A = {a},

we deduce that there is τ ∈ S∞ such that LIM(
∑∞

n=1 xτ(n)) = {a}. As we
have seen in Proposition 6.2, this does not necessarily mean that

∑∞
n=1 xτ(n)

= a. However, if we set di = a, then d′i → a, and by (iii) almost all elements
of the sequence (

∑p
n=1 xτ(n))

∞
p=1 are in every neighborhood of a. Therefore
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n=1 xτ(n) converges to a. Thus a ∈ SR(

∑∞
n=1 xn). Hence as a byproduct

of the proof of Theorem 7.5 we obtain the following.

Corollary 7.7. Let
∑∞

n=1 xn be a conditionally convergent series in a
Banach space X, which has (RP). Then SR(

∑∞
n=1 xn) is a closed set.

The referee pointed out that Corollary 7.7 is widely known: see for ex-
ample [5, Theorem 3.3]. It follows from the fact that (RP) implies that
SR(

∑∞
n=1 xn) = LPS(

∑∞
n=1 xn), and the latter set is always closed.

Now, we will discuss the problem of whether Corollary 7.7 can be re-
versed, namely whether or not the closedness of SR(

∑∞
n=1 xn) implies (RP)

for the series
∑∞

n=1 xn. We denote by Sn the set of all permutations of the
set [1, n].

Lemma 7.8. Let k ∈ N and n =
(
2k
k

)
. Then there exists a finite sequence

x1, . . . , x2k ∈ Rn such that:

(1) ‖xi‖sup = 1 for every i ≤ 2k.
(2) ‖

∑k
i=1 xσ(i)‖sup ≥ k for every σ ∈ S2k.

(3)
∑2k

i=1 xi = 0.

Proof. Let k ∈ N. There are n =
(
2k
k

)
sequences of length 2k consisting

of k many 1’s and k many −1’s. Enumerate all such sequences as t1, . . . , tn.
Define xi(j) = tj(i) for j = 1, . . . , n and i = 1, . . . , 2k. Now, if σ ∈ S2k,
then there is a sequence tjσ such that tjσ(σ(i)) = 1 for i = 1, . . . , k and
tjσ(σ(i)) = −1 for i = k + 1, . . . , 2k. Thus

k∑
i=1

xσ(i)(jσ) = k,

and consequently ∥∥∥ k∑
i=1

xσ(i)

∥∥∥
sup
≥ k.

Before we state the last result, first note that if a series
∑∞

i=1 xi in Rm
does not have (RP), then one can find ε > 0 such that for every δ > 0 and
N ∈ N there exists a finite subsequence (yi)

n
i=1 ⊆ (xi)

∞
i=N for which two

conditions hold:

• ‖
∑n

i=1 yi‖ < δ;
• for every σ ∈ Sn there is j ≤ n such that ‖

∑j
i=1 yσ(i)‖sup ≥ ε.

The following theorem shows that Corollary 7.7 cannot be reversed.

Theorem 7.9. There is a conditionally convergent series
∑∞

n=1 zn in
c0 that does not have (RP) and for which SR(

∑∞
n=1 zn) is a singleton, in

particular it is a closed set.
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Proof. Define en = (δin)
∞
i=1 for every n ∈ N, where δin = 1 if i = n, and

δin = 0 otherwise. Let n0 = 0 and nk =
(
2k+1

2k

)
+ nk−1. For every k ∈ N

let x(k)1 , . . . , x
(k)

2k+1 ∈ Rnk−nk−1 be the sequence constructed in Lemma 7.8.
Define

y
(k)
i =

1

2k
·
nk−nk−1∑
j=1

x
(k)
i (j) · enk−1+j for i, k ∈ N.

It is easy to see that y(k)i ∈ c0 for all k, i ∈ N. Define the series
∑∞

n=1 zn as
follows:

z1 = y
(1)
1 , z2 = −y(1)1 , z3 = y

(1)
2 , z4 = −y(1)2 , z5 = y

(1)
3 , z6 = −y(1)3 ,

z7 = y
(1)
4 , z8 = −y(1)4 , z9 = y

(2)
1 , z10 = −y(2)1 , . . . .

It is easy to see that
∑∞

n=1 zn converges to θ = (0, 0, . . . ).
Let ε = 1, N ∈ N, and δ > 0. One can find k ∈ N such that nk−1 > N .

Then by Lemma 7.8 for (y
(k)
1 , . . . , y

(k)

2k+1) ⊆ (zi)i≥N and every permutation
σ ∈ S2k+1 we have∥∥∥∥ 1

2k
·

2k∑
i=1

y
(k)
σ(i)

∥∥∥∥
sup

=

∥∥∥∥ 1

2k
·

2k∑
i=1

x
(k)
σ(i)

∥∥∥∥
sup

≥ 1

2k
· 2k = 1 = ε.

Moreover ‖
∑2k+1

i=1 y
(k)
i ‖ = 0 < δ. This proves that the series

∑∞
n=1 zn does

not have (RP).
Since the projection of the series on each coordinate contains only finitely

many nonzero terms and a finite sum does not change under rearrangements,
we have SR(

∑∞
n=1 zn) = {θ}.

Let us finish the paper with a list of open questions.

1. Let
∑∞

n=1 xn ∈ Σ0 be a series in an infinite-dimensional Banach space.
Is there

∑∞
n=1 yn ∈ Σc with LIM(

∑∞
n=1 yn) = LIM(

∑∞
n=1 xn)?

2. Assume that A is a closed and separable subset of an infinite-dimen-
sional Banach space. Is there

∑∞
n=1 xn ∈ Σc withA = LIM(

∑∞
n=1 xn)?

(Note that a positive answer to this question answers affirmatively the
first question as well.)

3. Is the assertion of Theorem 3.5 true in some infinite-dimensional topo-
logical vector spaces?
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