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On the convergence of parabolically scaled two-dimensional
Fourier series in the linear phase setting
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Abstract. For

Sf(x, y) =

π�

−π

π�

−π

eiM
2(x,y)y′

y′
eiM(x,y)x′

x′
f(x− x′, y − y′) dx′ dy′,

the linearized maximal operator of the rectangular partial sums of the kind (M,M2) for
double Fourier series, we prove a weak-type (Lr, Lr−ε) estimate for 1 < r ≤ 2 and any
ε > 0 in case M2(x, y) = Ax+By with x, y ∈ [0, 2π], uniformly with respect to A,B ≥ 0.

1. Introduction. Concerning the summability of Fourier series in 2D,
very little is known. The current state of the art is as follows.

In the celebrated paper [4] C. Fefferman proved that the circular partial
sums associated to a function f ∈ Lr(T2) are unbounded in the Lr-norm for
any r 6= 2.

In [5] the same author proved that there are f ∈ Lr(T2) (with any r > 1)
such that the anisotropic partial sums SM,Nf do not converge a.e. as M and
N tend to infinity; on the other hand (see [3], [15]), if one focuses on the
case M = N, then SN,N converges a.e. for any f ∈ Lr and any r > 1.

In view of the above, it is natural to ask if one can obtain a.e. conver-
gence for partial sums of the form SN,ψ(N)f for a suitably chosen ψ. Since
the case of ψ(x) = x follows from the above, the next natural step is to con-
sider ψ(x) = x2. This is the problem studied in the following, where partial
progress is obtained.

We are going to consider the maximal partial sums operator S1 for the
square partial sums SN,N , and S2 for the rectangular partial sums SM,M2 ,
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namely

S1f(x, y) =

π�

−π

π�

−π

eiN(x,y)y′

y′
eiN(x,y)x′

x′
f(x− x′, y − y′) dx′ dy′,(1.1)

S2f(x, y) =

π�

−π

π�

−π

eiM
2(x,y)y′

y′
eiM(x,y)x′

x′
f(x− x′, y − y′) dx′ dy′,(1.2)

for f ∈ Lr, 1 < r ≤ 2, 0 ≤ x, y ≤ 2π, the phases N(x, y) and M(x, y) being
arbitrary real-valued functions that may be assumed to be integer valued
and even bounded provided the required Lr estimate does not depend on
such a bound.

The case of Fourier series of one variable [2] has been handled by dealing
with more and more general phases m(x). Some examples are listed at the
end of [2]. In this paper we are going to consider N(x, y) = Ax + By for
square partial sums, and M2(x, y) = Ax+By for rectangular partial sums,
A,B ≥ 0, and prove Lr estimates for (1.1) and (1.2).

In the process we are going to shed some light on two basic issues. The
first concerns the decomposition of the convolution kernel. In the 1D proof
the domain of integration was decomposed in a smooth, dyadic way of the
kind |x′| ∼ 2−k, k = 0, 1, 2, . . . . This gave rise to a decomposition of the
maximal partial sums operator into operators associated to pairs [I, ω],
|I| = |ω|−1 = 2−k, according to the time-frequency analysis performed there.
A most important structural feature was the following partial order among
pairs: [I, ω] < [I ′, ω′] if and only if I ⊆ I ′ and ω′ ⊆ ω. This definition is
based on the fact that if two dyadic intervals I and I ′, as well as ω and ω′,
have non-empty intersection, then one must be contained in the other. In
2D the analogous decomposition {|x′| ∼ 2−k, |y′| ∼ 2−h}, k, h = 0, 1, 2, . . . ,
appears to be too fine, lacking the partial order. Indeed, it may well be
that two dyadic rectangles I × J and I ′ × J ′ with |I| = 2−k, |J | = 2−h and
|I ′| = 2−k

′
, |J | = 2−h

′
intersect but I ⊆ I ′ and J ′ ⊆ J or vice versa, so that

no partial order can be established in such a general collection.
For S1 we shall adopt a preliminary smooth dyadic decomposition of the

domain of integration into two fans of the kind |y′| ≥ |x′| and |y′| < |x′|. The
first fan, centered on the y′-axis, will be further decomposed into {|y| ∼ 2−h,
|x′| ≤ 2−h}, h = 0, 1, 2, . . . . The second fan centered on the x′-axis will be
similarly decomposed into {|x′| ∼ 2−k, |y′| < 2−k}, k = 0, 1, 2, . . . . The
associated 2D pairs will be of the kind [I × J, ω], |I| = |J | = |ω|−1. Since
such pairs involve squares I × J, the crucial partial order will be in place.

The second issue is the following: via the dependence on x and y each
phase “speaks” with two different “voices” A and B. Since no relation is
assumed between them, we will have to establish with which “voice” to
side. The choice will be different for the two different fans of the kernel
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(see Lemmas 3.2 and 3.3), with the central piece of the decomposition—
something like {|x′|, |y′| < a} for some a > 0—called to close the resulting
gap (Section 3.3).

So, by a method different from those in [3] and [15], we are going to
prove a strong (Lr, Lr)-estimate for S1 in case N(x, y) = Ax+By:

Theorem 1. With the above notation and for N(x, y) = Ax + By, we
have

(1.3) ‖S1f‖r ≤ cr‖f‖r
for all 1 < r ≤ 2, where cr is independent of f, and of A,B ≥ 0.

S1 will be decomposed according to pairs [I × J, ω], |I| = |J | = |ω|−1,
which are grouped into universes Un and Rl, n, l ≥ 0. Pairs p = [I × J, ω]
in Un have the associated kernel defined on the first fan. Moreover the L2-
norm of the corresponding operators, denoted by Vp and precisely defined
in Section 3.1, will be of the order of 2−n. The goal will then be to prove
that ‖

∑
p∈Un Vp‖2 ≤ c2−n/8 (Lemma 3.2), since the key estimate here is

for r = 2. Similarly pairs q = [I × J, ω] in Rl have the associated kernel
defined on the second fan, and the L2-norm of the corresponding operator
Wq is of the order of 2−l. The boundedness of S1 holds under the more
general assumption that, for any fixed universe, the size of all squares I × J
involved is the same: the “equal case.” We mention that the “equal case”
already played a role in the 1D proof [2], as a comparison of the almost
orthogonality Lemma 4 and Lemma 5 there shows. The complicated proof
of Lemma 5 rests, in its central part, on the simpler case of Lemma 4: the
“trees” involved—that by assumption have intersecting space-tops I0 and
I ′0 (Lemma 5)—are furthermore assumed to have space-tops of equal size,
hence the same I0 (Lemma 4).

By a suitable decomposition, by a repeated application of (1.3), and via
the introduction of an exceptional set we shall prove

Theorem 2. With the above notation and for M2(x, y) = Ax+ By we
have

(1.4) |{(x, y) ∈ T2 : |S2f(x, y)| > λ}| ≤ cr,ε(‖f‖r/λ)r−ε

for all 1 < r ≤ 2 and ε > 0, where cr,ε is independent of f, and of A,B ≥ 0.

This implies that S2 maps Lr into Lr
′
for any 1 < r′ < r ≤ 2.

We believe (1.4) to be the first result for S2, concerning phases depending
on both variables, since the 1970’s [3]. In Section 2 we review the basic
scheme of the 1D proof in [2]. In Section 3 we prove Theorem 1 and in
Section 4 we prove Theorem 2. As will be pointed out at the end of each
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proof (Remarks 3 and 6), the above theorems hold under rather more general
assumptions.

2. The scheme of the 1D proof. The maximal partial sums operator
for 1D Fourier series [1, 2, 7, 9]

(2.1) Cg(x) = sup
m∈R

∣∣∣∣ π�
−π

eimx
′

x′
g(x− x′) dx′

∣∣∣∣,
bounded in Lr[0, 2π], 1 < r <∞, can be linearized as follows [2]:

(2.2) Cg(x) =

π�

−π

eim(x)x′

x′
g(x− x′) dx′

where the phase m(x) is any real-valued function. Then, using on [0, 2π] the
normalized Lebesgue measure dx/2π, the operator is decomposed as follows:

(2.3) Cg(x) =
∑

|I|=|ω|−1=2−k

k≥0

T[I,ω]g(x)

where

(2.4) T[I,ω]g(x) =
(
eim(x)x′ϕk(x

′) ∗ g(x)
)
χE[I,ω](x),

E[I, ω] = {x ∈ I : m(x) ∈ ω}, I ⊆ [0, 2π] and ω ⊂ R are dyadic intervals,
and finally ϕk(x

′) = 2kϕ(2kx′) with ϕ(x′) a C∞ function supported on
|x′| ≤ 2π such that 1/x′ =

∑∞
k=0 ϕk(x

′) for 0 6= |x′| ≤ π. Clearly

(2.5) |T[I,ω]g(x)| ≤ cAvI∗(|g|)χE[I,ω](x)

where I∗ denotes the double of I (same center), and

AvI∗(|g|) = |I∗|−1
�

I∗

|g(x′)| dx′.

Hence for r > 1 we have

(2.6) ‖T[I,ω]‖r ≤ cr(|E[I, ω]|/|I|)1/r.
In particular

‖T[I,ω]‖2 ∼ (|E[I, ω]|/|I|)1/2.
By defining A0[I, ω] = |E[I, ω]|/|I| all pairs are subdivided into universes
Un = {[I, ω] : A0[I, ω] ∼ 2−n}, n ≥ 0. Then the proof goes on to show the
following (simplified) estimate:

(2.7)
∥∥∥ ∑
[I,ω]∈Un

T[I,ω]

∥∥∥
2
∼ 2−n/2

by means of TT ∗ arguments. Finally, by interpolation, Lr estimates
(1 < r ≤ 2) summable over n are obtained. In the end, C is proved to
be weak-type (r, r − ε) for all 1 < r ≤ 2 and ε > 0, uniformly with respect
to m(x).
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3. The square partial sums

3.1. The decomposition. On [0, 2π] × [0, 2π] we use the normalized
Lebesgue measure dx/2π · dy/2π. We shall subdivide

(3.1) S1f(x, y) =
∞∑
h=0

eiN(x,y)y′ϕh(y′) ∗
∞∑
k=0

eiN(x,y)x′ϕk(x
′) ∗ f(x, y)

into two main operators, S1 = V +W , where

(3.2) V f(x, y) =
∞∑
h=0

eiN(x,y)y′ϕh(y′) ∗
∑
h≤k

eiN(x,y)x′ϕk(x
′) ∗ f(x, y)

and by exchanging the order of integration

Wf(x, y) =

∞∑
k=0

eiN(x,y)x′ϕk(x
′) ∗

∑
h>k

eiN(x,y)y′ϕh(y′) ∗ f(x, y)

with N(x, y) = Ax + By. We may assume A,B 6= 0, for if A = 0 then
S1f(x, y) = Cx′Cy′f(x, y), and similarly for B = 0. We will use the further
decomposition

(3.3) V f(x, y) =
∑

p=[I×J,ω]
|I|=|J |=|ω|−1=2−h

h≥0

Vpf(x, y)

where

(3.4) Vpf(x, y)=
[
eiN(x,y)y′ϕh(y′)∗

∑
k≥h

eiN(x,y)x′ϕk(x
′)∗f(x, y)

]
χE(p)(x, y)

and p = [I×J, ω] with I, J, ω dyadic intervals such that I, J ⊆ [0, 2π], ω ⊆ R,
|I| = |J | = |ω|−1, and E(p) = {(x, y) ∈ I × J : N(x, y) ∈ ω}. It is evident
that the action of Vp on the y′ variable is much simpler than the action on
the x′ variable. Similarly we shall decompose W. These decompositions will
run up to the central piece, mentioned above, namely for 2−h, 2−k ≥ a for
some a > 0.

In the case of the Vp’s the analogue of (2.5) is

(3.5) |Vpf(x, y)| ≤ c[AvJ∗ CIf(x, y)]χE(p)(x, y)

where

(3.6) CIf(x, y′) = sup
m∈R

∣∣∣ ∑
2−k≤|I|

eimx
′
ϕk(x

′) ∗ f(x, y′)
∣∣∣.

Indeed we recognize that the action of the operator Vpf(x, y) on the y′

variable is a kind of average, so approximately constant, applied to CIf(x, y′)
with x fixed. Such a “constant” value is then restricted to the set E(p), for
every x fixed. So the action is the same as that of the operator T[I,ω] on
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the x′ variable. Hence (3.5) follows from (2.5). Such an action being that of
an average—more precisely, a kind of a Fourier coefficient—the point is to
show that the TT ∗ arguments in [2, Lemma 2], leading to (2.7) above, can
cope with the full-fledged singular integrals in (3.4).

Let us observe that we may fix the phases in Vp. Let η be the center of ω.
For (x, y) ∈ E(p),

Vpf(x, y)− eiηy′ϕh(y′) ∗
∑
k≥h

eiN(x,y)x′ϕk(x
′) ∗ f(x, y)

= [ei(N(x,y)−η)y′ − 1]eiηy
′
ϕh(y′) ∗

∑
k≥h

eiN(x,y)x′ϕk(x
′) ∗ f(x, y)

=
∞∑
m=1

[N(x, y)− η]m
(y′)m

m!
eiηy

′
ϕh(y′) ∗

∑
k≥h

eiN(x,y)x′ϕk(x
′) ∗ f(x, y).

In first approximation,

(3.7) Vpf(x, y) ∼= eiηy
′
ϕh(y′) ∗

∑
k≥h

eiN(x,y)x′ϕk(x
′) ∗ f(x, y),

since the factors [N(x, y)−η]m can be pulled out of the convolution integrals
which then become constant coefficients in the y′ variable of integration and
can be handled similarly to the main term eiηy

′
ϕh(y′)∗

∑
h≤k e

iN(x,y)x′ϕk(x
′)

∗ f(x, y) with the factors (m!)−1 to guarantee convergence of the series of
estimates. (By a double Taylor expansion the x′-phase can also be fixed
equal to η, which turns the Carleson operator CI in (3.5) into the Hilbert
transform.) In particular the singular integrals in (3.7) are of the kind of the
Cω
2−k0

’s examined in Lemma 3.1 below.

3.2. An almost orthogonality argument. Let us define the opera-
tors

Cω
2−k0g(x) =

∑
k≥k0

eim(x)x′ϕk(x
′) ∗ g(x)

for ω any dyadic interval with |ω| = 2k0 , and m(x) ∈ ω for all x ∈ [0, 2π].
Then the following lemma holds [10].

Lemma 3.1. Let ω and ω′ be two intervals such that |ω| = |ω′| = 2k0,
and let δ denote the Dirac delta function. Then there exists a convolution
operator L bounded on every Lr, 1 < r < ∞, whose convolution kernel we
denote by KL, such that

Cω
2−k0 (Cω

′

2−k0 )∗ = δ + L

where

(3.8) ‖KL‖∞ ≤ cmax(2k0 , dist(ω, ω′)).
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To explain Lemma 3.1 heuristically, we start by considering the simplest
case of HH∗ where H denotes the Hilbert transform. To decode HH∗ we
move to the Fourier transform side where we find the corresponding mul-
tiplier to be identically equal to 1. Hence HH∗ = δ. Next assume to have
a smoothly truncated Hilbert transform Ha

2−k0
with a phase a ≥ 0, that is,

with convolution kernel
∑

k≥k0 e
iax′ϕk(x

′). To decode Ha
2−k0

(Hb
2−k0

)∗, we as-
sume b = −a with no loss of generality and observe that the corresponding
multiplier is identically equal to 1 up to a C∞ function essentially supported
on (−10(a+2k0), 10(a+2k0)). Therefore Lemma 3.1 holds with a convolution
operator L such that ‖KL‖∞ ≤ ‖K̂‖1 ≤ c(a+ 2k0).

In Lemma 3.2 below we have a collection of pairs p = [I × J, ω] with a
fixed dyadic interval I × J and frequency intervals ω pairwise different and
potentially in an unlimited number since no bound is assumed on A and B.
The action of the corresponding operators Vp on the y′ variable is that of
a Fourier coefficient, applied for every x fixed to CIf(x, y′). So Lemma 3.2
involves an almost orthogonality argument: Consider two different Vp’s with
frequency intervals ω and ω′. As ω and ω′ move further away, the estimate
concerning the action of Vp′V

∗
p on the x′ variable will worsen by (3.8), but

the almost orthogonality estimate concerning the action on the y′ variable
will improve much more. This is what is going on in the proof of Lemma 3.2.

Going back to the pairs p in (3.4), for every x ∈ I, we have

(3.9) |E(p, x)|/|J | ≤ 22h/B

where E(p, x) = {y ∈ J : N(x, y) ∈ ω}. So B controls the Lr-norm. We
define

(3.10) A0(p) = 22h/B

and the universe Un = {p : 2−n−1 < A0(p) ≤ 2−n} for n ≥ 0. Hence
if p = [I × J, ω] ∈ Un then |J | ∼= (2n/B)1/2 is fixed. So B controls the
formation of the universes Un.

Lemma 3.2. For every n ≥ 0 and for 1 < r ≤ 2 and 1/r + 1/r′ = 1, we
have

(3.11)
∥∥∥∑
p∈Un

Vp

∥∥∥
r
≤ cr2−n/4r

′
.

In particular for r = 2,

(3.12)
∥∥∥∑
p∈Un

Vp

∥∥∥
2
≤ c2−n/8.
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In a similar way we decompose the operator

(3.13) Wf(x, y) =
∑

q=[I×J,ω]
|I|=|J |=|ω|−1=2−k

k≥0

Wqf(x, y)

where

Wqf(x, y) =
[
eiN(x,y)x′ϕk(x

′) ∗
∑
h>k

eiN(x,y)y′ϕh(y′) ∗ f(x, y)
]
χE(q)(x, y)

and

E(q) = {(x, y) ∈ I × J : N(x, y) ∈ ω}.

Let B0(q) = 22k/A. Then we define R` = {q : 2−`−1 < B0(q) ≤ 2−`} for
` ≥ 0. So q ∈ R` implies |I| ∼= (2`/A)1/2. Hence A controls the formation of
the universes R`.

Lemma 3.3. For every ` ≥ 0 and for 1 < r ≤ 2 and 1/r + 1/r′ = 1, we
have

(3.14)
∥∥∥∑
q∈V`

Wq

∥∥∥
r
≤ cr2−`/4r

′
.

In particular for r = 2,

(3.15)
∥∥∥∑
q∈V`

Wq

∥∥∥
2
≤ c2−`/8.

We are going to prove Lemma 3.2. The proof of Lemma 3.3 is similar.

Proof of Lemma 3.2. Observe that any two pairs in Un are unrelated
under the partial order and that all I × J ’s involved have the same size,
hence there exists a bounded overlapping between the {I∗ × J∗}’s. So it
suffices to prove (3.11) and (3.12) for pairs p = [I × J, ω] ∈ Un with I × J
fixed. Observe that then (3.11) follows from (3.12) by interpolation. Indeed,
the Vpf(x, y)’s live on pairwise disjoint sets, therefore for all (x, y) ∈ I × J
fixed we have∣∣∣∑

p∈Un

Vpf(x, y)
∣∣∣ =

∑
p∈Un

|Vpf(x, y)|

≤ c
∑
p∈Un

AvJ∗ CIf(x, y)χE(p)(x, y) ≤ cAvJ∗ CIf(x, y).

(This estimate holds for general collections of unrelated pairs on replacing
CI by C̃, the Carleson maximal operator [8].) So it remains to prove (3.12)
for pairs p with a fixed I × J. To do so we shall follow the approach of [2,
Lemma 2]. We have
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� � ∣∣∣∑
p∈Un

V ∗p f(x, y)
∣∣∣2 dx dy =

∑
p,p′∈Un

� �
V ∗p f(x, y) · V ∗p′f(x, y) dx dy

=
∑
p′∈Un

� �
V ∗p′f(x, y) ·

[ ∑
p∈A(p′)

V ∗f(x, y) +

∞∑
N=0

∑
p∈BN (p′)

V ∗p f(x, y)
]
dx dy

where

A(p′) = {p ∈ Un : dist(ω, ω′) ≤ 2nε|ω′|},
BN (p′) = {p ∈ Un : dist(ω, ω′) ∼ 2nε+N |ω′|}.

Since

V ∗p f(x, y) =
�∑
k≥h

eiN(x′,y′)(x−x′)ϕk(x− x′)

×
�
eiN(x′,y′)(y−y′)ϕh(y − y′)(f · χEp)(x′, y′) dy′ dx′,

we are going to write V ∗p f(x, y) = (CωI )∗T ∗p f(x, y) with a slight abuse of
notation. For every y ∈ J∗, observe that

|(T ∗p f)(x′, y)| =
∣∣∣� eiN(x′,y′)(y−y′)ϕh(y − y′)(f · χEp)(x′, y′) dy′

∣∣∣
≤ c

|J |

�

E(p)

|f(x′, y′)| dy′

for any x′ fixed and for any N(x′, y′), since the L∞-norm of the convolution
kernel is dominated by c/|J |.

We start by estimating the term involving A(p′), that is, α(p′) that
follows. By Lemma 3.1 and considering only the contribution of the operator
L (the delta function is easier) we obtain

α(p′) =
∣∣∣ ∑
p∈A(p′)

� �
V ∗p′f(x, y) · V ∗p f(x, y) dx dy

∣∣∣(3.16)

≤
∑

p∈A(p′)

∣∣∣� �V ∗p′f(x, y) · V ∗p f(x, y) dx dy
∣∣∣

=
∑

p∈A(p′)

∣∣∣� �CωI (Cω
′

I )∗T ∗p′f(x, y) · T ∗p f(x, y) dx dy
∣∣∣

≤
∑

p∈A(p′)

� �
|CωI (Cω

′
I )∗T ∗p′f(x, y)| · |T ∗p f(x, y)| dx dy

≤ c
(

2nε

|I|
· 1

|J |

� �

E(p′)

|f(x′, y′)| dx′ dy′
) ∑
p∈A(p′)

� �
|T ∗p f(x, y)| dx dy

≤ c
(

2nε

|I|
· 1

|J |

� �

E(p′)

|f(x′, y′)| dx′ dy′
)

2nε max
p∈A(p′)

� �
|T ∗p f(x, y)| dx dy
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since the number of terms in A(p′) is at most 2nε. For 1 < v < ∞ and
1/v + 1/v′ = 1, by duality and (2.6) we have

� �
|T ∗p f(x, y)| dx dy ≤ ‖T ∗p f(x, y)‖Lv(I∗×J∗)|I∗ × J∗|1/v

′

= ‖T ∗p ‖(Lv ,Lv)‖f‖Lv(I∗×J∗)|I∗ × J∗|1/v
′

≤ cv2−n/v
′‖f‖Lv(I∗×J∗)|I∗ × J∗|1/v

′
.

Hence

α(p′) ≤ cv22nε2−n/v
′
( � �

E(p′)

|f(x′, y′)| dx′ dy′
)

×
(

1

|I × J |

� �

I∗×J∗
|f(x′′, y′′)|v dx′′ dy′′

)1/v

≤ cv22nε2−n/v
′
� �

E(p′)

|f(x′, y′)|Mvf(x′, y′) dx′ dy′

since for all (x′, y′) ∈ E(p′) ⊂ I × J we have(
1

|I × J |

� �

I∗×J∗
|f(x′′, y′′)|v dx′′ dy′′

)1/v

≤ c sup
(x′,y′)∈I′′×J ′′

(
1

|I ′′ × J ′′|

� �

I′′×J ′′
|f(x′′, y′′)|v dx′′ dy′′

)1/v

= cMvf(x′, y′)

where I ′′ × J ′′ ranges over all squares. Now since the E(p′)’s are pairwise
disjoint, we may sum over p′ ∈ Un. Then by the Schwarz inequality we
obtain ∑

p′

α(p′) ≤ cv22nε2−n/v
′‖f‖2L2(I∗×J∗)

for 1 < v < 2. By choosing v close to 2 we obtain

(3.17)
∑
p′

α(p′) ≤ cε2−n/2+4nε‖f‖2L2(I∗×J∗)

Next we deal with BN (p′), that is, with βN (p′) that follows:

βN (p′) =
∣∣∣ ∑
p∈BN (p′)

� �
Vp′f(x, y) · V ∗p f(x, y) dx dy

∣∣∣
=
∣∣∣ ∑
p∈BN (p′)

� �

E(p′)

f(x′, y′) · Tp′Cω
′

I (CωI )∗T ∗p f(x′, y′) dx′ dy′
∣∣∣

=
∣∣∣ � �

E(p′)

f(x′, y′) ·
∑

p∈BN (p′)

Cω
′

I (CωI )∗Tp′T
∗
p f(x′, y′) dx′ dy′

∣∣∣.
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Observe that for every fixed x′′ ∈ I we have [2, p. 559]

|Tp′T ∗p f(x′′, y′′)(y′)| ≤ c2−10(n+N)

|J |

� �

E(p)

|f(x′′, y′′)| dx′′ dy′′.

Also for every (x′, y′) ∈ E(p′) we have

|Cω′I (CωI )∗g(x′′, y′)(x′)| ≤ c2nε+N

|I|

�

I∗

|g(x′′, y′)| dx′′

by Lemma 3.1, considering only the contribution of the operator L as above.
Hence

βN (p′)

≤ c2−9(n+N)
� �

E(p′)

|f(x′, y′)|
(

1

|I × J |

� �
⋃
{E(p) : p∈BN (p′)}

|f(x′′, y′′)| dx′′ dy′′
)
dx′ dy′

≤ c2−9(n+N)
� �

E(p′)

|f(x′, y′)|
(

1

|I × J |

� �

I×J
|f(x′′, y′′)| dx′′ dy′′

)
dx′ dy′

≤ c2−9(n+N)
� �

E(p′)

|f(x′, y′)|Mf(x′, y′) dx′ dy′

since the E(p)’s are pairwise disjoint; here Mf denotes the Littlewood–Paley
maximal function over squares. Again, the E(p′)’s being pairwise disjoint,
we sum over p′ ∈ Un and then over N. By the Schwarz inequality we obtain

(3.18)
∑
p′,N

βN (p′) ≤ c2−9n‖f‖2L2(I∗×J∗).

Hence (3.17) and (3.18) prove (3.12), by choosing ε small.

Remark 1. We observe that the above proof works under the more
general assumption that all {I × J}’s involved have the same size as for
example in case N(x, y) = M(x) + By with any real-valued M(x). The
“equal case” assumption is required to apply Lemma 3.1 and to dominate
the sum over p ∈ A(p′) by the maximum over p ∈ A(p′) in (3.16).

3.3. The keystone. Now we come to the keystone, the central piece
of our decomposition. In the first fan, the one centered on the y′-axis, it
remains to deal with |y′| = 2−h < B−1/2, and in the second fan with
|x′| = 2−k < A−1/2. Since no relation is assumed between A and B, it
appears that the partial order is lost. The situation is rescued by the use
of the operators CJCI or CICJ bounded in Lr(T2) for all 1 < r < ∞. By
using these operators we handle—in all cases A ≷ B—the bigger of the two
squares {|x′| < A−1/2, |y′| < A−1/2} and {|x′| < B−1/2, |y′| < B−1/2}, thus
shortening the decomposition in the first fan or in the second fan.
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Let us consider the operator

(3.19) V0f(x, y)

=
∑

2−h<B−1/2

eiN(x,y)y′ϕh(y′) ∗
∑

2−k<B−1/2

eiN(x,y)x′ϕk(x
′) ∗ f(x, y).

We observe that V0 acts independently on squares I×J of side |J | = B−1/2.
Let us fix one such square and denote by yJ the center of J. Then the
following approximation holds:

(3.20) V0f(x, y)

∼=
∑

2−h<B−1/2

ei(Ax+By)y
′
ϕh(y′) ∗

∑
2−k<B−1/2

ei(Ax+ByJ )x
′
ϕk(x

′) ∗ f(x, y)

for all (x, y) ∈ I × J. This implies

|V0f(x, y)|

≤ sup
m∈R

∣∣∣ ∑
2−h<B−1/2

eimy
′
ϕh(x′) ∗

∑
2−k<B−1/2

ei(Ax+ByJ )x
′
ϕk(x

′) ∗ f(x, y)
∣∣∣

= CJ [CIf(x, y′)](y).

By the approximation in (3.20) we mean that the error term can be con-
trolled. Indeed, by exchanging the order of integration and pulling absolute
values inside the summation over 2−k, we have

|Error f(x, y)| =
∣∣∣ ∑
2−k<B−1/2

[ei(Ax+By)x
′ − ei(Ax+ByJ )x′ ]ϕk(x′)(3.21)

∗
∑

2−h<B−1/2

ei(Ax+By)y
′
ϕh(y′) ∗ f(x, y)

∣∣∣
≤ B|y − yJ |χ|x′|<B−1/2(x′) ∗ |CJf(x′, y)|(x)

≤ B1/2χ|x′|≤B−1/2(x′) ∗ |CJf(x′, y)|(x)

≤ AvI∗ |CJf(x′, y)|(x).

The similarly defined operator W0 acts independently on squares I × J of
side |I| = A−1/2. Let us fix one such square and denote by xI the center
of I. Then

(3.22) W0f(x, y)

∼=
∑

2−k<A−1/2

ei(Ax+By)x
′
ϕk(x

′) ∗
∑

2−h<A−1/2

ei(AxI+By)y
′
ϕh(y′) ∗ f(x, y)

for all (x, y) ∈ I × J. Therefore if B ≤ A then in (3.3) and (3.13) we take
the sum over 2−h, 2−k ≥ B−1/2 and finally apply V0 of (3.19). If instead
B > A then we take the sums over 2−h, 2−k ≥ A−1/2 and finally apply
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W0 of (3.22). Now V0 and W0 are bounded in Lr(T2) for 1 < r < ∞.
Hence Lemmas 3.2–3.3—whose estimates can be trivially summed over n
and `—and the choice of the keystone prove that S1 is bounded in Lr for
1 < r ≤ 2, which is Theorem 1.

Now a few remarks follow.

Remark 2. We observe that the above method for the choice of the
keystone works more generally in the “equal case”. For instance, if for every
x ∈ T, there exists just one maximal value 2−h0 such that for all J with
|J | = 2−h0 there exists a frequency interval ωx,J with |ωx,J | = 2h0 centered
at η(x, J) such that for all (x, y) ∈ I × J with |I| = |J | we have |N(x, y)−
N(x, η(x, J))| < 2h0 , then∣∣∣ � � ∑

h≥h0

eiN(x,y)y′ϕh(y′)
∑
k≥h0

eiN(x,y)x′ϕk(x
′)f(x− x′, y − y′) dx′ dy′

∣∣∣
∼=
∣∣∣ � � ∑

h≥h0

eiN(x,y)y′ϕh(y′)
∑
k≥h0

eiN(x,η(x,J))x′f(x− x′, y − y′) dx′ dy′
∣∣∣

≤ CJCIf(x, y).

Similarly, if for every y ∈ T, the corresponding maximal value is 2−k0 , then
we choose the larger of 2−h0 and 2−k0 as the size of the keystone.

Remark 3. The proof of Theorem 1 holds more generally for phases
N(x, y) such that N ′y(x, y), the y-derivative of N(x, y), satisfies

2−10B ≤ N ′y(x, y) ≤ 210B

for all B > 0 and (x, y) (and similarly for N ′x(x, y)). It suffices to decom-
pose T2 into about 20 subsets on which N ′y has a fixed order of magnitude,
apply Theorem 1 and add up the estimates so obtained. (Then in (3.12) the
constant c just needs to be multiplied by

√
20; similarly in (3.15).) So, to

apply Theorem 1, it suffices that the phase partial derivatives have a fixed
order of magnitude.

Remark 4. If 0 ≤ A < 1, it is immediately recognized that

S1f(x, y) ∼= CT[CTf(x′, y)](x)

for all x, y ∈ [0, 2π]. Our method handles the whole convolution kernel in
one stroke, since the size of the keystone is A−1/2 > 1.

Remark 5. Finally, we point out to the interested reader that in [11,
12] the action of the operator S1, with its convolution kernel restricted to
the first fan, has been studied under the more general assumptions that
N(x, y) is increasing in both variables separately and N ′y(x, y) > N ′x(x, y)
everywhere. In [11, 12] new exceptional sets are introduced. This is a feature
of special interest: exceptional sets (their definition and size estimate) appear
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to be the single most challenging part in the proof in [2]. Moreover in [13, 14]
more general decompositions of the double Hilbert transform have been
studied.

4. The parabolically scaled partial sums. Now we show how the
above proof for SN,N easily gives a slightly weaker estimate for SM,M2 in
case one of the two phases is linear, say M2(x, y) = Ax + By. Again an
important feature is the kernel decomposition, which we shall first illustrate
heuristically. It is clear that if the values of M are restricted to describe a
dyadic interval, say [M0, 2M0], M0 > 4, then the partial sums SM,M2 are
similar to the rectangular partial sums SM,αM for α = M0. These last sums,
being associated to the dilations of a fixed rectangle, can be reduced to
square partial sums.

So we are going to restrict S2f(x, y) to the s-strip {(x, y) ∈ T2 : 2s−1 ≤
M(x, y) < 2s}, s ≥ 1, and suitably change the kernel decomposition into two
fans. The above heuristics leads us to expect that the kernel decomposition
will be along the line y′ = x′/α with α = 2s and indeed, relative to the above
strip, the decomposition—corresponding to the decomposition 2−k ≷ 2−h

we adopted for square partial sums—is 2−k ≷ 2−h2s. For, if M2(x, y) ∈
ωJ ⊂ [22s−2, 22s) with |ωJ | = 2h, and η2 denotes the center of ωJ , then

(4.1) |M2(x, y)− η2| · 2−h < 1.

At the same time M(x, y) describes an interval of size 2k, with 2−k = 2−h2s.
Indeed

|M(x, y)− η| = |M
2(x, y)− η2|
|M(x, y) + η|

< 2h/2η ∼= 2h · 2−s,

so that

(4.2) |M(x, y)− η| · 2−k < 1

with 2−k ≤ 2−h2s. This last relation defines the analogue of the first fan
in this setting, namely the union over h ≥ 0 of {|y′| ∼= 2−h, |x′| ≤ 2−h2s}.
Correspondingly we define pairs p̃= [Ĩ×J̃ , ωJ̃ ] such that |J̃ |= |ωJ̃ |

−1 = 2−h

and |Ĩ| = 2−h2s.We observe that since the y-derivative of the phaseM2(x, y)
is the constant B, the set E(p̃, x) = {y ∈ J̃ : M2(x, y) ∈ ωJ̃) satisfies (3.9)

for every x ∈ Ĩ . So we define A0(p̃) = 22h/B and the universes Ũn =
{p̃ : 2−n−1 < A0(p̃) ≤ 2−n}. Hence similarly to (3.7) the operators

Ṽp̃f(x, y) =
[
eiM

2(x,y)y′ϕh(y′) ∗
∑
k≥h−s

eiM(x,y)x′ϕk(x
′) ∗ f(x, y)

]
χE(p̃)(x, y)

for p̃ ∈ Ũn act as kind of Fourier coefficients in the y′ variable and kind of
the Hilbert transform with a phase and with a fixed truncation in the x′
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variable. So Lemma 3.1 can be applied and the corresponding Lemma 3.2
holds.

Similarly to the pairs q of Lemma 3.3 we now define pairs q̃ = [Ĩ× J̃ , ωĨ ]
such that |Ĩ| = |ωĨ |

−1 = 2−k and |J ′| = 2−h. We assume 2−h < 2−k2−s

(second fan). Now since M(x, y) ∈ ωĨ , (4.2) holds and implies (4.1). Also
the x-derivative of M(x, y) has a fixed order of magnitude, namely M ′x(x, y)
∼= A2−s. So we define B0(q̃) = 22k/A2−s and consider the universes

R̃` = {q̃ : 2−l−1 < B0(q̃) ≤ 2−l}.

By Remark 3 the corresponding Lemma 3.3 holds for the operators

W̃q̃f(x, y) =
[
eiM(x,y)x′ϕk(x

′) ∗
∑
h>k+s

eiM
2(x,y)y′ϕh(y′) ∗ f(x, y)

]
χE(q̃)(x, y)

for q̃ ∈ R̃l, where E(q̃, y) = {x ∈ Ĩ : M(x, y) ∈ ωĨ} satisfies |E(q̃, y)| ≤
22k/A2−s for any y ∈ J̃ .

Finally the keystone, in the domain of integration of the convolution
kernel, is chosen to be the larger of the two rectangles {|x′| < 2sB−1/2,
|y′| < B−1/2} and {|x′| < 2s/2A−1/2, |y′| < 2−s/2A−1/2}. Hence

(4.3) ‖S2f(x, y)‖Lr(s-strip) ≤ cr‖f‖Lr(T2)

for 1 < r ≤ 2, with cr independent of s. Note that the right-hand side
involves f over the whole of T2. The problem of the potentially unbounded
number of strips, due to A and B being unbounded, is bypassed by the
introduction of a suitable exceptional set. Fix K > 10. We can trivially sum
over lgK consecutive s-strips, ending with the maximum value s0 of s, that
is, 2s0 ∼=

√
2π(A+B). By (4.3) we have

‖S2f(x, y)‖rLr(F c) =

s0∑
s=s0−lgK

‖S2f(x, y)‖rLr(s-strip) ≤ c
r
r(lgK)‖f‖rLr(T2)

where F c =
⋃s0
s=s0−lgK(s-strip). We are are not going to estimate S2f(x, y)

on the set F, a triangle with a vertex at the origin and one side of length not
greater than 10/K. So |F | ≤ c/K. By a suitable choice of K, (1.4) follows
(see [2, p. 570]). This ends the proof of Theorem 2.

Remark 6. Theorem 2 illustrates the structural features of our proof
in the basic case M2(x, y) = Ax + By. We observe that, strictly speaking,
Theorem 2 does not need a linear phase. It suffices that T2 can be subdi-
vided into a number of subsets of the order of lgK, or a positive power of
it, such that the following three conditions are satisfied: 1) on each subset,
M(x, y) has a fixed order of magnitude α (this fixes the decomposition along
y′ = x′/α); 2) the y-derivative of M2(x, y) and the x-derivative of M(x, y)
have a fixed order of magnitude (this fixes the “equal case” universes);
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3) the complement of the union of those subsets—the exceptional set F—is
suitably small.

An example is provided by M2(x, y) = λ(x2 + y2) for any λ > 10. The
subsets can be the following rectangles:

{y ∼= 1, x ∼= 1}; {y ∼= 1, x ∼= 1/2}; {y ∼= 1, x ∼= 1/4}; . . . ; {y ∼= 1, x ∼= 1/K};
{y ∼= 1/2, x ∼= 1/2}; {y ∼= 1/2, x ∼= 1/4};

{y ∼= 1/2, x ∼= 1/8}; . . . ; {y ∼= 1/2, x ∼= 1/2K};
. . .

{y ∼= 1/K, x ∼= 1/K}, {y ∼= 1/K, x ∼= 1/2K}; . . . ; {y ∼= 1/K, x ∼= 1/K2}
together with the rectangles of the symmetrical decomposition

{x ∼= 1, y ∼= 1/2}; {x ∼= 1, y ∼= 1/4}; . . . ; {x ∼= 1, y ∼= 1/K};
{x ∼= 1/2, y ∼= 1/4}; {x ∼= 1/2, y ∼= 1/8}; . . . ; {x ∼= 1/2, y ∼= 1/2K};
. . .

{x ∼= 1/K, y ∼= 1/2K}; {x ∼= 1/K, y ∼= 1/4K}; . . . ; {x ∼= 1/K, y ∼= 1/K2}.
Their number is of the order of 2(lgK)2. The complement in T2 of their
union is the exceptional set F. It satisfies |F | ≤ 10/K. Indeed, its measure
is of the order of 1/K2 + 2(1/K + 1/4K + 1/16K + · · · ) ≤ 10/K.

Remark 7. We finally observe that the above theorems can serve as a
model in the case of Walsh–Fourier series for which even the a.e. convergence
of square partial sums is an open problem [6] relative to functions f ∈ Lr
with 1 < r < 2.

Acknowledgements. We wish to thank the referee for suggesting many
improvements to the presentation of this paper.
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