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On the generalized approximate weak
Chebyshev greedy algorithm

by

ANTON DEREVENTSOV (Columbia, SC)

Abstract. The Weak Chebyshev Greedy Algorithm (WCGA) is defined for any Ba-
nach space X and a dictionary D, and provides nonlinear n-term approximation for
a given element f € X with respect to D. In this paper we study the generalized
Approximate Weak Chebyshev Greedy Algorithm (gAWCGA), a modification of the
WCGA in which we are allowed to calculate n-term approximation with relative and
absolute errors in computing a norming functional, an element of best approximation,
and an approximant. This is natural for numerical applications and simplifies realiza-
tion of the algorithm. We obtain conditions that are sufficient for the convergence of
the gAWCGA for any element of a uniformly smooth Banach space, and show that
they are necessary in the class of uniformly smooth Banach spaces with modulus of
smoothness of nontrivial power type (e.g. L, spaces for 1 < p < o0). In particular,
we show that if all the errors are in ¢; then the conditions for the convergence of the
gAWCGA are the same as for the WCGA. We also construct an example of a smooth
Banach space in which the algorithm diverges for a dictionary and an element, thus
showing that the smoothness of the space is not sufficient for the convergence of the
WCGA.

1. Introduction. This paper is devoted to the problem of greedy
approximation in Banach spaces. We consider the Weak Chebyshev Greedy
Algorithm (WCGA), which was studied by V. N. Temlyakov (see, for in-
stance, [I1], [I5]). The WCGA is defined for any Banach space, and pro-
vides nonlinear n-term approximations of a given element of the space with
respect to a fixed set of elements. For numerical applications it seems logi-
cal to allow the steps of the WCGA to be calculated not exactly, but with
some inaccuracies. Such approach was used for other types of greedy al-
gorithms (e.g. see [§] and [7]). For more information about other types of
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greedy approximation, the reader may refer to the survey papers [9], [13],
and [14].

The modification of the WCGA with relative errors in computing
the steps of the algorithm, the Approximate Weak Chebyshev Algorithm
(AWCGA), was studied in [I2] and [2]. In this paper we study another
modification of the WCGA, in which we are allowed to make both absolute
and relative errors at every step of the algorithm. Similar to the terminology
proposed in [7], we call this modification the generalized Approximate Weak
Chebyshev Algorithm (gAWCGA).

Recall that a dictionary is a set D of elements of a real Banach space X
such that span D = X and the elements of D are normalized, i.e. ||g|| = 1 for
any g € D. For convenience we assume that all dictionaries are symmetric,
i.e. if g € D then —g € D. We set

Al(D) =conv D, Ao(D) = spanD.

We define the following classes of sequences, which represent inaccuracies
in calculating the steps of the algorithm. A weakness sequence is a sequence
{(tn,t,,)}52; of pairs of real numbers such that 0 < ¢, <1 and ¢}, > 0 for
all n > 1. A perturbation sequence {(,,0,)}5, is such that §, > 0 and
8, > 0 for all n > 0. An error sequence {(nn,n,)}22; is such that 7, > 0
and 7}, > 0 for all n > 1. We set 19 = sup,,>1 7 and 7 = sup,,> 7,,.

For a Banach space X, a dictionary D, and an element f € X, the gen-
eralized Approximate Weak Chebyshev Greedy Algorithm with a weakness
sequence {(tn,t],)}2%, a perturbation sequence {(d,,0,,)}> ,, and an error
sequence {(nn,n,,)}52, is defined as follows.

DEFINITION (gAWCGA). Set fo = f and for each n > 1,
e take any functional F;,_1 on X satisfying
(1.1) [Fooall <1 and  Fooq(fa1) = (1= 1) || fu-all = 6,

n—1»
e choose ¢, € D such that
(1.2) Fn_1(¢n) = tnsup Fr—1(9) 7t/m
g€D
e for &, = span {¢;}7_; denote E,, = infges, || f— G| and find G, € &,
satisfying
(1'3) ”f_GnH < (1+77n)En+77;n

e call G, the nth approximation of f and f,, = f—G,, the nth remainder.

Note that if for every n > 1 either ¢, < 1 or ¢}, > 0 then for any Banach
space X, any dictionary D, and any f € X the algorithm is feasible. We say
that the gAWCGA for f converges if for every realization of the algorithm
the sequence {G,, }2° | converges to f. Otherwise, we say that the gAWCGA
diverges.
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Note also that if ¢/, = 0,1 = 9/, 1 = np, = 1), = 0 for all n > 1 then
the gAWCGA coincides with the WCGA studied in [I1] and [3]. In the case
th = 40,_1 =mn, =0 the gAWCGA coincides with the AWCGA studied
in [12] and [2].

One of the goals of this paper is to investigate the behavior of the
gAWCGA in a uniformly smooth Banach space X and to obtain conditions
on the weakness, perturbation, and error sequences that guarantee the con-
vergence of the gAWCGA for all dictionaries D C X and all f € X. In Sec-
tion [2] we state sufficient conditions for the convergence of the gAWCGA with
arbitrary sequences {t/,}>°, {0,,}22,, and {7, }°2, in a uniformly smooth
Banach space X, and show that they are also necessary if X has modulus
of smoothness of nontrivial power type.

We understand the necessity of the conditions in the following way: if at
least one of the conditions does not hold, one can find a uniformly smooth
Banach space X, a dictionary D, and an element f € X such that the
gAWCGA for f with the given weakness, perturbation, and error sequences
diverges. We note that in our case such a Banach space and dictionary need
not be complicated. In fact, we give an example of a divergent gAWCGA in
¢, with the canonical basis as a dictionary.

In Section 3] we prove theorems stated in Section[2] We note that while we
are interested in the strong convergence of the WCGA and its modifications,
a more general setting was considered in [3].

Another goal of this paper is to discuss restrictions on a Banach space X
that are required for the convergence of the WCGA. It is known (see [11])
that the WCGA with a constant weakness sequence 0 < ¢ < 1 (denoted
further as WCGA(t)) converges in all uniformly smooth Banach spaces for
all dictionaries and all elements of the space. However, uniform smoothness is
not necessary: it is shown in [3] that every separable reflexive Banach space
X admits an equivalent norm for which the WCGA(¢) converges for any
dictionary D and any f € X. Furthermore, one can find a separable reflexive
Banach space that does not admit an equivalent uniformly smooth norm
(see e.g. [1]). Thus, the condition of uniform smoothness can be weakened.
In particular, it is shown in [3] that if a reflexive Banach space X has the
Kadec—Klee property and Fréchet differentiable norm, then the WCGA(¢)
converges for any dictionary D and any f € X.

On the other hand, it is shown in [6] that the smoothness of the space is
equivalent to the norms of the remainders of the WCGA being decreasing
for any dictionary D and any f € X. Thus, the smoothness of the space
is necessary for the convergence of the algorithm and it would be natural
to expect that it is also sufficient. In Section [4] we refute this hypothesis by
exhibiting a smooth Banach space, a dictionary, and an element for which
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the WCGA diverges. To construct the desired Banach space, we adopt the
technique used in [4] to prove the necessity of smoothness of the space for
the convergence of incremental approximation. Namely, we renorm ¢; by
introducing a sequence {0, }>2; of recursively defined seminorms, each of
which is the £, -norm of the previously calculated seminorm 9,1 and the
nth coordinate of the element, where the sequence {p,}">, decreases to 1
sufficiently fast. The reason for such a complicated approach is that the
resulting space has to be smooth but not uniformly smooth, which is already
a nontrivial task. We note that an analogous space was used in [10] to
prove the insufficiency of smoothness of the space for the convergence of the
X-Greedy Algorithm.

2. Convergence of the gAWCGA in uniformly smooth Banach
spaces. We begin by recalling a few definitions. A functional F’ on a Banach
space X is a norming functional of a nonzero element z € X if ||F'|| = 1 and
F(x) = ||z|. A Banach space X is smooth if for any nonzero x € X there
exists a unique norming functional £}, of x.

For a Banach space X the modulus of smoothness p is defined by

[+ uyl| + [l — uyl]
2

(2.1) plu) = sup
llz][=(lyll=1

1.

Note that p is an even and convex function, and therefore it is nondecreasing
on (0,00). A Banach space is uniformly smooth if p(u) = o(u) as u — 0.
We say that p is of power type 1 < q < 2 if p(u) < yu? for some v > 0. It
is easy to see that any Banach space has modulus of smoothness of power
type 1, and any Hilbert space has modulus of smoothness of power type 2.
Denote by P, the class of all uniformly smooth Banach spaces with modulus
of smoothness of nontrivial power type 1 < ¢ < 2. In particular (see [4]
Lemma B.1]) the modulus of smoothness p, of L, satisfies

suP,  1<p<2,

pp(u) < {pl 9

HSout, 2<p< oo,

hence L, € P, with ¢ = min{p, 2} for any 1 < p < oc.

For a weakness sequence {t,,}7° ; and a number 0 < 6 < 1/2 let {£,}72,
be a sequence of positive numbers which satisfy p(&,) = 60t,&, for each
n > 1. It is shown in [11] that if a Banach space is uniformly smooth then
for any 0 < 6 < 1/2 the sequence {&,}5° ; exists and is uniquely determined
by {tn}nz:-

We now state some known results concerning the convergence of the
WCGA and its modifications in arbitrary uniformly smooth Banach spaces.
The first result gives sufficient conditions for the convergence of the WCGA
(see [I1, Theorem 2.1]).
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THEOREM A. The WCGA with a weakness sequence {t,}7°; converges

for any uniformly smooth Banach space X, any dictionary D, and any
feX if forany 0 <6 <1/2.

0o
Z tnfn =0
n=1

The next theorem gives sufficient conditions for the convergence of the
AWCGA (see [12, Theorem 2.2]).

THEOREM B. The AWCGA with a weakness sequence {t,}5°,, a per-
turbation sequence {0,}72 o, and an error sequence {n,}o>; converges for
any uniformly smooth Banach space X, any dictionary D, and any f € X
if

Mo = Sup ”Mp < X
n>1

and if for any 0 < @ < 1/2 the following conditions hold:

Z tnén = 00, Op = O(tnén)a M = O(tngn)'
n=1

We will prove a similar result for the convergence of the gAWCGA with
somewhat weaker restrictions on the approximation parameters. Specifically,
we require the parameters to be sufficiently small only along some increasing
sequence {ny}7° of natural numbers.

THEOREM 1. The gAWCGA with a weakness sequence {(tn,t),)}>2
a perturbation sequence {(0n,0,,)}5, and an error sequence {(Nn,n},)}02
converges for any uniformly smooth Banach space X, any dictionary D, and

any f e X if
(2.2) Mo = sup Ny, < 00, lim 7, =0

n>1 n—oo

n=1-

and if there exists a subsequence {n;}7>, such that, for any 0 <60 <1/2,

(2‘3) Ztnk‘f'lgnk"rl =00
(2.4) t;k+1 = 0(tng+1),

(2.5) = 0(tn+18&n,+1),
(2.6) = 0(tny+1&nk+1),
(2.7) = 0(tny+18&n,+1),
(2'8) nnk - (t”k+lfnk+1)

If the modulus of smoothness of the space is of the nontrivial power type,
the previous theorems can be rewritten in form of necessary and sufficient
conditions for convergence. The following result is [I1], Corollary 2.1].
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THEOREM C. The WCGA with a weakness sequence {t,}>>; converges

for any uniformly smooth Banach space X € Pgy, any dictionary D, and any
f € X if and only if

Ztﬁ =00 wherep=gq/(qg—1).
n=1

The next theorem gives necessary and sufficient conditions for the con-
vergence of the AWCGA (see [2, Theorem 1]).

THEOREM D. The AWCGA with a weakness sequence {t,}5°,, a per-
turbation sequence {0,}02 ., and an error sequence {n,}°>, converges for
any uniformly smooth Banach space X € Py, any dictionary D, and any

f € X if and only if

Mo = Sup ”jp < 00
n>1

and if there exists a subsequence {ny}7° | such that
oo
thk+1 = 00, (Snk = O(tflk—&—l)’ 77nk = O(tflk—‘rl)?
k=1

where p=q/(q —1).

We will prove the following necessary and sufficient conditions for the
convergence of the gAWCGA.

THEOREM 2. The gAWCGA with a weakness sequence {(tp,t,)}>2

nyPn)Sfn=1>
a perturbation sequence {(dy,0,,)}°2, and an error sequence {(nn, )},
converges for any uniformly smooth Banach space X € Py, any dictionary D,

and any f € X if and only if

(2.9) no =supn, <oo, lim n, =0
n>1 n—oo

and if there exists a subsequence {ny}72, such that

0
(2.10) b =00,
k=1
(2.11) tnpr1 = 0(tn,+1),
(2.12) Oy, = o(th 11),
(2.13) Oy, = 0(th, 41),
(2.14) My, = O(tﬁkJrl),
(2.15) 77;% = o(tﬁkJrl),

where p=q/(q —1).
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The following corollary states that if the weakness parameter {¢,,}°2, is
separated from zero (e.g. t, =t > 0 for all n) then the gAWCGA converges
as long as 7], goes to zero and other inaccuracy parameters go to zero along
the same subsequence.

COROLLARY 2.1. Suppose liminf, . t, > 0. Then the gAWCGA with a
weakness sequence {(tn, )}, a perturbation sequence {(0n,0))}5°,, and
a bounded error sequence {(nn,n},)} 22, with lim,_, 1), = 0 converges for
any uniformly smooth Banach space X € Py, any dictionary D, and any

f € X if and only if
lim inf(t], 1 + 6n + ), + 1) = 0.

The last two corollaries state that the conditions for the convergence of
the gAWCGA are the same as for the WCGA if the inaccuracy sequences
are in /1.

COROLLARY 2.2. Let {t},}5° 1 € €1, {00} € 01, {0,350 € L1, {m}524
€ b1, and {n,}>2, € ¢1. Then the gAWCGA with a weakness sequence
{(tn,t],)}02,, the perturbation sequence {(0p, 9;,) }22, and the error sequence

{(Mn, M) 352 converges for any uniformly smooth Banach space X, any dic-
tionary D and any f € X if for any 0 <0 <1/2,

S
Z tnén = 00
n=1

COROLLARY 2.3. Let {t},}5°, € L1, {0n}02 o € 01, {0,152 € L1, {m}24
€ (1, and {n),}°, € {1. Then the gAWCGA with a weakness sequence
{(tn,t),)}5° 1, the perturbation sequence {(0p, 81,) 152, and the error sequence
{(n,m},) 352 converges for any uniformly smooth Banach space X € Py,
any dictionary D, and any f € X if and only if

(o]

Ztﬁ = 00.

n=1

We note that in the last corollary the sequence {t,,}7° ; might be in £,
as well; we take it from ¢; for the simplicity of formulation. Corollaries
and [2.3] are obtained by using Theorems [I] and [2] and the following simple
fact (see [2, Lemma 2]).

LEMMA E. Let {a,}22, and {b,}>2, be any nonnegative sequences such

that
o x
Z anp < 0o and Z b, = 00
n=1 n=1
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Then there exists a subsequence {ny}3>, such that

ank =00 and ap, = 0(by,).
k=1

3. Proofs of Theorems [1] and [2l We will need several technical re-
sults. The following is [11, Lemma 2.2].

LEMMA F. For any bounded linear functional F' on X and any dictio-
nary D,

sup|F(g)] = sup [F(g)l.
9€D g€A1(D)

We use the following lemmas from [12] rewritten for the gAWCGA.
LEMMA 1. Let X be a Banach space with modulus of smoothness p. Then
for any ¢ € &,
R < 5200 = jut 5 (80 + 2 200
n > Pn = 1nl =1 0n n .
SO\ T
Proof. Take any ¢ € &,. By the definition (2.1) of the modulus of
smoothness, for any A > 0,

A
Ifr =A@l + [ fn + Aol < 2[ ful <1 +p< |’.‘1Lf||||>>

Assume that F,,(¢) > 0 (the case F,(¢) < 0 is handled similarly). Then,
using (|1.1)), we obtain

1fn + MBIl = Fu(fn + A) = (1 = 0n)l| full = & + AFn(9),

thus
A9l

[

1 — Aol < anll(l s +2p(

On the other hand, by (1.3)),

an - )‘ng Z En Z (1 + nn)il(anH - 77;1) Z (1 - nn)anH - 77;'
Therefore

)) + 01, — AF ().

A .
AFu(6) < ||fn|r(an i +2p( H'}ﬂ'{)) e

and since the inequality holds for any A > 0,

o1 &+, B
B < ut 3 (50 m+ BB 20161 ) = 5u(6).

LEMMA 2. Let X be a Banach space with modulus of smoothness p.
Take a number € > 0 and elements f,h € X such that ||f — h|| < € and
h/A € A1(D) with some number A = A(e) > 0. Then

|En(ns1)| 2 tni1 AT (L= 8n) | full = 0, = Ba(Gn) — €) =t i1
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Proof. Condition (1.2)) and Lemma [F|imply that

| Fr(Pna1)| >ty sup |[Fu(g)] — t,n—i-l =tnp1 sup |[Fu(g)| — t/n—l-l‘
geD geA1(D)

Taking g = h/A € A;1(D) we obtain

sup |Fr(g)l > A7 E(R)] > A7H(|Fa(f)] =€)
g€A1(D)

_1(’Fn(fn)‘ — | Fn(Gn)| =€)
Hence condition ([1.1)) and Lemma (1| yield
’Fn(¢n+1)| > tn—&-lAil((l - 5n)anH - 51/1 - /Bn(Gn) - 6) - tln+1- .
LEMMA 3. Let X be a Banach space with modulus of smoothness p. Take

€ > 0 and f,h € X such that ||f —h| < € and h/A € A1(D) with some
A= A(e) > 0. Then for any m > n,

o i
B < nf [Ifull |14 00+ 2 +2 ()
35 Il AR\

/Lthrl / /
- B (= Blfall = 8, = Bu(G) )| + s

Proof. By (2.1)), for any p > 0,

p
1o = w415+ sl <2050 (14 0( 717 ) )
Assume that F,(¢p+1) > 0 (the case Fy(¢nt1) < 0 is handled similarly).
Then, using and Lemma 2, we get
”fn + M¢n+1H > Fn(fn + /Mbn—I—l) > (1 - 5n>HfTIH - 5; + M’Fn(¢n+1)’
+ thJrlA_l((l = 0n) [ fall = 8 = Bn(Gn) — 6) — plpyr-

Thus

f + = ’/ >>
n — n n 1 n

- ,UthrlA_l(( - n)”an - 541 - Bn(Gn) - 6) + /’Jt;z—i—l'
On the other hand, since E,, < E,t1 < ||fn — tn+1]| for any p > 0,

o i )
n On —
Em < I/ ”[“ TR <anu

Pny1 1 /
= R (= Bl = 8, = () = )] + it

Taking the infimum over all u > 0 completes the proof. m

We are now ready to prove Theorem
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Proof of Theorem[1, Assume that for some f € X the gAWCGA does
not converge. Then the monotone sequence {E,}7° ; does not converge to 0
since otherwise (2.2)) would imply

lim |l < lim ((1+ no)En + ny,) = 0.
n—oo n— o0

Thus there exists a > 0 such that for any n > 1,

(3.1) 1full > Bn> o

Denote Cy = (2 4 no)||f|| + my < oo, where 19 = sup,>;n, and 7y =
sup,,>1 1, Then inequality (1.3)) gives, for any n > 1,

[ full < @ +n0)lfll +m0 < Cy
IGull < I full + If]] < C.

Let {n;}72, be a subsequence for which the assumptions of the theorem
hold. Then

(3.2)

Oy + Ty,
1 el
Oy 1
(6%

uelG) = inf (6% F + 200G ) )

and, by (2.4)—(2.8) and the inequality 0 < 6t¢,&, < 1, there exists K > 1

2

such that for any k > K the following estimates hold with 6 = 24?47@:

(3 3) (1/2 - 5nk)a - 6;Zk - Bnk (Gnk) > a/47
(3 4) 67% + (S;Ik/a < 0£Hk+1tnk+17
( 6)

/ /
Ty, + agnk+1tnk+l < a9§Hk+1tnk+1‘

Take € = /2 and find h € X such that Hf h|| < e and h/A 6 Ay(D) for

some A > 0. Then Lemma assumption (3.1)), and estimates (3.2)) and (3.3 .
yield, for any k > K,

&, [
Enk+1 < 1nf ”fnkH |:1 + 57% +— + 2P< )

Mhny 1
- Ackvf <(2 _5nk>a_5’izk _ﬁ”k(Gnk)>:| —|—/Jl7f;”€+1

(5, 1% oz,ut +1
<t o1 0+ 22 2p () - Wt

By taking p = ap, +1, and using estimates f and condition (|1.3),
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we obtain

(3'7) Enk+1 < ank H(l + 6nk + 5;1k/a - 46§nk+1tnk+1) + agnk+1t;1k+l
< ank ”(1 - 30§Hk+1tnk+1) + aé-nk+1t;1k+1
< Enk(l - 20€nk+1tnk+1) + n;zk + agnk+1t%k+l
< Enk(l - efnk-i-ltnk-i-l)‘

Note that (2.3 implies that the infinite product [[p2,(1 — 0&,,+1tn,+1)
diverges to 0. Then, recursively applying estimate (3.7)), we obtain, for suf-
ficiently large N > K,

which contradicts assumption (3.1). Therefore lim, o, F,, = 0, i.e. the
gAWCGA of f converges to f. m

To prove Theorem [2] we will use the following simple lemma.
LEMMA 4. Let g >1,a>0 and b > 1. Then
(a4 b)Y < a +b.
Proof. From the convexity of (1 + z)? we have, for any = > 0,
(14+2)?>1+4qux.
Then by taking x = a/b we get
(a+b)7=b1(1+2)?>b/(1+qz)=b"+agh” ' >a+bl u

Proof of Theorem[2. We start with the proof of sufficiency. Assume that

conditions ([2.10)—(2.15) hold for some subsequence {nj}3>,. Choose any
0 < 6 < 1/2 and find the corresponding sequence {£,}°2 ;. Then using the

definition p(&,) = 0t,&, and the estimate p(u) < yuf, we derive

o \""

p—1
< @) tnkn,

and conditions ([2.10)—(2.15)) imply (2.3)—(2.8) for the subsequence {n;}3>,

and any 0 < 0 < 1/2. Therefore Theorem (1| guarantees the convergence of
the gAWCGA for any dictionary D and any f € X.

Now assuming that at least one of f fails, we will give an
example of a Banach space X € P, a dictionary D, and an element f € D
such that the gAWCGA of f diverges.

Thus for any n > 1,
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Let X = ¢, € Py and D = {+e,}3°,, where {e,}>2 is the canonical
basis in /.
Assume that (2.9) fails, i.e. there exist a subsequence {n;}72, and a > 0
such that for any k > 1,
Nny >k or mp, > o

Take a positive nonincreasing sequence {a; };";1 € {4 such that

a1 >« and ( i ag)l/q > k!

Jj=nr+1
for any k£ > 1. Denote f = Zjoil aje; € {4 and consider the following
realization of the gAWCGA of f:
For n ¢ {n}32, choose F,_1 to be the norming functional for f,_1,
on = €y, and G,, = Z?zl aje;.
For n € {n}32, choose F,_1 to be the norming functional for f,_1,
¢On = e, and G, = aeq + Z?Zl aje;, which is possible since

> 1/q
o= (a7 + 3 af) " <ot B,

Jj=nr+1
and either
ank”q < By + 77;% or ank”q < (1 +ak)Ep, < (14 m0,) Eny-

Then for any k > 1 we have || fy,, || > «, hence || f,|l; = 0 and the gAWCGA
for f diverges.

Assume now that conditions — do not all hold, i.e. for any
subsequence {ny}3°, at least one of the following statements fails:

o0
p _
Z tnk+1 =0
k=1

t;zk—I—l = O(tnkJrl)a

For a > 0 define
M={n>1:6,_1+06 _,>at or gu_1+1n, > aot? ort’ > a/Pt,}
and Ay = N\ A;. We claim that there exists an a > 0 such that

(3.8) > <o,

jEAS
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Indeed, if Zje Ao t]]? = oo for any a > 0 then for every kK > 1 consider
a(k) = 1/k, and choose a sequence {I}}7° of disjoint finite sets with I}, C
Aa(k) and 37y t7 > 1. Hence by considering the union Uy, (I + {—1})
(where + denotes Minkowski addition), we obtain a subsequence for which
conditions - hold, contrary to assumption. Fix an a > 0 for
which clalm ) holds, and consider the corresponding sets A; and As.

If |A;] < o0 then > ,ltp < oo. Take f=eo+> 72 1t§/q
the following reahzatlon of the gAWCGA of f:

For each n > 1 choose F,_1 to be the norming functional for f,_1,
¢n = €n, and G, = 31 ltf/qe]. Then for any n > 1 we have ||f,|, > 1,
hence the gAWCGA for f diverges.

Consider now the case |4 | = co. Take any nonnegative sequence {aj}jen

ej and consider

such that a; < 1forany j > 1,3, 4 af>1/aand 3,4 af < cc. Denote
f=at15( 3 ajes + 3 1),
JEM JEA2
where
1/q
B=(m+np+a(d al+d#)) <1
JjEA jEA2

We claim that for some realization of the gAWCGA for f the indices from
A; will not be chosen. Namely, we show that there exists a realization such
that for any n > 1 the set I5, of indices of e; chosen at the first n steps of
the algorithm and the nth remainder f,, satisfy

Fn N Al = (Z)a
(3.9) 1\1/ 1/ /4
fr =B +m,) a1 + a qﬂ(Z ajej + Z t ej)ﬂ
jEAl jEAgﬂ)
where Agn) = Ag \ I,. Consider the following realization of the gAWCGA
for f:

For n =1 choose

alp,. . o
Fo(e) = Fyla) = om0 e sty
(@Be)=1/7|| flig
Then, since a; < 1, we get
F0(€0> = 07
Fylej) < (aB)P|f1;9P  for any j € Ay,
Fyo(e;) = t; ()P fIl;47 for any j € As,

and the choice ¢; = e satisfies (|1.2)) since 1 € Ag. Thus I} = {1}, and the
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element
fr=B(m + i) % + al/qﬁ(z aje;+ Yy ti/qej)
jeh jeald
satisfies ((1.3)) since the estimate
1/q
s<b=alip(Late 3 #) <1
JEAL j€A<21)
and Lemma [4] imply that
1/q
fille = B(m -+ +a( 3 al+ 3 &)
JEM T jeald
< B(m +m) + Er < (1+m)Er + 13
Hence for n = 1 claim (3.9)) holds.
Forn>1,if
o= B0m 1) Voer + aB( 3 aje; + Y 1),
jeM jeal
then the function

(8 + 8, P20 + (o + 1) VP01 + @2 ( Y o+ Y tia))
JjEA jE/lé")

1
(8791 + 8+ 5,1 ul9) 7
satisfies ([1.1)) since the estimate

< fullg=B(m 4o +o( X al+ 3 )" <1

jeAl jGAén)

F,(x) =

and Holder’s inequality imply that
8 + 0 + B FullDVP(S°2, 21) /e
o) < Bt B A S )
(B-9(1 + 0n + 63| full)

< Hf’«"Hq

and

I fall8 ,
Ful(fa) = > (1= 62 fulla — o
(14 0 + O)V/2|| £ 27 !

where the last inequality holds since || f,||q < 1 and
(1 00+ 0)MP((1 = Gn) | fallg = 81) < (1 G+ 87) VP (1 = 8 = 83) Fullg
= (1= (60 +8,))P(1 =60 = 6,)Y U fullg < Nl fallg-
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Hence such a choice of functional is admissible. Let
An= (70480 + 811l

Then, since a; < 1, we get

Fu(eo) = (6n + 0,) /P Ay,

Fu(er) = (na +n),) /P Ay,

Fo(ej) < a/PA, for any j € Ay,

Fo(ej) = tjal/pAn for any j € Aén),

F.(ej) =0 for any j € I, \ {0, 1}.

If n+1 € Ay we choose ¢p+1 = ep+1. Otherwise n+1 € A;, and by definition
of that set at least one of the following inequalities holds:

Fo(eq) > thp1a'PA, >t 10 /P A, — tnt1s
Fu(e1) > toy1a P A, >t 10MPA, — ),

tnt1 sug Fo(g) =t < tnp1a /P A, — P, <0,
g€

Then we choose ¢,+1 = € or ¢p11 = e1. In either case I, 11 N A} = ) and
the element

Jn1 = 5(7771—1-1 + 77;14-1)1/(161 + al/qB(Z aje; + Z tlﬂ?/qej)
JEAL jEAg7L+1)
satisfies ([1.3)) since the estimate
1/q
B< Epy1 = al/qﬁ(Z al+ tf) <1
JjeEA jeA(2n+1)
and Lemma [4] yield
1/q
Vasille =B(msr + s +a( Y al+ > )
JEM jeAg’”ﬁl)
< /B(nn—&-l + 77;L+1) + Epy1 < (1 + 77n+1)En+1 + 77;L+1-

Hence claim ([3.9)) holds for any n > 1. Thus || f,,|| > 8 -+ 0 and the gAWCGA
of f diverges. m

4. Nonsufficiency of smoothness of the space for the conver-
gence of the WCGA. In this section we demonstrate that smoothness of
the space is not sufficient for the convergence of the WCGA. Specifically, we
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will construct an example of a smooth Banach space X, a dictionary D, and
an element f € X such that the WCGA for f with any weakness sequence
{t,}5°, diverges. The space we construct was used in [4] and, in a special
case, in [10].

In order to obtain the desired space we renorm ¢;. Take a nonincreasing
sequence {p,}°2, of numbers with p, > 1 for any n > 1 and with

(4.1) g:l<l - pln) < o0.

Let {e,}o2; be the canonical basis of ¢;. Consider a sequence {9, }>> of

nonlinear functionals defined as follows: for any =z = Zn 1 Tnen € 4,

do(x) =0,  Vn(w) = (I (@) + |za[Pm) /P form > 1.

In particular,

V1 () = |21l

Ja(x) = (Jz1 |72 + |z2|2) /P2,

Da(a) = (1P +[aalP /7 4 L) 7
We claim that ¥,, is a norm on /7. Indeed, for any x € ¢7,

Un(x) =0 if and only if z =0,
Un(Ax) = [A\|Yp(z) for any A € R.

We prove the triangle inequality for ,, using induction on n. The base case
n = 1 is obvious. Then, using Minkowski’s inequality, for any n > 1 and any
x,y € {1 we obtain

n(lz+y) = (ﬁ"liry +]a:n+yn|p")1/pn
< (01 (@) + Inc1 ()P + (|2a] + [yal)?) /7"
< (¥, ( ) + |2 [P) P (95 (y) + [y [P /P
= On(x) + In(y).
Define
X = {x €612 lim 9, (x) < oo}, Jellx = lim ().

Since for any x € ¢; the sequence {9, (x)}>° is nondecreasing, the limit
always exists. Moreover, for any n > 1,

Un () < O +\ﬂ?n\<2|l‘k|
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and, by Hoélder’s inequality,

> leul <271 da(e) + 3 fan] < 217 (Va(a) + > 2])

k=1 k=3

< 9l-1/p> (21—1/12319 _|_Z|g;k,|) <22k ,(1=1/py) (193 +Z|xk|>
=4

< 95 (=VP) (9, () + |zn|) < 25k=20-1/P0)g, (1),

Therefore, by letting n — oo, we obtain, for any « € X,

(4.2) pllelly < lzllx < [l
where p = 27 Xk=1(1=1/Pk) > 0 by the choice (1)) of {p,}>2,. Hence, the
|| - || x-norm is equivalent to the || - ||;-norm, and X = (41, || -||x) is a Banach

space. We note that while we impose condition to obtain the equiva-
lence of norms, weaker restrictions on the rate of decay of {p, }°°; might be
used (see [5, Proposition 1]).

Next, we show that the space X is smooth, that is for any x € X there
is a unique norming functional F.

First, we find the dual of X. Let {e}}°° ; be the canonical basis in £
C0n81der the sequence {g,}52; of numbers given by

Pn

Pn — 1 ‘
Similarly, we define the sequence {v,}7 , of functionals as follows: for any
sequence a = Y > anel € oo,

dn =

n=1

w(a) =0, wvn(a) = W™ (a) + |an|™)%  for n > 1.

n—1

Define
X = {a €l lim vy(a) < oo}, llal|x+ = lim vy(a).
n— 00 n—o0

In the same way as above we show that the | || x+-norm and the || - || .o-norm
are equivalent. For any n > 1,

vn(a) > Sup |k,
<n

and
Vn(a) = ( in ( ) + ’an|qn)1/qn < 21/Qn maX{Vn—l(a)7 ’an|}

n 1
< oY/t max{v,_s(a), |an—1], lan|} < -
< 92 k=3 1/4x max{va(a),|asl,...,|an|}

< o¥iala max{|ayl, az], ..., |an|}.
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Therefore, by letting n — oo, for any a € X* we obtain

lalloo < llallx- < p~"lafloo,
i.e. the || - || x+-norm is equivalent to the || - ||so-norm, and X* = (¢, || - || x*)
is a Banach space.

We claim that X* is the dual of X. Indeed, for any x € X and any
a € X* the Holder inequality yields, for any NV € N,

N N
> lan] [2n] < va(@)da(x) + > lan] [za] < -
n=1 n=3

< wy-1(a)In-1(z) + [an||en] < va(a)dn (),

and therefore

o= g[S

Similarly, using induction we obtain, for any functional a(z) = > 7,
on X,

< lim Z|an| |zn] < |lall x|z x-
a]xj

sup a(z) = |lal|x-,
TESx

which completes the proof of the claim.

Consider the spaces X" = (¢1,7,(:)) and X*" = (£, vy(-)), the initial
segments of X and X™* respectively. We use induction to show that for any
n > 1 the space X*" is strictly convex. Indeed, X*! = (R,| - |) is strictly
convex, and for any n > 1,

X*n _ X*nfl @q R

is strictly convex as a gn-sum of strictly convex spaces with 1 < ¢, < oo
(see, e.g., [1]). Therefore X™ is smooth as a predual of a strictly convex
space X*" (e.g. [1]).

Lastly, we will need the following simple lemma to prove smoothness
of X.

LEMMA 5. Let x =Y 0" xpen € X and Fp =% 7|
functional for x. Then for any m € N,

Fmo— Z:LnZI ane;kl
’ V()

is a norming functional for £™ =" | xpe, € X™.

ape;, be a norming

Proof. Assume that FJ"(z™) < ||| xm = Um(x), i.e. F}" is not a norm-
ing functional for ™. Then

Zan:rn < Um(a)Vm ()
n=1
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and for any N > m by Holder’s inequality

o0 o0
Fy(r) = Zanxn < Z |an| |7n|
n=1

n=1
oo
< Um(@)Im(z) + D |an| |znl
n=m-+1
oo
<un(@)dn(@)+ D lan| [
n=N+1
Letting as N — oo we get Fy(z) < ||a||x+||z||x = ||||x, which contradicts

Fy(z) = ]| =
LEMMA 6 @ The space X = ({1, ]| - ||x) ts smooth.

Proof. Assume that there is an x € X with two distinct norming func-
tionals: F, = Y 7 ane;, and G = Y 2 byel. Then Lemma [5| and the
smoothness of initial segments imply, for any N € N,

N % N
Zn:l Antp — FN — GN — Zn:l bnez
vn(a) ) * vn(b)
Pick m € N such that a,, # by,. Then, letting N — oo and taking into
account that ||a||x+ = ||b]|x+ = 1, we get

. Am, . N . N . m
-1 — lim F — lim G =1 —b
m Ngnoo VN(CL) Ng)noo r (em) Ngnoo r (€m) Ngnoo I/N(b) e

which contradicts a,, # by, and thus X is smooth. =

Finally, we need to find the norming functionals on X. Take any z =
Yoo xne, € X and consider a sequence {F}52 of functionals on X
defined as follows: for any y = > 2 | ypen € X,

o @) Fr () + sen @y
Fo(y) = P
= 9, Pt (2) Z(sgn . |z [Py, H 19§j+1_pj (x)) for n > 1.
k=1 j=k

LEMMA 7. Let =) " xne, € X. Then F)' is a norming functional
for x.

Proof. We will use induction on m. For m =1,
f;(y) = Sgny yi,

(*) This proof is due to S. J. Dilworth.
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and Fi(z) = V1(z) = ||z x, |Fa(y)] =91 (y) = |yl x. For m > 1,
O (@) F N y) + sgnam [2m P ym

b ()

Fa'(y) =
Then
I (@)
and the induction hypothesis and Holder’s inequality show that
o) < Ot @IFT T @) [P
Fr )l < 0
o ()
m—1 _
< 79170”,1 ($)’l9m,1(y) + |xm|pm 1|ym|
- o (@)
< Oy (@) + lymP™) P = 9 (y) = [lyllx. =

Thus, we have established the norming functionals F,, in the initial seg-
ments X". In particular, for any =,y € X,

Fa () = Um(z) = z]lx,

Fuly) =sgnziyi,
2 sgnat |z1[72 g1 + sgnws 227 yo
Fa (y) = pa—1 )
05" (x)
(sgnay |z1|P2 " y1 +sgn g [waP?Lyo) 087 (x) +sgn g waP T ys
95 (x)

We now choose a dictionary D in X and an element f € X such that the
WCGA for f diverges. Without loss of generality assume ¢, = 1 for each
n > 1, i.e. an element of the dictionary that maximizes Fy, , is chosen at
each step. Let

Fiy) =

go = €1+ €2 + €3,
gr = e +epy1  foreach k> 1,
and set D = {£g,/||gnllx }>>o- Note that for any k& > 1,
(4.3) llgellx = 2V /Per1 < 21/P2 < (1 4 2P3/P2)1/Ps — || g || x.

Let f =e; € X. Then f = gy — g2 € Ap(D). We will show that the WCGA
diverges even for such a simple element. We claim that for any m > 1,

(4.4) Om = igm/HgmH)ﬁ

where + neans plus or minus. We will prove this claim by induction on m.
Consider the case m = 1. Lemma (7| yields Fy = F }, thus

Filgo)l =1, |Filg)l =1, |F}(gr)| =0 for any k > L.
Then estimate (4.3]) guarantees that ¢1 = £g1/||g1]|x-
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Let now m > 1. By the induction hypothesis the elements
£g1/llg1llxs -5 Egm—1/llgm-1llx

were chosen at previous steps. Then f,—1 = Y ", cye, for some coef-
ficients {cn}yLy, and therefore Fy,, , = F7' by Lemma (7| Note that
. . . m m_l . . .
fm—1 € X™, which is a uniformly smooth space since it is smooth and
finite-dimensional. Hence, applying Lemmawe find that F, _, (gr) = 0 for
any k=1,....m—1, i.e.
sgncy |e1[P271 + sgn ey |eo|P2 !

(1) = I (frot) O (1) N

sgn co |02|p2_119§3_p2 (fm—1)+sgncs |cg|P3~!

Fh 1 (92) = - — =0,
o I () O (fn)
SEN Cy—1 |Cppt [Pt 71PN (f 1) + sgn ey, [ [Pt
f?}n_l(gmfl) m— m— m m |[Cm

79?7? (f m—l)
=0.
From these equalities we derive

™! = fer 2,

’63’173 1 ‘c ‘pz 119173 pz(fm 1)

lem Pt = Jemn [P RIS (fnea),

which implies that for any k= 3,...,m,
k—1

(4.5) |Ck‘pk71 = e ’p2,1 H YPnt1 TP (f ).
n=2
Therefore

|5 (g0)l = [F7., (90 — g1)]

=y P (frnm1) (’63’;7371 11 ﬂﬁﬁﬁpj(fm—ﬁ)v

J=3

Thus, by (4.5)),

TR (90)| = D P (f (rclrmlﬂﬂpf“ P fmr)) = 1 (gm)],

Jj=2
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and estimate (4.3]) guarantees that ¢, = +gm/||gmllx, which completes the
proof of (4.4)).

Hence, the element +go/||go||x will not be chosen and

&, =span{gi,...,gn}

for any n > 1. Then the equivalence (4.2)) of norms implies that

= inf —G|x > p inf -Gl = 0 —
| full x Gl&ﬂl!f IIX_p(;g@nllf [t=p»0 asn— oo,

i.e. the WCGA of f diverges.
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