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On the generalized approximate weak
Chebyshev greedy algorithm

by

Anton Dereventsov (Columbia, SC)

Abstract. The Weak Chebyshev Greedy Algorithm (WCGA) is defined for any Ba-
nach space X and a dictionary D, and provides nonlinear n-term approximation for
a given element f ∈ X with respect to D. In this paper we study the generalized
Approximate Weak Chebyshev Greedy Algorithm (gAWCGA), a modification of the
WCGA in which we are allowed to calculate n-term approximation with relative and
absolute errors in computing a norming functional, an element of best approximation,
and an approximant. This is natural for numerical applications and simplifies realiza-
tion of the algorithm. We obtain conditions that are sufficient for the convergence of
the gAWCGA for any element of a uniformly smooth Banach space, and show that
they are necessary in the class of uniformly smooth Banach spaces with modulus of
smoothness of nontrivial power type (e.g. Lp spaces for 1 < p < ∞). In particular,
we show that if all the errors are in `1 then the conditions for the convergence of the
gAWCGA are the same as for the WCGA. We also construct an example of a smooth
Banach space in which the algorithm diverges for a dictionary and an element, thus
showing that the smoothness of the space is not sufficient for the convergence of the
WCGA.

1. Introduction. This paper is devoted to the problem of greedy
approximation in Banach spaces. We consider the Weak Chebyshev Greedy
Algorithm (WCGA), which was studied by V. N. Temlyakov (see, for in-
stance, [11], [15]). The WCGA is defined for any Banach space, and pro-
vides nonlinear n-term approximations of a given element of the space with
respect to a fixed set of elements. For numerical applications it seems logi-
cal to allow the steps of the WCGA to be calculated not exactly, but with
some inaccuracies. Such approach was used for other types of greedy al-
gorithms (e.g. see [8] and [7]). For more information about other types of
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greedy approximation, the reader may refer to the survey papers [9], [13],
and [14].

The modification of the WCGA with relative errors in computing
the steps of the algorithm, the Approximate Weak Chebyshev Algorithm
(AWCGA), was studied in [12] and [2]. In this paper we study another
modification of the WCGA, in which we are allowed to make both absolute
and relative errors at every step of the algorithm. Similar to the terminology
proposed in [7], we call this modification the generalized Approximate Weak
Chebyshev Algorithm (gAWCGA).

Recall that a dictionary is a set D of elements of a real Banach space X
such that spanD = X and the elements of D are normalized , i.e. ‖g‖ = 1 for
any g ∈ D. For convenience we assume that all dictionaries are symmetric,
i.e. if g ∈ D then −g ∈ D. We set

A1(D) = convD, A0(D) = spanD.
We define the following classes of sequences, which represent inaccuracies

in calculating the steps of the algorithm. A weakness sequence is a sequence
{(tn, t′n)}∞n=1 of pairs of real numbers such that 0 ≤ tn ≤ 1 and t′n ≥ 0 for
all n ≥ 1. A perturbation sequence {(δn, δ′n)}∞n=0 is such that δn ≥ 0 and
δ′n ≥ 0 for all n ≥ 0. An error sequence {(ηn, η′n)}∞n=1 is such that ηn ≥ 0
and η′n ≥ 0 for all n ≥ 1. We set η0 = supn≥1 ηn and η′0 = supn≥1 η

′
n.

For a Banach space X, a dictionary D, and an element f ∈ X, the gen-
eralized Approximate Weak Chebyshev Greedy Algorithm with a weakness
sequence {(tn, t′n)}∞n=1, a perturbation sequence {(δn, δ′n)}∞n=0, and an error
sequence {(ηn, η′n)}∞n=1 is defined as follows.

Definition (gAWCGA). Set f0 = f and for each n ≥ 1,

• take any functional Fn−1 on X satisfying

(1.1) ‖Fn−1‖ ≤ 1 and Fn−1(fn−1) ≥ (1− δn−1)‖fn−1‖ − δ′n−1,
• choose φn ∈ D such that

(1.2) Fn−1(φn) ≥ tn sup
g∈D

Fn−1(g)− t′n,

• for Φn = span {φj}nj=1 denote En = infG∈Φn ‖f−G‖ and find Gn ∈ Φn
satisfying

(1.3) ‖f −Gn‖ ≤ (1 + ηn)En + η′n,

• callGn the nth approximation of f and fn = f−Gn the nth remainder.

Note that if for every n ≥ 1 either tn < 1 or t′n > 0 then for any Banach
space X, any dictionary D, and any f ∈ X the algorithm is feasible. We say
that the gAWCGA for f converges if for every realization of the algorithm
the sequence {Gn}∞n=1 converges to f . Otherwise, we say that the gAWCGA
diverges.
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Note also that if t′n = δn−1 = δ′n−1 = ηn = η′n = 0 for all n ≥ 1 then
the gAWCGA coincides with the WCGA studied in [11] and [3]. In the case
t′n = δ′n−1 = η′n = 0 the gAWCGA coincides with the AWCGA studied
in [12] and [2].

One of the goals of this paper is to investigate the behavior of the
gAWCGA in a uniformly smooth Banach space X and to obtain conditions
on the weakness, perturbation, and error sequences that guarantee the con-
vergence of the gAWCGA for all dictionaries D ⊂ X and all f ∈ X. In Sec-
tion 2 we state sufficient conditions for the convergence of the gAWCGA with
arbitrary sequences {t′n}∞n=1, {δ′n}∞n=0, and {η′n}∞n=1 in a uniformly smooth
Banach space X, and show that they are also necessary if X has modulus
of smoothness of nontrivial power type.

We understand the necessity of the conditions in the following way: if at
least one of the conditions does not hold, one can find a uniformly smooth
Banach space X, a dictionary D, and an element f ∈ X such that the
gAWCGA for f with the given weakness, perturbation, and error sequences
diverges. We note that in our case such a Banach space and dictionary need
not be complicated. In fact, we give an example of a divergent gAWCGA in
`p with the canonical basis as a dictionary.

In Section 3 we prove theorems stated in Section 2. We note that while we
are interested in the strong convergence of the WCGA and its modifications,
a more general setting was considered in [3].

Another goal of this paper is to discuss restrictions on a Banach space X
that are required for the convergence of the WCGA. It is known (see [11])
that the WCGA with a constant weakness sequence 0 < t ≤ 1 (denoted
further as WCGA(t)) converges in all uniformly smooth Banach spaces for
all dictionaries and all elements of the space. However, uniform smoothness is
not necessary: it is shown in [3] that every separable reflexive Banach space
X admits an equivalent norm for which the WCGA(t) converges for any
dictionary D and any f ∈ X. Furthermore, one can find a separable reflexive
Banach space that does not admit an equivalent uniformly smooth norm
(see e.g. [1]). Thus, the condition of uniform smoothness can be weakened.
In particular, it is shown in [3] that if a reflexive Banach space X has the
Kadec–Klee property and Fréchet differentiable norm, then the WCGA(t)
converges for any dictionary D and any f ∈ X.

On the other hand, it is shown in [6] that the smoothness of the space is
equivalent to the norms of the remainders of the WCGA being decreasing
for any dictionary D and any f ∈ X. Thus, the smoothness of the space
is necessary for the convergence of the algorithm and it would be natural
to expect that it is also sufficient. In Section 4 we refute this hypothesis by
exhibiting a smooth Banach space, a dictionary, and an element for which



156 A. Dereventsov

the WCGA diverges. To construct the desired Banach space, we adopt the
technique used in [4] to prove the necessity of smoothness of the space for
the convergence of incremental approximation. Namely, we renorm `1 by
introducing a sequence {ϑn}∞n=1 of recursively defined seminorms, each of
which is the `pn-norm of the previously calculated seminorm ϑn−1 and the
nth coordinate of the element, where the sequence {pn}∞n=1 decreases to 1
sufficiently fast. The reason for such a complicated approach is that the
resulting space has to be smooth but not uniformly smooth, which is already
a nontrivial task. We note that an analogous space was used in [10] to
prove the insufficiency of smoothness of the space for the convergence of the
X-Greedy Algorithm.

2. Convergence of the gAWCGA in uniformly smooth Banach
spaces. We begin by recalling a few definitions. A functional F on a Banach
space X is a norming functional of a nonzero element x ∈ X if ‖F‖ = 1 and
F (x) = ‖x‖. A Banach space X is smooth if for any nonzero x ∈ X there
exists a unique norming functional Fx of x.

For a Banach space X the modulus of smoothness ρ is defined by

(2.1) ρ(u) = sup
‖x‖=‖y‖=1

‖x+ uy‖+ ‖x− uy‖
2

− 1.

Note that ρ is an even and convex function, and therefore it is nondecreasing
on (0,∞). A Banach space is uniformly smooth if ρ(u) = o(u) as u → 0.
We say that ρ is of power type 1 ≤ q ≤ 2 if ρ(u) ≤ γuq for some γ > 0. It
is easy to see that any Banach space has modulus of smoothness of power
type 1, and any Hilbert space has modulus of smoothness of power type 2.
Denote by Pq the class of all uniformly smooth Banach spaces with modulus
of smoothness of nontrivial power type 1 < q ≤ 2. In particular (see [4,
Lemma B.1]) the modulus of smoothness ρp of Lp satisfies

ρp(u) ≤

{
1
p u

p, 1 < p ≤ 2,

p−1
2 u2, 2 ≤ p <∞,

hence Lp ∈ Pq with q = min{p, 2} for any 1 < p <∞.
For a weakness sequence {tn}∞n=1 and a number 0 < θ ≤ 1/2 let {ξn}∞n=1

be a sequence of positive numbers which satisfy ρ(ξn) = θtnξn for each
n ≥ 1. It is shown in [11] that if a Banach space is uniformly smooth then
for any 0 < θ ≤ 1/2 the sequence {ξn}∞n=1 exists and is uniquely determined
by {tn}∞n=1.

We now state some known results concerning the convergence of the
WCGA and its modifications in arbitrary uniformly smooth Banach spaces.
The first result gives sufficient conditions for the convergence of the WCGA
(see [11, Theorem 2.1]).
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Theorem A. The WCGA with a weakness sequence {tn}∞n=1 converges
for any uniformly smooth Banach space X, any dictionary D, and any
f ∈ X if for any 0 < θ ≤ 1/2.

∞∑
n=1

tnξn =∞.

The next theorem gives sufficient conditions for the convergence of the
AWCGA (see [12, Theorem 2.2]).

Theorem B. The AWCGA with a weakness sequence {tn}∞n=1, a per-
turbation sequence {δn}∞n=0, and an error sequence {ηn}∞n=1 converges for
any uniformly smooth Banach space X, any dictionary D, and any f ∈ X
if

η0 = sup
n≥1

ηn <∞

and if for any 0 < θ ≤ 1/2 the following conditions hold:
∞∑
n=1

tnξn =∞, δn = o(tnξn), ηn = o(tnξn).

We will prove a similar result for the convergence of the gAWCGA with
somewhat weaker restrictions on the approximation parameters. Specifically,
we require the parameters to be sufficiently small only along some increasing
sequence {nk}∞k=1 of natural numbers.

Theorem 1. The gAWCGA with a weakness sequence {(tn, t′n)}∞n=1,
a perturbation sequence {(δn, δ′n)}∞n=0, and an error sequence {(ηn, η′n)}∞n=1

converges for any uniformly smooth Banach space X, any dictionary D, and
any f ∈ X if

(2.2) η0 = sup
n≥1

ηn <∞, lim
n→∞

η′n = 0

and if there exists a subsequence {nk}∞k=1 such that, for any 0 < θ ≤ 1/2,
∞∑
k=1

tnk+1ξnk+1 =∞,(2.3)

t′nk+1 = o(tnk+1),(2.4)

δnk
= o(tnk+1ξnk+1),(2.5)

δ′nk
= o(tnk+1ξnk+1),(2.6)

ηnk
= o(tnk+1ξnk+1),(2.7)

η′nk
= o(tnk+1ξnk+1).(2.8)

If the modulus of smoothness of the space is of the nontrivial power type,
the previous theorems can be rewritten in form of necessary and sufficient
conditions for convergence. The following result is [11, Corollary 2.1].
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Theorem C. The WCGA with a weakness sequence {tn}∞n=1 converges
for any uniformly smooth Banach space X ∈ Pq, any dictionary D, and any
f ∈ X if and only if

∞∑
n=1

tpn =∞ where p = q/(q − 1).

The next theorem gives necessary and sufficient conditions for the con-
vergence of the AWCGA (see [2, Theorem 1]).

Theorem D. The AWCGA with a weakness sequence {tn}∞n=1, a per-
turbation sequence {δn}∞n=0, and an error sequence {ηn}∞n=1 converges for
any uniformly smooth Banach space X ∈ Pq, any dictionary D, and any
f ∈ X if and only if

η0 = sup
n≥1

ηn <∞

and if there exists a subsequence {nk}∞k=1 such that

∞∑
k=1

tpnk+1 =∞, δnk
= o(tpnk+1), ηnk

= o(tpnk+1),

where p = q/(q − 1).

We will prove the following necessary and sufficient conditions for the
convergence of the gAWCGA.

Theorem 2. The gAWCGA with a weakness sequence {(tn, t′n)}∞n=1,
a perturbation sequence {(δn, δ′n)}∞n=0, and an error sequence {(ηn, η′n)}∞n=1

converges for any uniformly smooth Banach space X ∈ Pq, any dictionary D,
and any f ∈ X if and only if

(2.9) η0 = sup
n≥1

ηn <∞, lim
n→∞

η′n = 0

and if there exists a subsequence {nk}∞k=1 such that

∞∑
k=1

tpnk+1 =∞,(2.10)

t′nk+1 = o(tnk+1),(2.11)

δnk
= o(tpnk+1),(2.12)

δ′nk
= o(tpnk+1),(2.13)

ηnk
= o(tpnk+1),(2.14)

η′nk
= o(tpnk+1),(2.15)

where p = q/(q − 1).
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The following corollary states that if the weakness parameter {tn}∞n=1 is
separated from zero (e.g. tn = t > 0 for all n) then the gAWCGA converges
as long as η′n goes to zero and other inaccuracy parameters go to zero along
the same subsequence.

Corollary 2.1. Suppose lim infn→∞ tn > 0. Then the gAWCGA with a
weakness sequence {(tn, t′n)}∞n=1, a perturbation sequence {(δn, δ′n)}∞n=0, and
a bounded error sequence {(ηn, η′n)}∞n=1 with limn→∞ η

′
n = 0 converges for

any uniformly smooth Banach space X ∈ Pq, any dictionary D, and any
f ∈ X if and only if

lim inf
n→∞

(t′n+1 + δn + δ′n + ηn) = 0.

The last two corollaries state that the conditions for the convergence of
the gAWCGA are the same as for the WCGA if the inaccuracy sequences
are in `1.

Corollary 2.2. Let {t′n}∞n=1 ∈ `1, {δn}∞n=0 ∈ `1, {δ′n}∞n=0 ∈ `1, {ηn}∞n=1

∈ `1, and {η′n}∞n=1 ∈ `1. Then the gAWCGA with a weakness sequence
{(tn, t′n)}∞n=1, the perturbation sequence {(δn, δ′n)}∞n=0, and the error sequence
{(ηn, η′n)}∞n=1 converges for any uniformly smooth Banach space X, any dic-
tionary D, and any f ∈ X if for any 0 < θ ≤ 1/2,

∞∑
n=1

tnξn =∞.

Corollary 2.3. Let {t′n}∞n=1 ∈ `1, {δn}∞n=0 ∈ `1, {δ′n}∞n=0 ∈ `1, {ηn}∞n=1

∈ `1, and {η′n}∞n=1 ∈ `1. Then the gAWCGA with a weakness sequence
{(tn, t′n)}∞n=1, the perturbation sequence {(δn, δ′n)}∞n=0, and the error sequence

{(ηn, η′n)}∞n=1 converges for any uniformly smooth Banach space X ∈ Pq,
any dictionary D, and any f ∈ X if and only if

∞∑
n=1

tpn =∞.

We note that in the last corollary the sequence {t′n}∞n=1 might be in `p
as well; we take it from `1 for the simplicity of formulation. Corollaries 2.2
and 2.3 are obtained by using Theorems 1 and 2, and the following simple
fact (see [2, Lemma 2]).

Lemma E. Let {an}∞n=1 and {bn}∞n=1 be any nonnegative sequences such
that ∞∑

n=1

an <∞ and

∞∑
n=1

bn =∞.
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Then there exists a subsequence {nk}∞k=1 such that
∞∑
k=1

bnk
=∞ and ank

= o(bnk
).

3. Proofs of Theorems 1 and 2. We will need several technical re-
sults. The following is [11, Lemma 2.2].

Lemma F. For any bounded linear functional F on X and any dictio-
nary D,

sup
g∈D
|F (g)| = sup

g∈A1(D)
|F (g)|.

We use the following lemmas from [12] rewritten for the gAWCGA.

Lemma 1. Let X be a Banach space with modulus of smoothness ρ. Then
for any φ ∈ Φn,

|Fn(φ)| ≤ βn(φ) := inf
λ>0

1

λ

(
δn + ηn +

δ′n + η′n
‖fn‖

+ 2ρ(λ‖φ‖)
)
.

Proof. Take any φ ∈ Φn. By the definition (2.1) of the modulus of
smoothness, for any λ > 0,

‖fn − λφ‖+ ‖fn + λφ‖ ≤ 2‖fn‖
(

1 + ρ

(
λ‖φ‖
‖fn‖

))
.

Assume that Fn(φ) ≥ 0 (the case Fn(φ) < 0 is handled similarly). Then,
using (1.1), we obtain

‖fn + λφ‖ ≥ Fn(fn + λφ) ≥ (1− δn)‖fn‖ − δ′n + λFn(φ),

thus

‖fn − λφ‖ ≤ ‖fn‖
(

1 + δn + 2ρ

(
λ‖φ‖
‖fn‖

))
+ δ′n − λFn(φ).

On the other hand, by (1.3),

‖fn − λφ‖ ≥ En ≥ (1 + ηn)−1(‖fn‖ − η′n) ≥ (1− ηn)‖fn‖ − η′n.
Therefore

λFn(φ) ≤ ‖fn‖
(
δn + ηn + 2ρ

(
λ‖φ‖
‖fn‖

))
+ δ′n + η′n,

and since the inequality holds for any λ > 0,

Fn(φ) ≤ inf
λ>0

1

λ

(
δn + ηn +

δ′n + η′n
‖fn‖

+ 2ρ(λ‖φ‖)
)

= βn(φ).

Lemma 2. Let X be a Banach space with modulus of smoothness ρ.
Take a number ε ≥ 0 and elements f, h ∈ X such that ‖f − h‖ ≤ ε and
h/A ∈ A1(D) with some number A = A(ε) > 0. Then

|Fn(φn+1)| ≥ tn+1A
−1((1− δn)‖fn‖ − δ′n − βn(Gn)− ε

)
− t′n+1.
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Proof. Condition (1.2) and Lemma F imply that

|Fn(φn+1)| ≥ tn+1 sup
g∈D
|Fn(g)| − t′n+1 = tn+1 sup

g∈A1(D)
|Fn(g)| − t′n+1.

Taking g = h/A ∈ A1(D) we obtain

sup
g∈A1(D)

|Fn(g)| ≥ A−1|Fn(h)| ≥ A−1(|Fn(f)| − ε)

≥ A−1(|Fn(fn)| − |Fn(Gn)| − ε).
Hence condition (1.1) and Lemma 1 yield

|Fn(φn+1)| ≥ tn+1A
−1((1− δn)‖fn‖ − δ′n − βn(Gn)− ε

)
− t′n+1.

Lemma 3. Let X be a Banach space with modulus of smoothness ρ. Take
ε ≥ 0 and f, h ∈ X such that ‖f − h‖ ≤ ε and h/A ∈ A1(D) with some
A = A(ε) > 0. Then for any m > n,

Em ≤ inf
µ≥0
‖fn‖

[
1 + δn +

δ′n
‖fn‖

+ 2ρ

(
µ

‖fn‖

)
− µtn+1

A‖fn‖
(
(1− δn)‖fn‖ − δ′n − βn(Gn)− ε

)]
+ µt′n+1.

Proof. By (2.1), for any µ ≥ 0,

‖fn − µφn+1‖+ ‖fn + µφn+1‖ ≤ 2‖fn‖
(

1 + ρ

(
µ

‖fn‖

))
.

Assume that Fn(φn+1) ≥ 0 (the case Fn(φn+1) < 0 is handled similarly).
Then, using (1.1) and Lemma 2, we get

‖fn + µφn+1‖ ≥ Fn(fn + µφn+1) ≥ (1− δn)‖fn‖ − δ′n + µ|Fn(φn+1)|
≥ (1− δn)‖fn‖ − δ′n

+ µtn+1A
−1((1− δn)‖fn‖ − δ′n − βn(Gn)− ε

)
− µt′n+1.

Thus

‖fn − µφn+1‖ ≤ ‖fn‖
(

1 + δn +
δ′n
‖fn‖

+ 2ρ

(
µ

‖fn‖

))
− µtn+1A

−1((1− δn)‖fn‖ − δ′n − βn(Gn)− ε
)

+ µt′n+1.

On the other hand, since Em ≤ En+1 ≤ ‖fn − µφn+1‖ for any µ ≥ 0,

Em ≤ ‖fn‖
[
1 + δn +

δ′n
‖fn‖

+ 2ρ

(
µ

‖fn‖

)
− µtn+1

A‖fn‖
(
(1− δn)‖fn‖ − δ′n − βn(Gn)− ε

)]
+ µt′n+1.

Taking the infimum over all µ ≥ 0 completes the proof.

We are now ready to prove Theorem 1.
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Proof of Theorem 1. Assume that for some f ∈ X the gAWCGA does
not converge. Then the monotone sequence {En}∞n=1 does not converge to 0
since otherwise (2.2) would imply

lim
n→∞

‖fn‖ ≤ lim
n→∞

((1 + η0)En + η′n) = 0.

Thus there exists α > 0 such that for any n ≥ 1,

(3.1) ‖fn‖ ≥ En ≥ α.

Denote Cf = (2 + η0)‖f‖ + η′0 < ∞, where η0 = supn≥1 ηn and η′0 =
supn≥1 η

′
n. Then inequality (1.3) gives, for any n ≥ 1,

(3.2)
‖fn‖ ≤ (1 + η0)‖f‖+ η′0 ≤ Cf ,
‖Gn‖ ≤ ‖fn‖+ ‖f‖ ≤ Cf .

Let {nk}∞k=1 be a subsequence for which the assumptions of the theorem
hold. Then

βnk
(Gnk

) = inf
λ>0

1

λ

(
δnk

+ ηnk
+
δ′nk

+ η′nk

‖fnk
‖

+ 2ρ(λ‖Gnk
‖)
)

≤ inf
λ>0

1

λ

(
δnk

+ ηnk
+
δ′nk

+ η′nk

α
+ 2ρ(λCf )

)
and, by (2.4)–(2.8) and the inequality 0 ≤ θtnξn ≤ 1, there exists K ≥ 1

such that for any k ≥ K the following estimates hold with θ = α2

24ACf
:

(1/2− δnk
)α− δ′nk

− βnk
(Gnk

) ≥ α/4,(3.3)

δnk
+ δ′nk

/α ≤ θξnk+1tnk+1,(3.4)

(1 + ηnk
)(1− 3θξnk+1tnk+1) ≤ 1− 2θξnk+1tnk+1,(3.5)

η′nk
+ αξnk+1t

′
nk+1 ≤ αθξnk+1tnk+1.(3.6)

Take ε = α/2 and find h ∈ X such that ‖f − h‖ ≤ ε and h/A ∈ A1(D) for
some A > 0. Then Lemma 3, assumption (3.1), and estimates (3.2) and (3.3)
yield, for any k ≥ K,

Enk+1
≤ inf

µ≥0
‖fnk
‖
[
1 + δnk

+
δ′nk

α
+ 2ρ

(
µ

α

)
− µtnk+1

ACf

((
1

2
− δnk

)
α− δ′nk

− βnk
(Gnk

)

)]
+ µt′nk+1

≤ inf
µ≥0
‖fnk
‖
[
1 + δnk

+
δ′nk

α
+ 2ρ

(
µ

α

)
− αµtnk+1

4ACf

]
+ µt′nk+1.

By taking µ = αξnk+1, and using estimates (3.4)–(3.6) and condition (1.3),
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we obtain

Enk+1
≤ ‖fnk

‖(1 + δnk
+ δ′nk

/α− 4θξnk+1tnk+1) + αξnk+1t
′
nk+1(3.7)

≤ ‖fnk
‖(1− 3θξnk+1tnk+1) + αξnk+1t

′
nk+1

≤ Enk
(1− 2θξnk+1tnk+1) + η′nk

+ αξnk+1t
′
nk+1

≤ Enk
(1− θξnk+1tnk+1).

Note that (2.3) implies that the infinite product
∏∞
k=1(1 − θξnk+1tnk+1)

diverges to 0. Then, recursively applying estimate (3.7), we obtain, for suf-
ficiently large N ≥ K,

EnN+1 ≤ EnK

N∏
k=K

(1− θξnk+1tnk+1) ≤ ‖f‖
N∏

k=K

(1− θξnk+1tnk+1) < α,

which contradicts assumption (3.1). Therefore limn→∞En = 0, i.e. the
gAWCGA of f converges to f .

To prove Theorem 2 we will use the following simple lemma.

Lemma 4. Let q > 1, a ≥ 0 and b ≥ 1. Then

(a+ bq)1/q ≤ a+ b.

Proof. From the convexity of (1 + x)q we have, for any x ≥ 0,

(1 + x)q ≥ 1 + qx.

Then by taking x = a/b we get

(a+ b)q = bq(1 + x)q ≥ bq(1 + qx) = bq + aqbq−1 ≥ a+ bq.

Proof of Theorem 2. We start with the proof of sufficiency. Assume that
conditions (2.10)–(2.15) hold for some subsequence {nk}∞k=1. Choose any
0 < θ ≤ 1/2 and find the corresponding sequence {ξn}∞n=1. Then using the
definition ρ(ξn) = θtnξn and the estimate ρ(u) ≤ γuq, we derive

ξn ≥
(
θ

γ
tn

)p−1
.

Thus for any n ≥ 1,

tpn ≤
(
γ

θ

)p−1
tnξn,

and conditions (2.10)–(2.15) imply (2.3)–(2.8) for the subsequence {nk}∞k=1
and any 0 < θ ≤ 1/2. Therefore Theorem 1 guarantees the convergence of
the gAWCGA for any dictionary D and any f ∈ X.

Now assuming that at least one of (2.9)–(2.15) fails, we will give an
example of a Banach space X ∈ Pq, a dictionary D, and an element f ∈ D
such that the gAWCGA of f diverges.
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Let X = `q ∈ Pq and D = {±en}∞n=0, where {en}∞n=0 is the canonical
basis in `q.

Assume that (2.9) fails, i.e. there exist a subsequence {nk}∞k=1 and α > 0
such that for any k ≥ 1,

ηnk
≥ αk or η′nk

≥ α.
Take a positive nonincreasing sequence {aj}∞j=1 ∈ `q such that

a1 ≥ α and
( ∞∑
j=nk+1

aqj

)1/q
≥ k−1

for any k ≥ 1. Denote f =
∑∞

j=1 ajej ∈ `q and consider the following
realization of the gAWCGA of f :

For n 6∈ {nk}∞k=1 choose Fn−1 to be the norming functional for fn−1,

φn = en, and Gn =
∑n

j=1 ajej .
For n ∈ {nk}∞k=1 choose Fn−1 to be the norming functional for fn−1,

φn = en and Gn = αe1 +
∑n

j=1 ajej , which is possible since

‖fnk
‖q =

(
αq +

∞∑
j=nk+1

aqj

)1/q
≤ α+ Enk

,

and either

‖fnk
‖q ≤ Enk

+ η′nk
or ‖fnk

‖q ≤ (1 + αk)Enk
≤ (1 + ηnk

)Enk
.

Then for any k ≥ 1 we have ‖fnk
‖q ≥ α, hence ‖fn‖q 9 0 and the gAWCGA

for f diverges.
Assume now that conditions (2.10)–(2.15) do not all hold, i.e. for any

subsequence {nk}∞k=1 at least one of the following statements fails:
∞∑
k=1

tpnk+1 =∞,

t′nk+1 = o(tnk+1),

δnk
= o(tpnk+1),

δ′nk
= o(tpnk+1),

ηnk
= o(tpnk+1),

η′nk
= o(tpnk+1).

For α > 0 define

Λ1 = {n > 1 : δn−1 + δ′n−1 ≥ αtpn or ηn−1 + η′n−1 ≥ αtpn or t′n ≥ α1/ptn}
and Λ2 = N \ Λ1. We claim that there exists an α > 0 such that

(3.8)
∑
j∈Λ2

tpj <∞.
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Indeed, if
∑

j∈Λ2
tpj = ∞ for any α > 0 then for every k ≥ 1 consider

α(k) = 1/k, and choose a sequence {Γk}∞k=1 of disjoint finite sets with Γk ⊂
Λ2(k) and

∑
j∈Γk

tpj ≥ 1. Hence by considering the union
⋃∞
k=1(Γk + {−1})

(where + denotes Minkowski addition), we obtain a subsequence for which
conditions (2.10)–(2.15) hold, contrary to assumption. Fix an α > 0 for
which claim (3.8) holds, and consider the corresponding sets Λ1 and Λ2.

If |Λ1| <∞ then
∑∞

j=1 t
p
j <∞. Take f = e0 +

∑∞
j=1 t

p/q
j ej and consider

the following realization of the gAWCGA of f :

For each n ≥ 1 choose Fn−1 to be the norming functional for fn−1,

φn = en, and Gn =
∑n

j=1 t
p/q
j ej . Then for any n ≥ 1 we have ‖fn‖q ≥ 1,

hence the gAWCGA for f diverges.

Consider now the case |Λ1|=∞. Take any nonnegative sequence {aj}j∈Λ1

such that aj ≤ 1 for any j ≥ 1,
∑

j∈Λ1
aqj ≥ 1/α and

∑
j∈Λ1

apj <∞. Denote

f = α1/qβ
(∑
j∈Λ1

ajej +
∑
j∈Λ2

t
p/q
j ej

)
,

where

β =
(
η0 + η′0 + α

(∑
j∈Λ1

aqj +
∑
j∈Λ2

tpj

))−1/q
≤ 1.

We claim that for some realization of the gAWCGA for f the indices from
Λ1 will not be chosen. Namely, we show that there exists a realization such
that for any n ≥ 1 the set Γn of indices of ej chosen at the first n steps of
the algorithm and the nth remainder fn satisfy

(3.9)
Γn ∩ Λ1 = ∅,

fn = β(ηn + η′n)1/qe1 + α1/qβ
(∑
j∈Λ1

ajej +
∑
j∈Λ(n)

2

t
p/q
j ej

)
,

where Λ
(n)
2 = Λ2 \ Γn. Consider the following realization of the gAWCGA

for f :

For n = 1 choose

F0(x) = Ff (x) =

∑
j∈Λ1

a
q/p
j xj +

∑
j∈Λ2

tjxj

(αβq)−1/p‖f‖q/pq
.

Then, since aj ≤ 1, we get

F0(e0) = 0,

F0(ej) ≤ (αβq)1/p‖f‖−q/pq for any j ∈ Λ1,

F0(ej) = tj(αβ
q)1/p‖f‖−q/pq for any j ∈ Λ2,

and the choice φ1 = e1 satisfies (1.2) since 1 ∈ Λ2. Thus Γ1 = {1}, and the
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element

f1 = β(η1 + η′1)
1/qe1 + α1/qβ

(∑
j∈Λ1

ajej +
∑
j∈Λ(1)

2

t
p/q
j ej

)
satisfies (1.3) since the estimate

β ≤ E1 = α1/qβ
(∑
j∈Λ1

aqj +
∑
j∈Λ(1)

2

tpj

)1/q
≤ 1

and Lemma 4 imply that

‖f1‖q = β
(
η1 + η′1 + α

(∑
j∈Λ1

aqj +
∑
j∈Λ(1)

2

tpj

))1/q
≤ β(η1 + η′1) + E1 ≤ (1 + η1)E1 + η′1.

Hence for n = 1 claim (3.9) holds.

For n ≥ 1, if

fn = β(ηn + η′n)1/qe1 + α1/qβ
(∑
j∈Λ1

ajej +
∑
j∈Λ(n)

2

t
p/q
j ej

)
,

then the function

Fn(x) =

(δn + δ′n)1/px0 + (ηn + η′n)1/px1 + α1/p
( ∑
j∈Λ1

a
q/p
j xj +

∑
j∈Λ(n)

2

tjxj
)

(
β−q(1 + δn + δ′n)‖fn‖qq

)1/p
satisfies (1.1) since the estimate

β ≤ ‖fn‖q = β
(
ηn + η′n + α

(∑
j∈Λ1

aqj +
∑
j∈Λ(n)

2

tpj

))1/q
≤ 1

and Hölder’s inequality imply that

|Fn(x)| ≤
(δn + δ′n + β−q‖fn‖qq)1/p(

∑∞
j=0 x

q
j)

1/q(
β−q(1 + δn + δ′n)‖fn‖qq

)1/p ≤ ‖x‖q

and

Fn(fn) =
‖fn‖qq

(1 + δn + δ′n)1/p‖fn‖q/pq
≥ (1− δn)‖fn‖q − δ′n,

where the last inequality holds since ‖fn‖q ≤ 1 and

(1 + δn + δ′n)1/p((1− δn)‖fn‖q − δ′n) ≤ (1 + δn + δ′n)1/p(1− δn − δ′n)‖fn‖q

= (1− (δn + δ′n)2)1/p(1− δn − δ′n)1/q‖fn‖q ≤ ‖fn‖q.
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Hence such a choice of functional is admissible. Let

An =
(
β−q(1 + δn + δ′n)‖fn‖qq

)−1/p
.

Then, since aj ≤ 1, we get

Fn(e0) = (δn + δ′n)1/pAn,

Fn(e1) = (ηn + η′n)1/pAn,

Fn(ej) ≤ α1/pAn for any j ∈ Λ1,

Fn(ej) = tjα
1/pAn for any j ∈ Λ(n)

2 ,

Fn(ej) = 0 for any j ∈ Γn \ {0, 1}.

If n+1 ∈ Λ2 we choose φn+1 = en+1. Otherwise n+1 ∈ Λ1, and by definition
of that set at least one of the following inequalities holds:

Fn(e0) ≥ tn+1α
1/pAn ≥ tn+1α

1/pAn − t′n+1,

Fn(e1) ≥ tn+1α
1/pAn ≥ tn+1α

1/pAn − t′n+1,

tn+1 sup
g∈D

Fn(g)− t′n+1 ≤ tn+1α
1/pAn − α1/ptn+1 ≤ 0.

Then we choose φn+1 = e0 or φn+1 = e1. In either case Γn+1 ∩ Λ1 = ∅ and
the element

fn+1 = β(ηn+1 + η′n+1)
1/qe1 + α1/qβ

(∑
j∈Λ1

ajej +
∑

j∈Λ(n+1)
2

t
p/q
j ej

)
satisfies (1.3) since the estimate

β ≤ En+1 = α1/qβ
(∑
j∈Λ1

aqj +
∑

j∈Λ(n+1)
2

tpj

)1/q
≤ 1

and Lemma 4 yield

‖fn+1‖q = β
(
ηn+1 + η′n+1 + α

(∑
j∈Λ1

aqj +
∑

j∈Λ(n+1)
2

tpj

))1/q
≤ β(ηn+1 + η′n+1) + En+1 ≤ (1 + ηn+1)En+1 + η′n+1.

Hence claim (3.9) holds for any n ≥ 1. Thus ‖fn‖ ≥ β 9 0 and the gAWCGA
of f diverges.

4. Nonsufficiency of smoothness of the space for the conver-
gence of the WCGA. In this section we demonstrate that smoothness of
the space is not sufficient for the convergence of the WCGA. Specifically, we
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will construct an example of a smooth Banach space X, a dictionary D, and
an element f ∈ X such that the WCGA for f with any weakness sequence
{tn}∞n=1 diverges. The space we construct was used in [4] and, in a special
case, in [10].

In order to obtain the desired space we renorm `1. Take a nonincreasing
sequence {pn}∞n=1 of numbers with pn > 1 for any n ≥ 1 and with

(4.1)
∞∑
n=1

(
1− 1

pn

)
<∞.

Let {en}∞n=1 be the canonical basis of `1. Consider a sequence {ϑn}∞n=0 of
nonlinear functionals defined as follows: for any x =

∑∞
n=1 xnen ∈ `1,

ϑ0(x) = 0, ϑn(x) = (ϑpnn−1(x) + |xn|pn)1/pn for n ≥ 1.

In particular,

ϑ1(x) = |x1|,

ϑ2(x) = (|x1|p2 + |x2|p2)1/p2 ,

ϑ3(x) =
(
(|x1|p2 + |x2|p2)p3/p2 + |x3|p3

)1/p3 .
We claim that ϑn is a norm on `n1 . Indeed, for any x ∈ `n1 ,

ϑn(x) = 0 if and only if x = 0,

ϑn(λx) = |λ|ϑn(x) for any λ ∈ R.

We prove the triangle inequality for ϑn using induction on n. The base case
n = 1 is obvious. Then, using Minkowski’s inequality, for any n > 1 and any
x, y ∈ `n1 we obtain

ϑn(x+ y) =
(
ϑpnn−1(x+ y) + |xn + yn|pn

)1/pn
≤
(
(ϑn−1(x) + ϑn−1(y))pn + (|xn|+ |yn|)pn

)1/pn
≤ (ϑpnn−1(x) + |xn|pn)1/pn + (ϑpnn−1(y) + |yn|pn)1/pn

= ϑn(x) + ϑn(y).

Define

X =
{
x ∈ `1 : lim

n→∞
ϑn(x) <∞

}
, ‖x‖X = lim

n→∞
ϑn(x).

Since for any x ∈ `1 the sequence {ϑn(x)}∞n=0 is nondecreasing, the limit
always exists. Moreover, for any n ≥ 1,

ϑn(x) ≤ ϑn−1(x) + |xn| ≤
n∑
k=1

|xk|,
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and, by Hölder’s inequality,
n∑
k=1

|xk| ≤ 21−1/p2ϑ2(x) +
n∑
k=3

|xk| ≤ 21−1/p2
(
ϑ2(x) +

n∑
k=3

|xk|
)

≤ 21−1/p2
(

21−1/p3ϑ3(x)+
n∑
k=4

|xk|
)
≤ 2

∑3
k=2(1−1/pk)

(
ϑ3(x)+

n∑
k=4

|xk|
)

· · ·

≤ 2
∑n−1

k=2 (1−1/pk)(ϑn−1(x) + |xn|) ≤ 2
∑n

k=2(1−1/pk)ϑn(x).

Therefore, by letting n→∞, we obtain, for any x ∈ X,

(4.2) ρ‖x‖1 ≤ ‖x‖X ≤ ‖x‖1,
where ρ = 2−

∑∞
k=1(1−1/pk) > 0 by the choice (4.1) of {pn}∞n=1. Hence, the

‖ · ‖X -norm is equivalent to the ‖ · ‖1-norm, and X = (`1, ‖ · ‖X) is a Banach
space. We note that while we impose condition (4.1) to obtain the equiva-
lence of norms, weaker restrictions on the rate of decay of {pn}∞n=1 might be
used (see [5, Proposition 1]).

Next, we show that the space X is smooth, that is for any x ∈ X there
is a unique norming functional Fx.

First, we find the dual of X. Let {e∗n}∞n=1 be the canonical basis in `∞.
Consider the sequence {qn}∞n=1 of numbers given by

qn =
pn

pn − 1
.

Similarly, we define the sequence {νn}∞n=0 of functionals as follows: for any
sequence a =

∑∞
n=1 ane

∗
n ∈ `∞,

ν0(a) = 0, νn(a) = (νqnn−1(a) + |an|qn)1/qn for n ≥ 1.

Define

X∗ =
{
a ∈ `∞ : lim

n→∞
νn(a) <∞

}
, ‖a‖X∗ = lim

n→∞
νn(a).

In the same way as above we show that the ‖·‖X∗-norm and the ‖·‖∞-norm
are equivalent. For any n ≥ 1,

νn(a) ≥ sup
k≤n
|ak|,

and

νn(a) = (νqnn−1(a) + |an|qn)1/qn ≤ 21/qn max{νn−1(a), |an|}
≤ 21/qn−1+1/qn max{νn−2(a), |an−1|, |an|} ≤ · · ·
≤ 2

∑n
k=3 1/qk max{ν2(a), |a3|, . . . , |an|}

≤ 2
∑n

k=2 1/qk max{|a1|, |a2|, . . . , |an|}.
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Therefore, by letting n→∞, for any a ∈ X∗ we obtain

‖a‖∞ ≤ ‖a‖X∗ ≤ ρ−1‖a‖∞,
i.e. the ‖ · ‖X∗-norm is equivalent to the ‖ · ‖∞-norm, and X∗ = (`∞, ‖ · ‖X∗)
is a Banach space.

We claim that X∗ is the dual of X. Indeed, for any x ∈ X and any
a ∈ X∗ the Hölder inequality yields, for any N ∈ N,

N∑
n=1

|an| |xn| ≤ ν2(a)ϑ2(x) +

N∑
n=3

|an| |xn| ≤ · · ·

≤ νN−1(a)ϑN−1(x) + |aN | |xN | ≤ νN (a)ϑN (x),

and therefore

|a(x)| = lim
N→∞

∣∣∣ N∑
n=1

anxn

∣∣∣ ≤ lim
N→∞

N∑
n=1

|an| |xn| ≤ ‖a‖X∗‖x‖X .

Similarly, using induction we obtain, for any functional a(x) =
∑∞

n=1 ajxj
on X,

sup
x∈SX

a(x) = ‖a‖X∗ ,

which completes the proof of the claim.
Consider the spaces Xn = (`n1 , ϑn(·)) and X∗n = (`n∞, νn(·)), the initial

segments of X and X∗ respectively. We use induction to show that for any
n ≥ 1 the space X∗n is strictly convex. Indeed, X∗1 = (R, | · |) is strictly
convex, and for any n > 1,

X∗n = X∗n−1 ⊕qn R
is strictly convex as a qn-sum of strictly convex spaces with 1 < qn < ∞
(see, e.g., [1]). Therefore Xn is smooth as a predual of a strictly convex
space X∗n (e.g. [1]).

Lastly, we will need the following simple lemma to prove smoothness
of X.

Lemma 5. Let x =
∑∞

n=1 xnen ∈ X and Fx =
∑∞

n=1 ane
∗
n be a norming

functional for x. Then for any m ∈ N,

Fmx =

∑m
n=1 ane

∗
n

νm(a)

is a norming functional for xm =
∑m

n=1 xnen ∈ Xm.

Proof. Assume that Fmx (xm) < ‖xm‖Xm = ϑm(x), i.e. Fmx is not a norm-
ing functional for xm. Then

m∑
n=1

anxn < νm(a)ϑm(x)
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and for any N > m by Hölder’s inequality

Fx(x) =
∞∑
n=1

anxn ≤
∞∑
n=1

|an| |xn|

< νm(a)ϑm(x) +
∞∑

n=m+1

|an| |xn|

≤ νN (a)ϑN (x) +
∞∑

n=N+1

|an| |xn|.

Letting as N → ∞ we get Fx(x) < ‖a‖X∗‖x‖X = ‖x‖X , which contradicts
Fx(x) = ‖x‖.

Lemma 6 (1). The space X = (`1, ‖ · ‖X) is smooth.

Proof. Assume that there is an x ∈ X with two distinct norming func-
tionals: Fx =

∑∞
n=1 ane

∗
n and Gx =

∑∞
n=1 bne

∗
n. Then Lemma 5 and the

smoothness of initial segments imply, for any N ∈ N,∑N
n=1 ane

∗
n

νN (a)
= FNx = GNx =

∑N
n=1 bne

∗
n

νN (b)
.

Pick m ∈ N such that am 6= bm. Then, letting N → ∞ and taking into
account that ‖a‖X∗ = ‖b‖X∗ = 1, we get

am = lim
N→∞

am
νN (a)

= lim
N→∞

FNx (em) = lim
N→∞

GNx (em) = lim
N→∞

bm
νN (b)

= bm,

which contradicts am 6= bm, and thus X is smooth.

Finally, we need to find the norming functionals on X. Take any x =∑∞
n=1 xnen ∈ X and consider a sequence {Fnx }∞n=0 of functionals on X

defined as follows: for any y =
∑∞

n=1 ynen ∈ X,

F0
x(y) = 0,

Fnx (y) =
ϑpn−1n−1 (x)Fn−1x (y) + sgnxn |xn|pn−1yn

ϑpn−1n (x)

= ϑ1−pn+1
n (x)

n∑
k=1

(
sgnxk |xk|pk−1yk

n∏
j=k

ϑ
pj+1−pj
j (x)

)
for n ≥ 1.

Lemma 7. Let x =
∑m

n=1 xnen ∈ X. Then Fmx is a norming functional
for x.

Proof. We will use induction on m. For m = 1,

F1
x(y) = sgnx1 y1,

(1) This proof is due to S. J. Dilworth.



172 A. Dereventsov

and F1
x(x) = ϑ1(x) = ‖x‖X , |F1

x(y)| = ϑ1(y) = ‖y‖X . For m > 1,

Fmx (y) =
ϑpm−1m−1 (x)Fm−1x (y) + sgnxm |xm|pm−1ym

ϑpm−1m (x)
.

Then

Fmx (x) =
ϑpmm−1(x) + |xm|pm

ϑpm−1m (x)
= ϑm(x) = ‖x‖X ,

and the induction hypothesis and Hölder’s inequality show that

|Fmx (y)| ≤
ϑpm−1m−1 (x)|Fm−1x (y)|+ |xm|pm−1|ym|

ϑpm−1m (x)

≤
ϑpm−1m−1 (x)ϑm−1(y) + |xm|pm−1|ym|

ϑpm−1m (x)

≤ (ϑpmm−1(y) + |ym|pm)1/pm = ϑn(y) = ‖y‖X .
Thus, we have established the norming functionals Fn in the initial seg-

ments Xn. In particular, for any x, y ∈ X,

F1
x(y) = sgnx1 y1,

F2
x(y) =

sgnx1 |x1|p2−1y1 + sgnx2 |x2|p2−1y2
ϑp2−12 (x)

,

F3
x(y) =

(sgnx1 |x1|p2−1y1+sgnx2 |x2|p2−1y2)ϑp3−p22 (x)+sgnx3 |x3|p3−1y3
ϑp3−13 (x)

.

We now choose a dictionary D in X and an element f ∈ X such that the
WCGA for f diverges. Without loss of generality assume tn = 1 for each
n ≥ 1, i.e. an element of the dictionary that maximizes Ffn−1 is chosen at
each step. Let

g0 = e1 + e2 + e3,

gk = ek + ek+1 for each k ≥ 1,

and set D = {±gn/‖gn‖X}∞n=0. Note that for any k ≥ 1,

(4.3) ‖gk‖X = 21/pk+1 ≤ 21/p2 < (1 + 2p3/p2)1/p3 = ‖g0‖X .
Let f = e1 ∈ X. Then f = g0 − g2 ∈ A0(D). We will show that the WCGA
diverges even for such a simple element. We claim that for any m ≥ 1,

(4.4) φm = ±gm/‖gm‖X ,
where ± neans plus or minus. We will prove this claim by induction on m.

Consider the case m = 1. Lemma 7 yields Ff = F1
f , thus

|F1
f (g0)| = 1, |F1

f (g1)| = 1, |F1
f (gk)| = 0 for any k > 1.

Then estimate (4.3) guarantees that φ1 = ±g1/‖g1‖X .
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Let now m > 1. By the induction hypothesis the elements

±g1/‖g1‖X , . . . ,±gm−1/‖gm−1‖X
were chosen at previous steps. Then fm−1 =

∑m
n=1 cnen for some coef-

ficients {cn}mn=1, and therefore Ffm−1 = Fmfm−1
by Lemma 7. Note that

fm−1 ∈ Xm, which is a uniformly smooth space since it is smooth and
finite-dimensional. Hence, applying Lemma 1 we find that Ffm−1(gk) = 0 for
any k = 1, . . . ,m− 1, i.e.

Fmfm−1
(g1) =

sgn c1 |c1|p2−1 + sgn c2 |c2|p2−1

ϑp2−12 (fm−1) . . . ϑ
pm−1
m (fm−1)

= 0,

Fmfm−1
(g2) =

sgn c2 |c2|p2−1ϑp3−p22 (fm−1)+sgn c3 |c3|p3−1

ϑp3−13 (fm−1) . . . ϑ
pm−1
m (fm−1)

= 0,

· · ·

Fmfm−1
(gm−1) =

sgn cm−1 |cm−1|pm−1−1ϑpm−pm−1

m−1 (fm−1) + sgn cm |cm|pm−1

ϑpm−1m (fm−1)

= 0.

From these equalities we derive

|c2|p2−1 = |c1|p2−1,
|c3|p3−1 = |c2|p2−1ϑp3−p22 (fm−1),

· · ·
|cm|pm−1 = |cm−1|pm−1−1ϑ

pm−pm−1

m−1 (fm−1),

which implies that for any k = 3, . . . ,m,

(4.5) |ck|pk−1 = |c1|p2−1
k−1∏
n=2

ϑpn+1−pn
n (fm−1).

Therefore

|Fmfm−1
(g0)| = |Fmfm−1

(g0 − g1)|

= ϑ1−pm+1
m (fm−1)

(
|c3|p3−1

m∏
j=3

ϑ
pj+1−pj
j (fm−1)

)
,

|Fmfm−1
(gm)| = |cm|pm−1

ϑpm−1m (fm−1)
,

|Fmfm−1
(gk)| = 0 for any k ∈ N \ {m}.

Thus, by (4.5),

|Fmfm−1
(g0)| = ϑ1−pm+1

m (fm−1)
(
|c1|p2−1

m∏
j=2

ϑ
pj+1−pj
j (fm−1)

)
= |Fmfm−1

(gm)|,
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and estimate (4.3) guarantees that φm = ±gm/‖gm‖X , which completes the
proof of (4.4).

Hence, the element ±g0/‖g0‖X will not be chosen and

Φn = span {g1, . . . , gn}
for any n ≥ 1. Then the equivalence (4.2) of norms implies that

‖fn‖X = inf
G∈Φn

‖f −G‖X ≥ ρ inf
G∈Φn

‖f −G‖1 = ρ9 0 as n→∞,

i.e. the WCGA of f diverges.
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