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Completeness of symmetric ∆-normed spaces
of τ-measurable operators

by

Jinghao Huang (Guangzhou), Galina Levitina (Kensington) and
Fedor Sukochev (Kensington)

Abstract. Let M be an arbitrary semifinite von Neumann algebra equipped with
a faithful normal semifinite trace τ and let E be a complete symmetric ∆-normed func-
tion space. We show that the corresponding symmetric space E(M, τ) of τ -measurable
operators in S(M, τ) is a complete symmetrically ∆-normed ideal.

1. Introduction. Let H be a complex separable Hilbert space and let
M be an arbitrary semifinite von Neumann algebra acting on H equipped
with a faithful normal semifinite trace τ . Let S(M, τ) be the ∗-algebra of
all τ -measurable operators affiliated with M (see Section 2 for the precise
definition). In the special case whenM = B(H) is the type I von Neumann
algebra of all bounded operators on H, the algebra S(M, τ) coincides with
the algebra B(H) itself.

The main object of this paper is to study the “Calkin correspondence”

E ↔ E(M, τ),

where E is an absolutely solid rearrangement invariant function space and
E(M, τ) is the corresponding bimodule of τ -measurable operators inS(M, τ).
This correspondence was introduced by J. Calkin [Cal] in the special case
when E is a symmetric sequence space on N and M = B(H). When the
algebra M is a factor of type I, II1, or II∞ and E lives, respectively, on
N, (0, 1), or (0,∞), the Calkin correspondence is one-to-one (see e.g. [LSZ,
Chapter 2]).
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When E is equipped with a symmetric norm (or quasi-norm) ‖ · ‖E , the
Calkin correspondence can be extended to

(1.1) (E, ‖ · ‖E)↔ (E(M, τ), ‖ · ‖E(M,τ)),

where ‖·‖E(M,τ) is a symmetric norm (or quasi-norm) on E(M, τ), explicitly
determined by ‖·‖E (see details in Section 3 below). In this case, it is shown
in [KSu, Su] that the correspondence (1.1) preserves completeness.

The first main objective of this paper is to extend these results to the
case when ‖ · ‖E is a symmetric ∆-norm. We recall that every topological
vector space with a countable base of neighbourhoods of zero and so satis-
fying the first axiom of countability can be equipped with a ∆-norm (see
e.g. [K, Chapter 3]). In general, the topology of a ∆-normed space does
not need to be either locally bounded or locally convex, and, in fact, the
class of (symmetric) ∆-normed spaces is strictly larger than the class of all
(quasi-)normed (symmetric) spaces. The question whether the noncommu-
tative ∆-normed space (E(M, τ), ‖ · ‖E(M,τ)) is complete, provided that its
commutative counterpart, a symmetric∆-normed function space (E, ‖·‖E) is
complete, has been tackled before (see e.g. [B, Ci]) for some special classes of
∆-normed spaces. Our first main result, Theorem 3.8, shows that the corre-
spondence (1.1) preserves completeness also in the more general framework
of ∆-normed spaces. This result complements Nelson’s well-known result
[Nel] (underlying the modern theory of noncommutative integration) that
the ∆-space S(M, τ) is complete with respect to the ∆-norm defined via
the measure topology. It should be noted though that the completeness of
the ∆-normed space S(M, τ) together with the techniques developed in
[KSu, LSZ, Su] are crucially used in our approach.

In the special case, whenM is a type I factor, A. Pietsch [Pi1], [Pi2] sug-
gested supplementing Calkin correspondence with another correspondence
(which we shall refer to as “Pietsch correspondence”). More precisely, he
introduced another class of sequence spaces, called shift-monotone, and
suggested a one-to-one correspondence between shift-monotone sequence
spaces, symmetric sequence spaces and two-sided ideals of compact oper-
ators. In [LPSZ] it was established that this correspondence preserves com-
pleteness when these spaces are equipped with the corresponding quasi-
norms. Our second main result, Theorem 4.5, extends this result to the case
of ∆-normed spaces.

As an example of an important symmetric ∆-normed operator space
we consider the space exp(L1)(M, τ) of all operators A affiliated with a
type II1 factorM, equipped with a faithful normal finite trace τ possessing
the property that log+(|A|) ∈ L1(M, τ), where log+(λ) = max{log(λ), 0},
λ > 0. U. Haagerup and H. Schultz [HS] showed that both the Brown mea-
sure and the Fuglede–Kadison determinant can be extended to the algebra



Completeness of symmetric ∆-normed spaces 203

exp(L1)(M, τ). In [DSZ] it was proved that this algebra equipped with a
topology becomes a complete topological ∗-algebra. Our main result, Theo-
rem 3.8, gives an alternative proof of this result.

2. Preliminaries. In this section, we recall main notions of the theory
of noncommutative integration and define ∆-normed symmetric operator
spaces.

In what follows, H is a Hilbert space, B(H) is the ∗-algebra of all
bounded linear operators on H, and 1 is the identity operator on H. Let
M be a von Neumann algebra on H. We denote by P (M) the lattice of all
projections in M. For details on von Neumann algebra theory, the reader
is referred to e.g. [Dix], [KR1], [KR2] or [Tak1]. General facts concerning
measurable operators may be found in [Nel], [Se] (see also [Tak2, Chapter
IX] and the forthcoming book [DPS]). For the convenience of the reader,
some of the basic definitions are recalled.

Recall that two projections e, f ∈ P (M) are called equivalent (notation:
e ∼ f) if there exists a partial isometry u ∈ M such that u∗u = e and
uu∗ = f . A projection 0 6= p ∈ P (M) is called finite if the conditions q ≤ p
and q ∼ p imply that q = p.

A linear operator X : D(X) → H, whose domain D(X) is a linear
subspace of H, is said to be affiliated withM if Y X ⊆ XY for all Y ∈M′,
where M′ is the commutant of M. A linear operator X : D(X) → H
is termed measurable with respect to M if X is closed, densely defined,
affiliated with M and there exists a sequence (Pn)∞n=1 in the lattice P (M)
of all projections of M, such that Pn ↑ 1, Pn(H) ⊆ D(X) and 1 − Pn
is a finite projection (with respect to M) for all n. The collection of all
measurable operators with respect to M is denoted by S(M), which is a
unital ∗-algebra with respect to strong sums and products (denoted simply
by X + Y and XY for all X,Y ∈ S(M)).

Let X be a self-adjoint operator affiliated withM. We denote its spectral
measure by {EX}. It is known that if X is a closed operator affiliated with
M with polar decomposition X = U |X|, then U ∈ M and E ∈ M for all
projections E ∈ {E|X|}. Moreover, X ∈ S(M) if and only if X is closed,
densely defined, affiliated with M and E|X|(λ,∞) is a finite projection for
some λ > 0. It follows immediately that whenM is a von Neumann algebra
of type III or a type I factor, we have S(M) =M. For type II von Neumann
algebras, this is no longer true. From now on, let M be a semifinite von
Neumann algebra equipped with a faithful normal semifinite trace τ .

An operator X ∈ S(M) is called τ -measurable if there exists a sequence
(Pn)∞n=1 in P (M) such that Pn ↑ 1, Pn(H) ⊆ D(X) and τ(1− Pn) <∞ for
all n. The collection of all τ -measurable operators is a unital ∗-subalgebra
of S(M) denoted by S(M, τ). It is well known that a linear operator X
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belongs to S(M, τ) if and only if X ∈ S(M) and there exists λ > 0 such
that τ(E|X|(λ,∞)) <∞. Alternatively, an unbounded operator X affiliated
with M is τ -measurable (see [FK]) if and only if

τ(E|X|(1/n,∞)) = o(1), n→∞.
For convenience of the reader we also recall the definition of the measure

topology tτ on the algebra S(M, τ). For every ε, δ > 0, we define

V (ε, δ) = {X ∈ S(M, τ) : ∃P ∈ P (M) with ‖X(1− P )‖ ≤ ε, τ(P ) ≤ δ}.
The topology generated by the sets V (ε, δ), ε, δ > 0, is called the mea-
sure topology tτ on S(M, τ) [DPS, FK, Nel]. It is well known that the al-
gebra S(M, τ) equipped with the measure topology is a complete metriz-
able topological algebra [Nel] (see also [MC]). We note that a sequence
(xn)∞n=1 ⊂ S(M, τ) converges to zero with respect to measure topology tτ
if and only if τ(E|xn|(ε,∞))→ 0 as n→∞ for all ε > 0 [DPS].

Let L0 be the space of Lebesgue measurable functions either on (0, 1)
or (0,∞) or N, finite almost everywhere (with identification m-a.e.). Here
m is Lebesgue measure or else the counting measure on N. Define S as the
subalgebra of L0 which consists of all functions x such that m({|x| > s}) is
a finite for some s. If m is finite measure, then L0 = S.

The notation µ(x) stands for the nonincreasing right-continuous rear-
rangement of x ∈ S given by

µ(t;x) = inf
{
s ≥ 0 : m({|x| ≥ s}) ≤ t

}
.

When x is a sequence we denote by µ(x) the usual decreasing rearrangement
of the sequence |x|.

Definition 2.1. LetM be a semifinite von Neumann algebra equipped
with a faithful normal semifinite trace τ and let X ∈ S(M, τ). The general-
ized singular value function µ(X) : t 7→ µ(t,X) of the operator X is defined
by setting

µ(s,X) = inf{‖XP‖∞ : P = P ∗ ∈M is a projection, τ(1− P ) ≤ s}.
There exists an equivalent definition which involves the distribution func-

tion of X. For every self-adjoint operator X ∈ S(M, τ), setting

dX(t) = τ(EX(t,∞)), t > 0,

we have (see e.g. [FK])

µ(t,X) = inf{s ≥ 0 : d|X|(s) ≤ t}.
Consider the algebra M = L∞(0,∞) of all Lebesgue measurable es-

sentially bounded functions on (0,∞). The algebra M can be seen as an
abelian von Neumann algebra acting via multiplication on the Hilbert space
H = L2(0,∞), with the trace given by integration with respect to Lebesgue
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measure m. It is easy to see that the set of all τ -measurable operators affili-
ated withM can be identified with the space S. It should also be pointed out
that the generalized singular value function µ(x) is precisely the decreasing
rearrangement µ(x) of the function x, defined above.

If M = B(H) (respectively, l∞) and τ is the standard trace Tr (re-
spectively, the counting measure on N), then it is not difficult to see that
S(M) = S(M, τ) =M. In this case, for X ∈ S(M, τ) we have

µ(n,X) = µ(t,X), t ∈ [n, n+ 1), n ≥ 0.

The sequence (µ(n,X))n≥0 is just the sequence of singular values of the
operator X.

For the convenience of the reader, we recall the definition of ∆-norm.
Let Ω be a linear space over the field C. A function ‖ · ‖ from Ω to R is a
∆-norm if for all x, y ∈ Ω the following properties hold:

(1) ‖x‖ ≥ 0; ‖x‖ = 0⇔ x = 0;
(2) ‖αx‖ ≤ ‖x‖ for all |α| ≤ 1;
(3) limα→0 ‖αx‖ = 0;
(4) ‖x+ y‖ ≤ CΩ(‖x‖+ ‖y‖) for a constant CΩ ≥ 1 independent of x, y.

The couple (Ω, ‖ · ‖) is called a ∆-normed space. We note that the def-
inition of a ∆-norm given above is the same as that given in [KPR]. It is
well-known that every ∆-normed space (Ω, ‖ · ‖) is metrizable [KPR] and
conversely every metrizable space can be equipped with a ∆-norm (see e.g.
[K], [KPR]). Note that properties (2) and (4) of a ∆-norm imply that for
any α ∈ C, there exists a constant M such that ‖αx‖ ≤M‖x‖ for all x ∈ Ω,
in particular, if (xn)∞n=1 ⊂ Ω with ‖xn‖ → 0, then ‖αxn‖ → 0.

Let E be a space of real-valued Lebesgue measurable functions either
on (0, 1) or (0,∞) (with identification m-a.e.) or on N, equipped with a
∆-norm ‖ · ‖E . The space E is said to be absolutely solid if x ∈ E and
|y| ≤ |x|, y ∈ L0 implies that y ∈ E and ‖y‖E ≤ ‖x‖E . An absolutely solid
space E ⊆ S is said to be symmetric if for every x ∈ E and every y the
assumption µ(y) = µ(x) implies that y ∈ E and ‖y‖E = ‖x‖E (see e.g.
[KPS]).

We now come to the definition of the main object of this paper.

Definition 2.2. LetM be a semifinite von Neumann algebra equipped
with a faithful normal semifinite trace τ . Let E be a linear subset in S(M, τ)
equipped with a ∆-norm ‖ · ‖E . We say that E is a symmetric operator space
(on M, or in S(M, τ)) if for all X ∈ E and Y ∈ S(M, τ) the assumption
µ(Y ) ≤ µ(X) implies that Y ∈ E and ‖Y ‖E ≤ ‖X‖E .

The fact that every (normed) symmetric operator space E is (an abso-
lutely solid) M-bimodule of S(M, τ) is well known (see e.g. [KSu, SC] and
references therein).
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It is clear that in the special case when M = L∞(0, 1), M = L∞(0,∞),
orM = l∞, the definition of a symmetric∆-normed operator space coincides
with the definition of a symmetric function (or sequence) space. WhenM =
B(H) and τ is the standard trace Tr, we shall call a symmetric ∆-normed
operator space introduced in Definition 2.2 a symmetric ∆-normed operator
ideal (for symmetrically normed ideals we refer to [GK1, GK2, Si]).

Lemma 2.3. LetM be a semifinite von Neumann algebra equipped with a
faithful normal semifinite trace τ and let (E , ‖·‖E) be a symmetric ∆-normed
space in S(M, τ) with constant CE .

(i) If p and q are projections from the algebra M, p ∈ E and τ(q) ≤
τ(p), then q ∈ E and ‖q‖E ≤ ‖p‖E .

(ii) If p, q ∈ P (M), p ∈ E and p ∼ q, then q ∈ E and ‖q‖E = ‖p‖E .
(iii) If p, q are projections from E, then the projection p∨ q also belongs

to E and ‖p ∨ q‖E ≤ CE(‖p‖E + ‖q‖E).

Proof. (i) Since p and q are projections, we have

µ(q) = χ[0,τ(q)) ≤ χ[0,τ(p)) = µ(p),

which implies that q ∈ E and ‖q‖E ≤ ‖p‖E for all n.

(ii) By definition, there exists a partial isometry v ∈M such that p = v∗v
and q = vv∗. This implies that p = v∗qv and q = vpv∗. Hence, q ∈ E . In
addition,

µ(q) = µ(vpv∗) ≤ ‖v‖∞‖v∗‖∞µ(p) = µ(p),

and therefore

‖q‖E ≤ ‖p‖E .

Similarly, p = v∗qv implies that ‖p‖E ≤ ‖q‖E , and so ‖q‖E = ‖p‖E .
(iii) Since p−p∧q ≤ p, it is clear that p−p∧q ∈ E and ‖p−p∧q‖E ≤ ‖p‖E .

Using the fact that

p ∨ q − q ∼ p− p ∧ q,

it follows from (ii) that p∨ q− q ∈ E and ‖p∨ q− q‖E = ‖p− p∧ q‖E . Since
p ∨ q = (p ∨ q − q) + q, it is now clear that p ∨ q ∈ E and

‖p ∨ q‖E ≤ CE(‖p ∨ q − q‖E + ‖q‖E) ≤ CE(‖p‖E + ‖q‖E).

We now extend [DDP, Lemma 4.4] to symmetric ∆-normed operator
spaces.

Lemma 2.4. LetM be a semifinite von Neumann algebra, and let (E , ‖·‖E)
be a symmetric ∆-normed space on M with constant CE . Then the embed-
ding of (E , ‖ · ‖E) into S(M, τ) equipped with the measure topology tτ is
continuous.
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Proof. Let (Xn)∞n=1 be a sequence in E such that ‖Xn‖E → 0. We claim

that Xn
tτ→ 0 in S(M, τ). It is sufficient to show that τ(E|Xn|(ε,∞)) → 0

for all ε > 0. Fix ε > 0 and set pn = E|Xn|(ε,∞). It follows from functional
calculus that

0 ≤ E|Xn|(ε,∞) ≤ 1

ε
|Xn|E|xn|(ε,∞),

and hence for every n ∈ N the projection pn belongs to E and

‖pn‖E ≤
∥∥∥1

ε
|Xn|E|xn|(ε,∞)

∥∥∥
E
≤ const ‖Xn‖E → 0

as n→∞.
Suppose that τ(pn) 9 0 as n→∞. Passing to a subsequence, it may be

assumed that τ(pn) ≥ δ for all n and some δ > 0. Let

γ = inf{τ(e) : 0 6= e ∈ P (M)}.
Assuming first that γ = 0, there exists e ∈ P (M) such that 0 < τ(e) ≤ δ
≤ τ(pn). Lemma 2.3(i) implies that e ∈ E and 0 < ‖e‖E ≤ ‖pn‖E for all n.
This clearly contradicts the fact that ‖pn‖E → 0 as n→∞.

Assume now that γ > 0, in which case each projection pn dominates
a minimal projection en ∈ P (M) satisfying τ(en) ≥ γ. Observe that a
fixed minimal projection can only be dominated by finitely many pn’s, as
‖pn‖E → 0. Therefore, by passing to a subsequence if necessary, it may
be assumed that the minimal projections {en}∞n=1 are mutually distinct.
Defining α = infn τ(en), choose n0 ∈ N such that τ(en0) < 2α. Since the
minimal projections en and en+1 are distinct, it follows that en ∧ en+1 = 0,
and hence

τ(en ∨ en+1) = τ(en) + τ(en+1) ≥ 2α, n ∈ N.

Consequently,

τ(en0) ≤ 2α ≤ τ(en ∨ en+1),

and so, by Lemma 2.3(i), we have ‖en0‖E ≤ ‖en∨en+1‖E . By Lemma 2.3(iii),
this implies that

0 < ‖en0‖E ≤ ‖en ∨ en+1‖E ≤ CE(‖en‖E + ‖en+1‖E), n ∈ N.

Since ‖en‖E ≤ ‖pn‖E → 0 as n → ∞, this is clearly a contradiction, which
completes the proof.

3. Calkin correspondence. In this section we introduce the Calkin
correspondence between symmetric ∆-normed operator spaces and symmet-
ric ∆-normed function spaces. In Theorem 3.8 below, which is the first main
result of this paper, we prove that in this setting the Calkin correspondence
preserves completeness.
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Let E be a symmetric function space on the positive semi-axis equipped
with a ∆-norm ‖ · ‖E , and let M be an arbitrary semifinite von Neumann
algebra equipped with a faithful normal semifinite trace τ . Define

(3.1) E(M, τ) := {X ∈ S(M, τ) : µ(X) ∈ E}, ‖X‖E(M,τ) := ‖µ(X)‖E .

Our first aim is to prove that (E(M, τ), ‖ · ‖E(M,τ)) is a symmetric
∆-normed space. Introduce the dilation operator σs on S(0,∞), s > 0,
by setting

(σs(x))(t) = x(t/s), t > 0.

It is well known that µ(X + Y ) ≤ σ2(µ(X) + µ(Y )), X,Y ∈ S(M, τ) [LSZ].
We also note that

(3.2) ‖σ2kx‖E ≤ (2CE)k‖x‖E
for all x ∈ E and k ∈ N (see e.g. [KPS]).

Proposition 3.1. Let E be a symmetric ∆-normed function space on
(0,∞) with constant CE. Then (E(M, τ), ‖ · ‖E(M,τ)) defined by (3.1) is a

symmetric ∆-normed operator space with constant 2C2
E.

Proof. It immediately follows from the definition of (E(M, τ), ‖·‖E(M,τ))
that this space is symmetric and properties (1)–(3) of ∆-norm are satisfied.
Thus, we only need to show that ‖ · ‖E(M,τ) satisfies the quasi-triangular
inequality.

Let X,Y ∈ E(M, τ). We have

‖X + Y ‖E(M,τ) = ‖µ(X + Y )‖E ≤ ‖σ2(µ(X) + µ(Y ))‖E
(3.2)

≤ 2CE‖µ(X) + µ(Y )‖E
≤ 2C2

E(‖X‖E(M,τ) + ‖Y ‖E(M,τ)).

Prior to proceeding to the proof of completeness of (E(M, τ), ‖·‖E(M,τ)),
we need some more preliminaries.

Definition 3.2 ([KSu, Su]). For all positive x, y ∈ l∞, we set

[[y, x]] = inf
{
N : y ≤

N∑
j=1

xj , µ(xj) ≤ µ(x), xj ≥ 0
}
.

We employ the same notation for functions x, y∈S(0,∞) (or x, y∈L0(0, 1)).
[[y, x]] is taken to be ∞ if no representation as above exists.

Definition 3.3 ([KSu]). Let M be a semifinite von Neumann algebra
and let X,Y ∈ S(M, τ). We say that Y is uniformly majorized by X (written
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Y / X) if there exists λ ∈ N such that

b�

λa

µ(s, Y ) ds ≤
b�

a

µ(s,X) ds

for all a, b such that 0 ≤ λa < b .

Proposition 3.4 ([Su, Proposition 13]). If x = µ(x) ∈ l∞ and y =
µ(y) ∈ l∞ are such that y C x with λ = 2, then

[[y, 2x]] ≤ 212.

The same assertion holds for functions x, y ∈ S(0,∞) (or x, y ∈ L0(0, 1)).

Corollary 3.5 (cf. [Su, Corollary 14]). LetE be a symmetric∆-normed
function space on (0,∞) with constant CE. If x = µ(x) ∈ E and y =
µ(y) ∈ l∞ are such that y C x with λ = 2, then y ∈ E and ‖y‖E ≤
424C9

E‖x‖E. A similar assertion also holds for functions x, y ∈ S(0,∞)
(or x, y ∈ L0(0, 1)).

Proof. By Proposition 3.4, we can represent y as
∑212

k=1 yk with µ(yk) ≤
2µ(x), 1 ≤ k ≤ 212. So, y ∈ E and applying the quasi-triangular inequality
repeatedly we obtain

‖y‖E =
∥∥∥ 212∑
k=1

yk

∥∥∥
E
≤ CE

(∥∥∥ 106∑
k=1

yk

∥∥∥
E

+
∥∥∥ 212∑
k=107

yk

∥∥∥
E

)
≤ C8

E

212∑
k=1

‖yk‖E ≤ 212C8
E‖2x‖E ≤ 424C9

E‖x‖E .

Lemma 3.6 ([Su, Lemma 16]). Let M be a semifinite von Neumann
algebra and let Xk ∈ S(M, τ) for all k ∈ N. If the series

∑∞
k=1Xk converges

in measure in S(M, τ), and
∑∞

k=1 σ2kµ(Xk) converges in measure in S, then

∞∑
k=1

Xk / 2

∞∑
k=1

σ2kµ(Xk),

with constant λ = 2.

We also need the following straightforward result.

Lemma 3.7. Let (Ω, ‖ · ‖) be a complete ∆-normed space with con-
stant CΩ. If xk ∈ Ω, k ∈ N, then

(3.3)
∥∥∥ ∞∑
k=1

xk

∥∥∥≤ ∞∑
k=1

CkΩ‖xk‖.

Here, the finiteness of the right hand side implies the convergence of the
series on the left hand side.
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Proof. If m > n, then∥∥∥ m∑
k=n+1

xk

∥∥∥ ≤ CΩ(‖xn+1‖+
∥∥∥ m∑
k=n+2

xk

∥∥∥)
≤ CΩ‖xn+1‖+ C2

Ω

(
‖xn+2‖+

∥∥ m∑
k=n+3

xk
∥∥) ≤ · · · .

Hence, ∥∥∥ m∑
k=n+1

xk

∥∥∥≤ m∑
k=n+1

Ck−nΩ ‖xk‖ ≤
m∑

k=n+1

CkΩ‖xk‖.

Thus, (
∑n

k=1 xk)n∈N is a Cauchy sequence in (Ω, ‖ · ‖). Since (Ω, ‖ · ‖) is
complete, the convergence follows. The inequality (3.3) is now obvious.

Now, we are ready to prove the first main result of this paper.

Theorem 3.8. Let E be a symmetric function space on the positive semi-
axis equipped with a complete ∆-norm ‖ · ‖E and let M be a semifinite von
Neumann algebra equipped with a faithful normal semifinite trace τ . Then
the space (E(M, τ), ‖ · ‖E(M,τ)) defined in (3.1) is also complete.

Proof. Let (Xn) be a Cauchy sequence in (E(M, τ), ‖ · ‖E(M,τ)). By
Lemma 2.4, there exists an operator X ∈ S(M, τ) such that Xn → X in
measure. We shall prove that X ∈ E(M, τ) and Xn → X in E(M, τ).

For every k > 0, there exists mk such that ‖Xm − Xmk‖E(M,τ) ≤
(2CE)−2k for m ≥ mk. Set Yk = Xmk+1

− Xmk . Clearly, ‖Yk‖E(M,τ) ≤
(2CE)−2k for all k ∈ N. In particular, the sequence of partial sums of the
series

∑∞
k=1 Yk is a Cauchy sequence in (E(M, τ), ‖ · ‖E(M,τ)). Hence, it is a

Cauchy sequence in measure in S(M, τ), and therefore the series
∑∞

k=1 Yk
converges in S(M, τ) in measure to the operator X −Xm1 .

Let us show that the sum
∑∞

k=n σ2k−n+1µ(Yk) is well defined. Clearly,
∞∑
k=n

CkE‖σ2k−n+1µ(Yk)‖E ≤
∞∑
k=n

CkE · (2CE)k−n+1‖Yk‖E(M,τ)

≤
∞∑
k=n

CkE · (2CE)k−n+1 · (2CE)−2k = 21−n.

Hence, by Lemma 3.7 the series
∑∞

k=n σ2k−n+1µ(Yk) converges in (E, ‖ · ‖E),
and moreover ∥∥∥ ∞∑

k=n

σ2k−n+1µ(Yk)
∥∥∥
E
≤ 21−n.

Since
∑∞

k=n σ2k−n+1µ(Yk) converges in (E, ‖ · ‖E), Lemma 2.4 implies that∑∞
k=n σ2k−n+1µ(Yk) converges in measure in S.
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It follows from Lemma 3.6 that
∞∑
k=n

Yk =
∞∑
k=1

Yk+n−1 C 2
∞∑
k=1

σ2kµ(Yk+n−1) = 2
∞∑
k=n

σ2k−n+1µ(Yk), n ≥ 1.

Hence, by Corollary 3.5,
∑∞

k=n Yk ∈ E(M, τ) (in particular, X − Xmn ∈
E(M, τ) and hence X ∈ E(M, τ)) and∥∥∥ ∞∑

k=n

Yk

∥∥∥
E(M,τ)

≤ 424C9
E · 21−n.

Since
∑∞

k=n Yk = X −Xmn , it follows that the subsequence (Xmn)∞n=1 con-
verges to X in E(M, τ). Since E(M, τ) is metrizable (as a ∆-normed space),
the Cauchy sequence (Xn)n∈N is itself convergent. This completes the proof
of Theorem 3.8.

Depending on the type of the von Neumann algebra M, Theorem 3.8
admits a converse:

Theorem 3.9 (cf. [LSZ, Theorem 2.5.3]). Let M be a semifinite von
Neumann algebra and let (E , ‖ · ‖E) be a complete symmetric ∆-normed op-
erator space on M.

(i) If the algebraM is atomic, then the pair (E, ‖·‖E) defined by setting

E := {x ∈ l∞ : µ(x) = µ(X) for some X ∈ E},
‖x‖E := ‖X‖E , x ∈ E,

is a complete symmetric ∆-normed sequence space.
(ii) If the algebra M is atomless and τ(1) = 1, then the pair (E, ‖ · ‖E)

defined by setting

E := {x ∈ L0(0, 1) : µ(x) = µ(X) for some X ∈ E},
‖x‖E := ‖X‖E , x ∈ E,

is a complete symmetric ∆-normed function space.
(iii) If the algebraM is atomless and τ(1) =∞, then the pair (E, ‖·‖E)

defined by setting

E := {x ∈ S : µ(x) = µ(X) for some X ∈ E},
‖x‖E := ‖X‖E , x ∈ E,

is a complete symmetric ∆-normed function space.

Proof. The proof is identical to that of [LSZ, Theorem 2.5.3], and there-
fore is omitted.

Theorems 3.8 and 3.9 imply the following
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Corollary 3.10. If M is an atomless (or atomic) von Neumann alge-
bra, then the Calkin correspondence for complete ∆-normed spaces

(E, ‖ · ‖E)↔ (E(M, τ), ‖ · ‖E(M,τ))

is one-to-one.

4.Pietsch correspondence. Shift spaces were introduced by A. Pietsch
[Pi1] and have a variety of applications (see e.g. [SSUZ, Pi2]). Pietsch [Pi2]
considered quasi-normed shift-monotone ideals. Below we shall extend this
notion to the ∆-normed case.

Let ok(a) = suph≥k |ah| be the ordering number of a sequence a :=
(ah)∞h=0. Note that the sequence (ok(a)) is also the decreasing envelope of
the sequence |a|. A linear subset z of c0(N0) is called a ∆-normed monotone
sequence ideal if (z, ‖ · ‖z) is a ∆-normed space with constant Cz such that

(1) e0 ∈ z and ‖e0‖z = 1,
(2) x ∈ z and ‖x‖z ≤ ‖a‖z whenever ok(x) ≤ ok(a),

for e0 = (1, 0, 0, . . .), a, b ∈ z, x ∈ c0, λ ∈ K (scalar field) and k = 0, 1, 2, . . .
(see e.g. [Pi2, LPSZ]).

Every monotone sequence ideal is invariant under the (backward) shift

S− : (a0, a1, a2, . . .) 7→ (a1, a2, . . .).

A ∆-normed monotone sequence ideal is said to be shift-monotone if it
remains invariant under the forward shift

S+ : (a0, a1, a2, . . .) 7→ (0, a0, a1, a2, . . .).

Additionally, we assume that S+ is a bounded mapping on (z, ‖ · ‖z) and
‖S+‖∞ ≥ 1, where ‖S+‖∞ denotes the operator norm of S+ from (z, ‖ · ‖z)
into itself.

A. Pietsch [Pi2, Theorem 4.6] proved that there is a one-to-one corre-
spondence between the collection of all symmetric sequence ideals and the
collection of all shift-monotone sequence ideals (called the Pietsch corre-
spondence). In a recent paper [LPSZ], G. Levitina et al. have shown that
the completeness of a quasi-normed shift-monotone sequence ideal implies
the completeness of the corresponding quasi-normed symmetric operator
ideal.

We now extend this correspondence to ∆-normed ideals. Firstly, we need
some technical lemmas. The first assertion of the first lemma can be found
in [Pi2, Lemma 4.5].

Lemma 4.1 (cf. [Pi2, Lemma 7.1]). Let E be a ∆-normed symmetric
sequence ideal. Let x1 ≥ x2 ≥ · · · ≥ 0. Then

(x∼n ) ∈ E ⇔ (xn) ∈ E ⇔ (x∼2n−1) ∈ E.
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Here, x∼n := x2k if 2k ≤ n < 2k+1. Moreover,

‖(x∼2n−1)‖E ≤ ‖(xn)‖E ≤ ‖(x∼n )‖E ≤ 2CE‖(x∼2n−1)‖E .

Proof. Choose k such that 2k ≤ 2n − 1 < 2k+1. It follows from n ≤ 2k

that x∼2n−1 = x2k ≤ xn, which implies

‖(x∼2n−1)‖E ≤ ‖(xn)‖E ≤ ‖(x∼n )‖E .
Assume that x∼2n−1 ∈ E. We set

u = (x∼1 , 0, x
∼
3 , 0, . . .) and v = (0, x∼2 , 0, x

∼
4 , . . .).

Then ‖v‖E ≤ ‖u‖E = ‖(x∼2n−1)‖E . Therefore

‖(x∼n )‖E = ‖u+ v‖E ≤ CE(‖u‖E + ‖v‖E) ≤ 2CE‖(x∼2n−1)‖E .
Given any a ∈ c0, we define the stretched sequence

(4.1) da := (a0, a1, a1, . . . ,

2h terms︷ ︸︸ ︷
ah, . . . , ah, . . .) ∈ c0.

Proposition 4.2. Given a ∆-normed symmetric sequence ideal E, the
set

z := {a ∈ c0 : da ∈ E} with ‖a‖z := ‖da‖E
is a ∆-normed shift-monotone sequence ideal.

Proof. Since the other statements are obvious, we check only the triangle
inequality for ‖ · ‖z and that ‖b‖z ≤ ‖a‖z whenever ok(b) ≤ ok(a). By the
definition of ‖ · ‖z and since ‖ · ‖E is a ∆-norm, we have

‖x+ y‖z = ‖dx+y‖E ≤ CE(‖dx‖E + ‖dy‖E) = CE(‖x‖z + ‖y‖z).
Assume that a ∈ z, b ∈ c0 and ok(b) ≤ ok(a). By [Pi2, Lemma 4.1],
µ(2k, dx) = ok(x) for every x ∈ l∞. Hence, µ(da) ≥ µ(db), and therefore
‖a‖z = ‖da‖E ≥ ‖db‖E = ‖b‖z.

The following result is a converse of the preceding assertion.

Proposition 4.3. Every ∆-normed shift-monotone sequence ideal z de-
termines a ∆-normed symmetric sequence ideal

E := {a ∈ c0 : (µ(2k, a))k ∈ z} with ‖a‖E := ‖(µ(2k, a))k‖z.
Proof. Similar to the preceding proposition, we check only the quasi-

triangle inequality and the symmetry of ‖ · ‖E . Firstly,

‖x+ y‖E = ‖(µ(2k, x+ y))k‖z ≤ ‖σ2(µ(2k, x) + µ(2k, y))‖z
≤ 2C2

E(‖x‖E + ‖y‖E).

Further, assume that a ∈ E, b ∈ c0 and µ(b) ≤ µ(a). By [Pi2, Lemma 4.1],
ok((µ(2k, x))k) = µ(2k, d(µ(2k,x))k) = µ(2k, x). Hence, ‖a‖E = ‖(µ(2k, a))k‖z
≥ ‖(µ(2k, b))k‖z = ‖b‖E .
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Sequence ideals E and z related to each other in this way (Propositions
4.2 and 4.3) are said to be associated.

Combining Propositions 4.2 and 4.3 we obtain a correspondence between
∆-normed shift-monotone sequence ideals and∆-normed symmetric sequence
ideals. This correspondence can be extended to∆-normed symmetric operator
ideals in the following way.

Let (z, ‖ · ‖z) be a ∆-normed shift-monotone sequence ideal and let
(E, ‖ · ‖E) be the corresponding ∆-normed symmetric sequence space. We
associate with (z, ‖ · ‖z) the operator ideal (see [Pi2])

Dz := {X ∈ C0(H) : (µ(2k, X))k ∈ z} with ‖X‖Dz := ‖(µ(2k, X))k‖z,
where C0(H) denotes the ideal of compact operators on H.

By Calkin correspondence (see Corollary 3.10) we can associate with
(E, ‖ · ‖E) the ∆-normed symmetric operator ideal (E , ‖ · ‖E). By [Pi2, The-
orem 4.7], we have E = Dz. Employing now Lemma 4.1 one can show that
the ∆-norms ‖·‖E and ‖·‖Dz are equivalent. Thus, we arrive at the following
result.

Corollary 4.4. Let (z, ‖ · ‖z) be a ∆-normed shift-monotone sequence
ideal. Then the following diagram commutes:

(z, ‖ · ‖z) (E, ‖ · ‖E)

(Dz, ‖ · ‖Dz) = (E , ‖ · ‖E)

The following theorem is the second main result of this paper. It estab-
lishes that the correspondence in Corollary 4.4 preserves completeness. In
particular, this theorem provides an alternative proof of Theorem 3.8 for
the special case when M = B(H).

Theorem 4.5. If at least one of the associated ideals (z, ‖·‖z), (E, ‖·‖E),
(E , ‖ · ‖E) or (Dz, ‖ · ‖Dz) is complete, then so are the others.

Proof. (1) We know from Corollary 4.4 that E = Dz and the ∆-norms
‖ · ‖E and ‖ · ‖Dz are equivalent. Hence, (E , ‖ · ‖E) is complete if and only if
(Dz, ‖ · ‖Dz) is complete.

(2) Every x = (xm) ∈ c0 generates a diagonal operator diag(x) :=
xnen ⊗ en. Since µ(x) = µ(diag(x)), we have ‖x‖E = ‖diag(x)‖E . We con-
clude that completeness of (E , ‖ · ‖E) implies completeness of (E, ‖ · ‖E).

(3) Assume that (E, ‖·‖E) is a complete ∆-normed sequence ideal. Since
E and z are associated, by the definition, we have

z = {a ∈ c0 : da ∈ E} with ‖a‖z = ‖da‖E .
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Take an arbitrary Cauchy sequence (xn)n ⊂ (z, ‖·‖z), xn = (x
(n)
h )h∈N0 . Then

(dxn)n ⊂ (E, ‖·‖E) is a Cauchy sequence in E. Therefore, there exists y ∈ E
such that dxn

‖·‖E−−−→ y as n → ∞. For every fixed h ∈ N0 we denote by dh
the characteristic sequence of the set {m ∈ N : 2h ≤ m < 2h+1}. We have

x
(n)
h dh = dhdx(n) → ydh =: xhdh.

In addition, if k 6= h, k ∈ N0, then

0 = x
(n)
h dhdk = dhdx(n)dk → ydhdk.

Consequently, y =
∑∞

h=0 xhdh. Set x = (xh). Then y = dx, and therefore
x ∈ z and by the definition of ‖ · ‖z we have

‖xn − x‖z = ‖dxn − dx‖E = ‖dxn − y‖E → 0.

Hence, the space (z, ‖ · ‖z) is complete. Thus, completeness of (E, ‖ · ‖E)
implies completeness of (z, ‖ · ‖z).

(4) It now remains to show that completeness carries over from (z, ‖ · ‖z)
to (Dz, ‖ · ‖Dz).

Since ‖ · ‖z is a ∆-norm and ‖S+‖∞ ≥ 1, for any h ∈ N0 there exists
nh ≥ h such that ∥∥∥∥ 1

(2Cz‖S+‖∞)n−1
e0

∥∥∥∥
z

≤ 1

(2Cz‖S+‖∞)h
(4.2)

for all n ≥ nh (recall e0 = (1, 0, 0, . . .)). Then we may assume that nh < nh+1

for every h.

Take an arbitrary Cauchy sequence (Yh)h∈N0 ⊂ (Dz, ‖ · ‖Dz). Lemma 2.4
implies that (Yh)h is also a Cauchy sequence in B(H). We choose mh ≥ nh
such that

max{‖Ymh − Ym‖Dz , ‖Ymh − Ym‖∞} ≤ (2Cz‖S+‖∞)−nh

for all m ≥ mh and set Xh = Ymh+1
− Ymh , h ∈ N0. Then

max{‖Xh‖Dz , ‖Xh‖∞} ≤ (2Cz‖S+‖∞)−nh .(4.3)

The estimate (4.3) implies that the series
∑∞

h=0Xh converges in B(H) to
some operator X ∈ B(H). By [LPSZ, Lemma 5.2],

µ(2k, X) ≤
k−1∑
h=0

µ(2k−h−1, Xh) +
∥∥∥ ∞∑
h=k

Xh

∥∥∥
∞
,(4.4)

where
∑k−1

h=0 µ(2k−h−1, Xh) = 0 when k = 0. We claim that X ∈ Dz and the
series

∑∞
h=0Xh converges to X with respect to the ∆-norm ‖ · ‖Dz .
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Since z is a shift-monotone sequence ideal, we deduce that the sequence
Sh+1
+ (µ(2k, Xh))k is in z for all h ∈ N0. Consider the series

∞∑
h=0

Ch+1
z ‖Sh+1

+ (µ(2k, Xh))k‖z.

We have

(4.5)
∞∑
h=0

Ch+1
z ‖Sh+1

+ (µ(2k, Xh))k‖z ≤
∞∑
h=0

Ch+1
z ‖S+‖h+1

∞ ‖(µ(2k, Xh))k‖z

=
∞∑
h=0

Ch+1
z ‖S+‖h+1

∞ ‖Xh‖Dz

(4.3)

≤
∞∑
h=0

Ch+1
z ‖S+‖h+1

∞ (2Cz‖S+‖∞)−nh

≤ Cz‖S+‖∞
∞∑
h=0

2−h <∞,

where we have used nh ≥ h. Since the space (z, ‖·‖z) is complete, Lemma 3.7

implies that the series β :=
∑∞

h=0 S
h+1
+ (µ(2k, Xh))k converges in (z, ‖ · ‖z).

Set αk := ‖
∑∞

h=kXh‖∞. By (4.3), we have∥∥∥ ∞∑
h=k

Xh

∥∥∥
∞
≤
∞∑
h=k

‖Xh‖∞ ≤
∞∑
h=k

(2Cz‖S+‖∞)−nh(4.6)

≤ 2Cz‖S+‖∞
2Cz‖S+‖∞ − 1

(2Cz‖S+‖∞)−nk ≤ 1

(2Cz‖S+‖∞)nk−1
.

Therefore, by Lemma 3.7, we infer from (4.2) and (4.6) that α = (αk) is
in z.

Since α, β ∈ z, we also find that α + β ∈ z. Inequality (4.4) implies
that o((µ(2k, X))k) ≤ o(α + β), and therefore (µ(2k, X))k ∈ z and X ∈ Dz.
By (4.4), we have

(4.7)
∥∥∥ ∞∑
h=j

Xh

∥∥∥
Dz

=
∥∥∥ ∞∑
h=0

Xh+j

∥∥∥
Dz

=
∥∥∥(µ(2k,

∞∑
h=0

Xh+j

))
k

∥∥∥
z

≤
∥∥∥( k−1∑

h=0

µ(2k−h−1, Xh+j) +
∥∥ ∞∑
h=k

Xh+j

∥∥
∞

)
k

∥∥∥
z

≤ Cz

(∥∥∥( k−1∑
h=0

µ(2k−h−1, Xh+j)
)
k

∥∥∥
z
+
∥∥∥(∥∥∥ ∞∑

h=k

Xh+j

∥∥∥
∞

)
k

∥∥∥
z

)
.

By (4.2) and (4.6), we have∥∥∥(∥∥∥ ∞∑
h=k

Xh+j

∥∥∥
∞

)
k

∥∥∥
z
→ 0 as j →∞.
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Noticing that (
∑k−1

h=0 µ(2k−h−1, Xh+j))k =
∑∞

h=0 S
h+1
+ (µ(2k, Xh+j))k, we ob-

tain∥∥∥( k−1∑
h=0

µ(2k−h−1, Xh+j)
)
k

∥∥∥
z

=
∥∥∥ ∞∑
h=0

Sh+1
+ (µ(2k, Xh+j))k

∥∥∥
z

(3.3)

≤
∞∑
h=0

Ch+1
z ‖Sh+1

+ (µ(2k, Xh+j))k‖z ≤
∞∑
h=0

Ch+1
z ‖S+‖h+1

∞ ‖(µ(2k, Xh+j))k‖z

=
∞∑
h=0

Ch+1
z ‖S+‖h+1

∞ ‖Xh+j‖Dz

(4.3)

≤
∞∑
h=0

Ch+1
z ‖S+‖h+1

∞ (2Cz‖S+‖∞)−nh+j

≤ Cz‖S+‖∞
∞∑
h=0

2−(h+j) → 0 as j →∞.

Hence, (4.7) implies that ‖
∑∞

h=j Xh‖Dz → 0 as j →∞, and therefore the se-

ries
∑∞

h=0Xh converges to X in (Dz, ‖·‖Dz). Moreover, letting Y = X+Ym1 ,
we have

∑∞
h=1Xh = Y −Ym1 . Thus, limn→∞ Yn = Y ∈ Dz, which completes

the proof.

5. Concluding remarks. In this section we consider an important
example of symmetric ∆-normed function space. Set

exp(L1) = {f ∈ L0[0, 1] : log+(|f |) ∈ L1[0, 1]},
where log+(λ) = max{log(λ), 0}, λ > 0. It is clear that exp(L1) is a subal-
gebra of L0[0, 1]. Introduce the family of neighbourhoods of zero

U(R, ε) =
{
f ∈ exp(L1) :

1�

0

log+(R|f(x)|)) dx ≤ ε
}
, R, ε > 0.

The fact that U(n, 1/n), n ∈ N, gives a countable base of neighbourhoods
(so the space satisfies the first axiom of countability) implies that exp(L1)
can be equipped with a ∆-norm ‖ · ‖exp(L1) (see e.g. [K, Ch. 3, Section
15.11]). It is easy to see that (exp(L1), ‖ · ‖exp (L1)) is a complete symmetric
∆-normed function space. Therefore, we can introduce a noncommutative
operator space on a type II1 factor M, by setting

exp(L1)(M, τ) = {X ∈ S(M, τ) : µ(X) ∈ exp(L1)},
‖X‖exp(L1)(M,τ) = ‖µ(X)‖exp(L1).

Using Theorem 3.8 we conclude that (exp(L1)(M, τ), ‖ · ‖exp(L1)(M,τ)) is a
complete symmetric ∆-normed space. This argument provides an alternative
proof of [DSZ, Theorem A.5].
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[Dix] J. Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien, 2nd ed., Gauthier-
Villars, Paris, 1969.

[DDP] P. G. Dodds, T. K. Dodds and B. de Pagter, Non-commutative Banach function
spaces, Math. Z. 201 (1989), 583–597.

[DPS] P. Dodds, B. de Pagter and F. Sukochev, Theory of Noncommutative Integration,
unpublished manuscript.

[DSZ] K. Dykema, F. Sukochev and D. Zanin, An upper-triangular decomposition theo-
rem for some unbounded operators affiliated to II1-factors, submitted manuscript.

[FK] T. Fack and H. Kosaki, Generalized s-numbers of τ -measurable operators, Pacific
J. Math. 123 (1986), 269–300.

[GK1] I. Gohberg and M. Krein, Introduction to the Theory of Linear Nonselfadjoint
Operators, Transl. Math. Monogr. 18, Amer. Math. Soc., Providence, RI, 1969.

[GK2] I. Gohberg and M. Krein, Theory and Applications of Volterra Operators in
Hilbert Space, Transl. Math. Monogr. 24, Amer. Math. Soc., Providence, RI,
1970.

[HS] U. Haagerup and H. Schultz, Brown measures of unbounded operators affiliated
with a finite von Neumann algebra, Math. Scand. 100 (2007), 209–263.

[KR1] R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras
I, Academic Press, Orlando, FL, 1983.

[KR2] R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras
II, Academic Press, Orlando, FL, 1986.

[KPR] N. Kalton, N. Peck and J. Rogers, An F-space Sampler, London Math. Soc.
Lecture Note Ser. 89, Cambridge Univ. Press, Cambridge, 1985.

[KSu] N. Kalton and F. Sukochev, Symmetric norms and spaces of operators, J. Reine
Angew. Math. 621 (2008), 81–121.
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