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A mixing operator T for which
(T,T?) is not disjoint transitive

by

Yuniep Puig (Milano)

Abstract. Using a result from ergodic Ramsey theory, we answer a question posed
by Bes, Martin, Peris and Shkarin by exhibiting a mixing operator T on a Hilbert space
such that the tuple (T, T?) is not disjoint transitive.

1. Introduction. Let X be a separable topological vector space. Denote
by L£(X) the set of bounded linear operators on X. From now on, unless
otherwise specified, an operator is a member of £(X). An operator T is
called hypercyclic provided that there exists a vector x € X such that its
orbit {T"x : n > 0} is dense in X; then x is called a hypercyclic vector
for T'. Hypercyclic operators are one of the most studied objects in linear
dynamics; see [9] and [I] for further information concerning concepts, results
and a detailed account on this subject. More generally, a tuple (T1,...,Tx)
of operators is said to be disjoint hypercyclic (d-hypercyclic for short) if

{(TT'z, ..., Tyz) : n € N}
is dense in XV for some z € X.

If X is an F-space, then thanks to Birkhoff’s theorem [I], 7" is hypercyclic
if and only if T is topologically transitive, i.e. for any non-empty open sets
U,V in X, the return set N(U,V) :={n > 0: T™(U)NV # (} is non-empty.
If N(U,V) is cofinite for any non-empty open sets U and V', then T is said
to be mizing.

The notion of disjoint transitivity, a strengthening of transitivity, is
defined as follows: a tuple (71,...,Tn) of operators is disjoint transitive
(d-transitive for short) if for any (N + 1)-tuple (U;)Y, of non-empty open
sets in X,

NU17...7UN;U0 = {k‘ >0: Tl_k(Ul) n---N T&k(UN) NUy # @}
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is non-empty. In particular, if Ny, . uy.v, happens to be cofinite for any
(U)X, as above, then (T1,...,Ty) is said to be disjoint mizing (d-mizing
for short). A connection between d-hypercyclicity and d-transitivity can be
found in [§].

Bes, Martin, Peris and Shkarin [5] showed the following: if 7" is an oper-
ator on X satisfying the Original Kitai Criterion, then the tuple (7, ...,7")
is d-mixing for every r € N. As a consequence, a bilateral weighted shift
T on IP(Z) (1 < p < o) or ¢y(Z) is mixing if and only if (T,...,T") is
d-mixing, for any r € N. Nevertheless, they remarked that this phenomenon
does not occur beyond the weighted shift context, by providing an example
of a mixing Hilbert space operator T such that (T, T?) is not d-mixing. This
is a partial answer to the following question posed in [5].

QUESTION 1.1. Does there exist a mizing continuous linear operator T
on a separable Banach space such that (T,T?) is not d-transitive?

Our aim is to give a positive answer to Question (Theorembelow).

1.1. Preliminaries and main results. For A C N, |A| stands for the
cardinality of A. Let .%# be a set of subsets of N. We say that .# is a family
on N provided (I) |A| = oo for any A € .# and (II) A € % and A C B
implies B € .%. From now on .% will be a family on N.

In a natural way we generalize the notion of disjoint transitivity by
introducing what we call % -disjoint transitivity (or d-% for short).

DEFINITION 1.2. A tuple (11, ..., TN n, )k of sequences of operators is
said to be d-Z if for any (N + 1)-tuple (U;)Y, of non-empty open sets we
have

{k>0:T,, (U)N---NTy, (Uy)NU # 0} € F.

In particular, if T;,, = Tf for any £k € N and 1 < ¢ < N in the above
definition, then the N-tuple (71, ...,Tx) of operators is said to be d-Z.

Observe that in particular when % is the family of non-empty sets or
the family of cofinite sets, we obtain the notion of disjoint transitivity and
disjoint mixing respectively. On the other hand, if N = 1 we obtain .#-
transitivity: an operator T is called % -transitive (or an % -operator for
short) if N(U,V) :={n>0:T"(U)NV # 0} € F for any open U, V. This
notion was introduced and studied in [7].

Recall that an operator T is said to be chaotic if it is hypercyclic and
has a dense set of periodic points (z € X is a periodic point of T if TFz =
for some k£ > 1).

An operator T is said to be reiteratively hypercyclic if there exists z € X
such that for every non-empty open set U in X, the set N(z,U) ={n >0:
T"x € U} has positive upper Banach density, where the upper Banach
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density of a set A C N is given by

s

Bd(A) = lim &,

s—00 8§
and o = limsupy,_,. |[AN[k+ 1,k + s]| for any s > 1. Reiteratively hyper-
cyclic operators have been studied in [6] and [12].
It is known that there exists a reiteratively hypercyclic operator which is
not chaotic (see [1]). However, concerning the converse we have the following
result due to Menet.

THEOREM 1.3 ([I1, Theorem 1.1]). Any chaotic operator is reiteratively
hypercyclic.

Recall that a set A C N is syndetic if it has bounded gaps, i.e. if A is
increasingly enumerated as (x,), = A, then max, (x,4+1 —x,) < M for some
M > 0.

In [5], the authors show that there exists a mixing operator 7" on a Hilbert
space such that (T,72) is not d-mixing. We show that the same operator
has more specific properties.

THEOREM 1.4. There exists T € L(I?) such that T is mizing, chaotic
and (T,T?) is not d-syndetic.

So, our result improves the result of [5] already mentioned but still does
not answer Question In answering that question, Szemerédi’s famous
theorem will unexpectedly play an important role. Indeed, using a result of
ergodic Ramsey theory due to Bergelson and McCutcheon [4], which is in
fact a kind of Szemerédi’s theorem for generalized polynomials, we obtain
the following result.

THEOREM 1.5. Letr€N. If T is reiteratively hypercyclic then (T, ..., T")
s d-syndetic or not d-transitive.

Now, from Theorems [1.3H1.5| we can deduce our main result which gives
a positive answer to Question [L.1

THEOREM 1.6. There exists a miving and chaotic operator T in L(I?)
such that (T, T?) is not d-transitive.

2. Proof of Theorem As already mentioned, to prove Theorem
[1.6] it is enough to prove Theorems [I.4] and

2.1. Proof of Theorem In [5, Theorem 3.8] the authors give
an example of a mixing Hilbert space operator T such that (T,7?) is not
d-mixing. We will show that in addition T is chaotic and (T,7?) is not
d-syndetic. So in particular it is not d-mixing. We follow the proof of [5],
Theorem 3.8] with minor modifications. Nevertheless, we describe all the
details for completeness.
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Let 1 <p<oo,—0 <a<b< oo and k € N. Recall that the Sobolev
space W¥P[a, b] is the space of functions f € C*[a,b] such that fF—1)
is absolutely continuous and f*) € LP[a,b]. The space W*P[a,b] endowed

with the norm
b

| fllwerfas = (S(Z!f“ i) dr) "

a j=0

is a Banach space isomorphic to LP[0,1]. Now, W¥*?2[a,b] is a separable
infinite-dimensional Hilbert space for each &k € N. The family of operators
to be considered lives on separable complex Hilbert spaces and is built from
a single operator. Let M € L(W?2?[—x,7]) be defined by the formula

(2.1) M W22 —n, 7] = W2 [—m, 7], Mf(z)=e"f(z).
Denote # = W?2?2[—x, 7] and let M* be the dual operator of M. Then
M* € L(s7*). For each t € [—m, 1] we have ¢; € S, where 0, : # — C,
0:(f) = f(t). Furthermore, the map ¢ — ¢; from [—7, 7] to J€* is norm-
continuous. For a non-empty compact subset K of [—m, 7|, denote
Xk =span{d; : t € K}

where the closure is taken with respect to the norm of J7*.

Now, the functionals J; are linearly independent, X is always a separ-

able Hilbert space, and X is infinite-dimensional if and only if K is infinite.
Moreover,

M*6; = e's;  for each t € [—m, 7).
Hence, each X is an invariant subspace for M*, which allows us to consider
the operator
QKEC(XK), QK:M*|XK'
The following is taken from [5] and tells us when Qg is mixing or non-
transitive; we omit the proof.

PrROPOSITION 2.1 ([5, Proposition 3.9]). Let K be a non-empty compact
subset of [—m,]. If K has no isolated points, then Q is mizing. If K has
an isolated point, then Qg is non-transitive.

Now, consider the set

(2.2) {Z 27ren-7n e € {0, 1}N}

Then, as pointed out in [5], the operator Qx € L(Xg) is mixing, but
(QKk, Q%) is not d-mixing. In addition, we will show that Qg is chaotic
and (Qg, Q%) is not d-syndetic.

LEMMA 2.2. Let K be the compact subset of [—m, 7| defined in (2.2).
Then Qg is chaotic.
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Proof. Since Qi is mixing by Proposition it remains to show that
it has a dense set of periodic points. Denote by Per(Q k) the set of periodic
points of Q.

Recall that Q%d; = e, for any n € Z, and t € K; the details can be
found in [5, proof of Proposition 3.9].

Consider the set A = {Zﬁzl ome, /26" s e € {0, 1}{LF} ke N}.

Observe that Zszl 27e, /28" = 27rm/26k for some m and any € in
{0, 1}{Lk} So clearly {6 : t € A} C Per(Qg). Moreover, if 11 = 2wm; /26™
and ro = 27mg/2%"* are in A, then Q%ﬁleGnQ (10ry + @20yy) = 10p, + @20y,
for any a1, as € C, so span{d; : t € A} C Per(Qk).

On the other hand, since A is dense in K, we deduce that {d; : t € A} =
{6; : t € K}. Indeed, for any r € K there exists a sequence (1), C A such
that r, tends to r. Hence, [|6, — 6y, || = supjpj=1|f(r) — f(rs)| tends to 0.

Thus, Xx = span{d; : t € K} = span{d; : t € A} = span{d; : t € A} C

Per(Qx). So, Per(Q) is dense in Xx. m

A set A C N is thick if it contains arbitrarily long intervals, i.e. for every
L > 0 there exists n > 1 such that {n,n+1,...,n+ L} C A.

Now, in order to obtain a mixing operator 7" such that (7', 72) is not
d-syndetic, it will be enough to show that the sequence (2Q% — %?")n of
operators is non-transitive along a thick set A = (ay,). We have the following
result.

PROPOSITION 2.3. Let K be the compact subset of [—m,n| defined in
1) Then the sequence (ZQ];?’T - Q%n’r)neN,ogrgn of continuous linear
operators on Xy is non-transitive, where ky , = 20" — o with 0 < r < n,

n € N.

Now we are in a position to prove Theorem (1.4

We follow [5l, proof of Theorem 3.8], but still we give all the details. We
need to exhibit a mixing and chaotic operator T such that (T,T?) is not
d-syndetic.

Let K be the compact set defined in . By Propositionand Lemma
2:2] Qx is mixing and chaotic on the separable infinite-dimensional Hilbert
space X . On the other hand, by Proposition (2Q% — %")neN is non-
transitive for some thick set A written increasingly as A = (ay,),. Hence,
there exist non-empty open sets U, V' in X such that (2Q% — %?”)(U) nv
= () for any n € N. In other words,

neN:2Q% —Q™)(U)NV £0}NA=0,

i.e. the set {n € N : (2Q% — Q3)(U) NV # (0} cannot be syndetic. In
particular, (Qg, Q%() is not d-syndetic. Indeed, pick a non-empty open set
Vo such that 2Vy — Vo C V' (denote by B(x;r) the open ball centered at x
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in Xg with radius r; pick z € Xg and r € Ry such that B(x;r) C V; then
set Vp := B(z;r/3)). Hence,

{n e N:UNQZ"(Vo)NQ2" (Vo) # 0} C {n € N: (2Q% —Q¥)(U)NV # (}.

Consequently, {n € N : UNQx"(Vo)NQx>" (Vo) # 0} cannot be a syndetic set
and so (Qr, Q%) is not d-syndetic. Since all separable infinite-dimensional
Hilbert spaces are isomorphic to [2, there is a mixing and chaotic T' € L(I?)
such that (T, T?) is not d-syndetic. This concludes the proof of Theorem [1.4

In order to close this subsection, we need to prove Proposition We
follow [5 proof of Proposition 3.10], except that instead of [5, Lemma A.3],
we use Lemma 2.6 below.

To prove Lemma we need another two lemmas proved in [5] that we
state without proof.

LEMMA 2.4 ([5, Lemma A.1]). Let f € W?2[—n, 7], f(-7) = f(n),
f'(=m) = f'(m), co = |fllzoo(mm,m and cr = || p2(—rm)- Then || fllwz—rx
<3¢t + ¢

LEMMA 2.5 ([5, Lemma A.2]). Let —oco < a < 8 < o0 and ag, a1, by, by
€ C. Then there exists f € C?|a, (] such that

fl@)=ao, fla)=a1, f(B)=bo, [f(B)="01,
[fllzoe a8 < lao + bol/2 + |ao — bol /2 + (6 — @)(las| + |b1])/5,

1712 24lag — bo* | 12(Ja1|* + |b1|2)'
Fledl = (6 - a)? B—a

LEMMA 2.6. There exists a sequence (fyon _,.)neN,0<r<n 0f 2m-periodic
Junctions on R such that fyn_,|_rn € W23 [—m 7], the sequence
([ f26m —llw22[— 2] ) s bounded and

foer_p () = 267;(26"770‘% _ 621'(26”77“)1

whenever |z — 2mm /28" | < 2/(25")% for some m € Z and every n € N and
0<r<n.

Proof. We slightly modify the proof of Lemma A.3 in [5].
Forn e Nand 0 <r <n, let

kn,’r = 26” —r and hkn,r = 2€ikn,,~x _ e2ikn,r1"
Note that hy,, , is 27m/k, -periodic. Let also

any =2/(2%) —27/25" and B, = —2/(2%")°.
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By Lemma there is g, . € C%aun,r, Bn,r] such that

b () = Py (2/(2%)) Gy, (Brr) = Bk, (=2/(2°7)),
e, () = B, (2/(27)) gh, (Bui) = By, (=2/(2°)%),
29w Mz, < max{|hg, 2/, e, . (=2/(27)°)}

g U ) (g (25" 41, -2/ ).

24|, (2/(2%)°) — P, (=2/(27)°)?

(2.3)

Bn,r

25 " 2 <
( ) ”gk"*THL[Qan,r,ﬁn,r] - (,Bn,r — anm)B
M IR + 1, (/P
(/Bn,r - an,r) '

The equalities (2.3 imply that there is a unique fx, , € C'(R) such that
Jhn,, 18 21/ 26" _periodic,

fkn,'r ‘ [an,'mﬁnn'} = gkn,r a‘nd fkn,'r | [ﬂnyr,an,r+2ﬂ/26n] = hkn,'r °

21 /25" -periodicity of i and the equality fr, . [i, . an,+27/26] = e,
imply that fi, (z) = 2612 =)z _ (22" =1z whenever |z — 2rm /25" | <
2/(25")3, for every m € Z with |2m| < 26" and allm € Nand 0 < 7 < n.
Since f,, , is piecewise C?, we have Jhnol[—mm] € W22[—r, 7]. It remains to
verify that the sequence (| fx, , w2 2[—xx))nr is bounded.

Using the inequality | — €| < |t — s| for ¢,5 € R, we get
Wy (2/(2 )] = I, (—2/(257))] < 20257 —7)? - 2/(2")",
Hence by (2.4)),

21 4 (26" — )2
o < D . )
||fkn’THL[an,7'75n,7'] - 3 * 5 <26n (26n)5> 8 (26n)5 = 9
Since ||hg,, || < 3and f,, is 27/2%" -periodic, we obtain
’ [Bn,r,an,r+2ﬁ/26 ] ’
(2.6) ||fknr HL‘ff . < max{3,9} =9.

Next,

|k, (2/(2°)%) = B, (=2/(2°))]
_ ‘Q(Gi(26 ﬂQﬁ B ei(26 77«)%) _ (621(2

n

)2 (26" )y =2
N _ 2 ) @%)|

. 26" _ . 26" _
4s1n(2- IRE ) - 2sm(4- Rk >‘
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. 26" _ 26" _
- s (2 g ) (1= o> )

20" N [y 2" —r\?_ 16
_ in3
= 168111 <(26")5) COS<(26”)5> S 16<(26”)5> S W
On the other hand,

n n 26™ _ )4
P (227 P)P + |1, (-2/ 7 P)P_ 3251

,T

/Bn,r — Qnr o 2%% - ﬁ
(233 6 32 32 16
> on )4 = 6715 o = 6m\5 65 = 796715
3~ @ 2m(26")°> — 4.2 27(26™)> — 4(26™) (26")
Hence by (2.5),
(5m) 16
2 n
1A 1172 <o4. )T 49 D
T an,r,Pn,r QJ_LS 6™)5
fan, o] (& - ) (26™)
162 - (26")—2 16
<24. —(27” — i)g’ +12- Rk
26™ 26"
- 24 - 162 N 1216 - 960
= 8. (26M)21 T (267M)5 ~ (26M)5"
Since \hgm(:):)] < 6(knr)? for @ € [Bur, any + 27/25"], we have
4 144
" 2 <36.26"_,r4. < .
IS "’T||L[2ﬁn,T,an,r+2w/26”1 - ( ) (26")5 = 267

Hence,
960 144 1104

" 2
< 2 T2
Hf nm||L[2an,r,f¥n,r+277/26n] - (26“)5 + 26” — 26n
Since f;| s 21 /28" -periodic, we find that

(2.7) Ift e =2 I < 1104,

[an,ryan,r+27f/26n]

Now, by Lemma 2.4 and using (2.7) and (2-6) we obtain
I fk o 22y < V31104 4 92 < 64

foreachneNand 0<r<n.nm

2.2. Proof of Theorem The main ingredient of the proof of The-
orem is a result due to Bergelson and McCutcheon concerning essential
idempotents of BN (the Stone-Cech compactification of N), and Szemerédi’s
theorem for generalized polynomials [4]. So, we first need some background
on SN.
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Recall that a filter is a family .% invariant by finite intersections, i.e.
A,B € % implies AN B € #. The collection of all maximal filters (in
the sense of inclusion) is denoted by SN. Elements of SN are known as
ultrafilters; endowed with an appropiate topology, SN becomes the Stone—
Cech compactification of N. Each point i € N is identified with the principal
ultrafilter ; := {A C N :4 € A}, which yields an embedding of N into SN.
For any A C N and p € BN, the closure cl A of A in 8N is defined as follows:
p € cl A if and only if A € p.

Given p,q € SN and A C N, the operation (N, +) can be extended to SN
so as to make (SN, +) a compact right topological semigroup. The extended
operation can be defined by: A € p+qifand only if {n € N: —n+A € ¢} € p.
Now, according to a famous theorem of Ellis, idempotents (with respect
to +) exist. Let E(N) = {p € SN : p = p+p} be the collection of idempotents
in ON. For further details see [10]. Given a family .%, the dual family .7*
consists of all sets A such that AN F # () for every F' € .%. The following is
a well-known result.

LEMMA 2.7.
(1) If Z is an ultrafilter, then F* = F.
(2) If =, Za, then F* =), Z5.

In particular, whenever F is a union of some collection of ultrafilters, then
F* is the intersection of the same collection.

The collection of essential idempotents is commonly denoted by D.

The collection D (of D-sets) is the union of all idempotents p € SN such
that every member of p has positive upper Banach density. Accordingly,
D* is the intersection of all such idempotents.

The following result of ergodic Ramsey theory is due to Bergelson and
McCutcheon [4]. It is indeed a sort of Szemerédi’s theorem stated originally
for generalized polynomials, and it will be crucial for proving Theorem [1.5

THEOREM 2.8 ([4, Theorem 1.25]). Let F' C N have positive upper Ba-
nach density and g1 ..., g, be polynomials. Then

{keN:Bd(FN(F—g(k)n---N(F—gr(k)) >0} € D*.

We can now prove Theorem (1.5
Fix r € N. Let T be reiteratively hypercyclic. Then there exists z € X
such that BA(N(z,U)) > 0 for any non-empty open set U in X. First, let
us see that
(2.8) Np(U,...,U;U)={k>0:T*Un---nT"*UNU # 0} € D*
————

T
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for any non-empty open set U in X. We will show that

Ay :={k>0:Bd(N(z,U)N(N(z,U) —k)N---N(N(z,U) —rk)) > 0}
C{k>0:T*Un---nT"™*"UNU #0}.

In fact, let k € Ay. Then there exists a set A with positive upper Banach

density such that for any n € A we have 7"+ %z € U for any i € {0,...,7}.

Consequently, 7"z € T=*U N ---N T~ U N U. Now, by Theorem 2.8 it

follows that Ay € D*. Thus condition (2.8) holds.

Next, let (U. j)§:0 be a finite sequence of non-empty open sets in X. Sup-
pose that (7,...,T") is d-transitive. We must show that Np(Uy, ..., U,;Up)
is a syndetic set. In fact, there exists n € N such that

V=T "Uyn---NT"U.NUy #0.
Thus V,, is open. Pick non-empty open sets O1, Oz such that O; + Oy C V.
Then
(2.9) T9"(O1 + Oy) C U;  for any j € {0,...,7}.
It is known that D* is a filter. Now, by (2.8]) we have
A= NT(Ol, .o, O1; 01) N NT(OQ, ey, O9; 02) c D*.
N—— N——
T T

In addition, it is well known that each set in D* is syndetic [2]. Hence,
A is syndetic. Let us show that A +n C N(Uy,...,U,;Up), then we are
done because A + n is syndetic, since the collection of syndetic sets is shift
invariant.

In fact, let t € A+ n. Then t — n € A, which means that

T7'T(O) N--- T T™(01) N Oy # 0,
T7'T™(Og) N ---NT~ T (O2) N Og # 0.
By the linearity of T" we obtain
Tﬁt(Tn(Ol + OQ)) n---N Tirt(Trn(Ol + 02)) N (01 + 02) #* 0.
Then by (2.9) we conclude that
T7'U N---NT U, N Uy # 0.
This concludes the proof of Theorem

3. Tuple of powers of a weighted shift. In linear dynamics recur-
rence properties are frequently studied first in the context of weighted back-
ward shifts.

Each bilateral bounded weight w = (wg)rez induces a bilateral weighted
backward shift B, on X = co(Z) or IP(Z) (1 < p < o0), given by Bye :=
wiek—1, where (er)rez denotes the canonical basis of X.
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Analogously, each unilateral bounded weight w = (wp)nez, induces a
unilateral weighted backward shift By, on X = co(Z4) or P(Z4) (1 < p < 00),
given by Bye, := wpep—1, n > 1, with Byeg := 0, where (e,)nez, denotes
the canonical basis of X.

As previously mentioned, the authors of [5] proved that for any weighted
shift B,,, the following holds: B,, is mixing if and only if (B,,...,Bj,) is
d-mixing for all » € N. The aim of this section is to show that this result
extends to some families on N frequently studied in Ramsey theory.

Let us recall some such families:

e 7 ={ACN:Ais infinite};

e A={ACN:B— BC A for some infinite set B};

¢ IP={ACN:3(zn)n €N, >, cpxn € A for any finite set F'};

e the set A is piecewise syndetic (A € PS for short) if A can be written
as the intersection of a thick set and a syndetic set.

It is known that Z* (the family of cofinite sets), A*, ZP* and PS* are filters.
In addition, Z* C A* C ZP* C § and Z* C PS* C S, where S denotes the
family of syndetic sets. For a rich source of information on this subject we
refer the reader to [10].

The main result of this section is the following.

THEOREM 3.1. Let F be the family A*, TP*, PS* or S. Then for any
r € N the following are equivalent:

(i) T is an .Z -operator;
(i) T@®---®T" is an .F-operator on X".

In particular, a bilateral (or unilateral) weighted backward shift By, on cy or
P (1 <p<o0)isan .F-operator if and only if (By,...,By,) is d-Z.

REMARK 3.2. Obviously, mixing operators are A*-operators, but the
converse is not true, as exhibited in [7], and the example is a weighted
shift. Therefore, the conclusion of Theorem concerning weighted shifts
does not necessarily follow from the statement: B,, is mixing if and only if
(Bw, - - -, Bj,) is d-mixing, for any r € N, shown in [5].

In order to prove Theorem we will need the following results.

Recall that any tuple of powers of a fixed backward weighted shift on
co or [P is d-transitive if and only if it is d-hypercyclic. This follows from
[8, Theorem 2.7] and [8, Theorem 4.1]. Now, combining [8, Theorem 4.1]
and [I3] Theorem 2.5] in its bilateral (or unilateral) version, we obtain the
following two propositions.

PROPOSITION 3.3. Let X = co(Z) or IP(Z) (1 < p < 00), w = (wj)jez a
bounded bilateral weight sequence, F a filter on N and rg =0 <1 <1r; <
-+ < rn. Then the following are equivalent:
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(i) (Bl,...,BN) is d-7,
(i) Do<scrcn BT s an Z-operator on XNNH/2
(iii) for any M >0, j € Z and 0 < s <l < N,
j+m(rlf7's)
{mGN: H \wi|>M}€f,
i=j+1
1
{m eN: v
Hi:j—m(rl—r5)+1|wi|

PROPOSITION 3.4. Let X = co(Z+) or P(Z4+) (1 < p < o0), w =
(Wn)nez, a bounded unilateral weight sequence, .# a filter on N and ro =
0<1<ry<---<ry. Then the following are equivalent:

(i) (BTL,...,BN) is d-F,

(i) Bo<sci<n BT s an F-operator on XNNH/2
(iii) forany M >0,j€Z; and0<s <[ <N,
j+m(rl_7"s)
{meN: H |wi\>M}€9.
i=j+1

>M}eﬂ.

The following results of Ramsey theory concern preservation of certain
notions of largeness in products.

PrOPOSITION 3.5 (]3], Corollary 2.3]). Letl € N and I be a subsemigroup
of Nt

(a) If B is an IP*-set in N, then B' NI is an TP*-set in I.

(b) If B is a A*-set in N, then B'N 1 is a A*-set in I.

PROPOSITION 3.6 (]3], Corollary 2.7]). Letl € N and I be a subsemigroup
of N'. If B is a PS*-set in N, then B'N 1 is a PS*-set in I.

We are now finally able to prove Theorem

Proof of Theorem[3.1. f T @---@®T" is an .Z-operator on X" for some
r € N, then obviously T is an .%#-operator. Conversely, let T be an #-
operator, » € N and U,V non-empty open sets. We need to show that
NU,V)etF forany t =1,...,r.

Denote
(3.1) A={m,2m,....,rm:meN}N(NWU, V) x---x N(U,V)).

rtimes

By Proposition[3.5] if N(U, V) is an ZP*-set [A*-set] in N, then A is an ZP*-
set [A*-set] in {m,2m,...,rm : m € N}. Analogously, by Proposition [3.6] if
N(U,V)is aPS*-set in N, then A is a PS*-set in {m,2m,...,rm : m € N}.
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Denote by II; the projection onto the ¢th coordinate. It is not difficult
to see that II1(A) € F for F = A*, TP*,PS*, which is equivalent to

B={meN:tme NUV)} eZF

foranyt=1,...,r.

Hence, tB € N(U,V) and B € .#. Then N(U,V) € t.# for any t =
1,...,r. Since F = A*,TP*, PS*, it is a filter, and it is not difficult to see
that T @ --- @ T" is indeed an .%-operator on X",

If B, is a weighted shift on ¢g or [P and .% = A*, IP*, PS*, then by
Proposition (or Proposition , we deduce that B, is an .%#-operator
if and only if (By, ..., B),) is d-% for any r € N.

Finally, let .%# be the family of syndetic sets. Just recall that T is syndetic
if and only if T is a PS*-operator [7]. Hence T is syndetic if and only if
To---®T"is a PS*-operator on X", for any r € N. If B,, is a weighted
shift, then B, is syndetic if and only if (B, ..., Bl,) is &-PS*, for any r € N.
This concludes the proof of Theorem 3.1
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