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A mixing operator T for which
(T, T 2) is not disjoint transitive

by

Yunied Puig (Milano)

Abstract. Using a result from ergodic Ramsey theory, we answer a question posed
by Bès, Martin, Peris and Shkarin by exhibiting a mixing operator T on a Hilbert space
such that the tuple (T, T 2) is not disjoint transitive.

1. Introduction. Let X be a separable topological vector space. Denote
by L(X) the set of bounded linear operators on X. From now on, unless
otherwise specified, an operator is a member of L(X). An operator T is
called hypercyclic provided that there exists a vector x ∈ X such that its
orbit {Tnx : n ≥ 0} is dense in X; then x is called a hypercyclic vector
for T . Hypercyclic operators are one of the most studied objects in linear
dynamics; see [9] and [1] for further information concerning concepts, results
and a detailed account on this subject. More generally, a tuple (T1, . . . , TN )
of operators is said to be disjoint hypercyclic (d-hypercyclic for short) if

{(Tn1 x, . . . , TnNx) : n ∈ N}
is dense in XN for some x ∈ X.

If X is an F -space, then thanks to Birkhoff’s theorem [1], T is hypercyclic
if and only if T is topologically transitive, i.e. for any non-empty open sets
U, V in X, the return set N(U, V ) := {n ≥ 0 : Tn(U)∩V 6= ∅} is non-empty.
If N(U, V ) is cofinite for any non-empty open sets U and V , then T is said
to be mixing.

The notion of disjoint transitivity, a strengthening of transitivity, is
defined as follows: a tuple (T1, . . . , TN ) of operators is disjoint transitive
(d-transitive for short) if for any (N + 1)-tuple (Ui)

N
i=0 of non-empty open

sets in X,

NU1,...,UN ;U0 := {k ≥ 0 : T−k1 (U1) ∩ · · · ∩ T−kN (UN ) ∩ U0 6= ∅}
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is non-empty. In particular, if NU1,...,UN ;U0 happens to be cofinite for any
(Ui)

N
i=0 as above, then (T1, . . . , TN ) is said to be disjoint mixing (d-mixing

for short). A connection between d-hypercyclicity and d-transitivity can be
found in [8].

Bès, Martin, Peris and Shkarin [5] showed the following: if T is an oper-
ator on X satisfying the Original Kitai Criterion, then the tuple (T, . . . , T r)
is d-mixing for every r ∈ N. As a consequence, a bilateral weighted shift
T on lp(Z) (1 ≤ p < ∞) or c0(Z) is mixing if and only if (T, . . . , T r) is
d-mixing, for any r ∈ N. Nevertheless, they remarked that this phenomenon
does not occur beyond the weighted shift context, by providing an example
of a mixing Hilbert space operator T such that (T, T 2) is not d-mixing. This
is a partial answer to the following question posed in [5].

Question 1.1. Does there exist a mixing continuous linear operator T
on a separable Banach space such that (T, T 2) is not d-transitive?

Our aim is to give a positive answer to Question 1.1 (Theorem 1.6 below).

1.1. Preliminaries and main results. For A ⊆ N, |A| stands for the
cardinality of A. Let F be a set of subsets of N. We say that F is a family
on N provided (I) |A| = ∞ for any A ∈ F and (II) A ∈ F and A ⊂ B
implies B ∈ F . From now on F will be a family on N.

In a natural way we generalize the notion of disjoint transitivity by
introducing what we call F -disjoint transitivity (or d-F for short).

Definition 1.2. A tuple (T1,nk , . . . , TN,nk)k of sequences of operators is

said to be d-F if for any (N + 1)-tuple (Ui)
N
i=0 of non-empty open sets we

have

{k ≥ 0 : T−11,nk
(U1) ∩ · · · ∩ T−1N,nk

(UN ) ∩ U0 6= ∅} ∈ F .

In particular, if Ti,nk = T ki for any k ∈ N and 1 ≤ i ≤ N in the above
definition, then the N -tuple (T1, . . . , TN ) of operators is said to be d-F .

Observe that in particular when F is the family of non-empty sets or
the family of cofinite sets, we obtain the notion of disjoint transitivity and
disjoint mixing respectively. On the other hand, if N = 1 we obtain F -
transitivity: an operator T is called F -transitive (or an F -operator for
short) if N(U, V ) := {n ≥ 0 : Tn(U) ∩ V 6= ∅} ∈ F for any open U, V . This
notion was introduced and studied in [7].

Recall that an operator T is said to be chaotic if it is hypercyclic and
has a dense set of periodic points (x ∈ X is a periodic point of T if T kx = x
for some k ≥ 1).

An operator T is said to be reiteratively hypercyclic if there exists x ∈ X
such that for every non-empty open set U in X, the set N(x, U) = {n ≥ 0 :
Tnx ∈ U} has positive upper Banach density, where the upper Banach
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density of a set A ⊂ N is given by

Bd(A) = lim
s→∞

αs

s
,

and αs = lim supk→∞ |A ∩ [k + 1, k + s]| for any s ≥ 1. Reiteratively hyper-
cyclic operators have been studied in [6] and [12].

It is known that there exists a reiteratively hypercyclic operator which is
not chaotic (see [1]). However, concerning the converse we have the following
result due to Menet.

Theorem 1.3 ([11, Theorem 1.1]). Any chaotic operator is reiteratively
hypercyclic.

Recall that a set A ⊆ N is syndetic if it has bounded gaps, i.e. if A is
increasingly enumerated as (xn)n = A, then maxn(xn+1−xn) < M for some
M > 0.

In [5], the authors show that there exists a mixing operator T on a Hilbert
space such that (T, T 2) is not d-mixing. We show that the same operator
has more specific properties.

Theorem 1.4. There exists T ∈ L(l2) such that T is mixing, chaotic
and (T, T 2) is not d-syndetic.

So, our result improves the result of [5] already mentioned but still does
not answer Question 1.1. In answering that question, Szemerédi’s famous
theorem will unexpectedly play an important role. Indeed, using a result of
ergodic Ramsey theory due to Bergelson and McCutcheon [4], which is in
fact a kind of Szemerédi’s theorem for generalized polynomials, we obtain
the following result.

Theorem 1.5. Let r∈N. If T is reiteratively hypercyclic then (T, . . . , T r)
is d-syndetic or not d-transitive.

Now, from Theorems 1.3–1.5 we can deduce our main result which gives
a positive answer to Question 1.1.

Theorem 1.6. There exists a mixing and chaotic operator T in L(l2)
such that (T, T 2) is not d-transitive.

2. Proof of Theorem 1.6. As already mentioned, to prove Theorem
1.6 it is enough to prove Theorems 1.4 and 1.5.

2.1. Proof of Theorem 1.4. In [5, Theorem 3.8] the authors give
an example of a mixing Hilbert space operator T such that (T, T 2) is not
d-mixing. We will show that in addition T is chaotic and (T, T 2) is not
d-syndetic. So in particular it is not d-mixing. We follow the proof of [5,
Theorem 3.8] with minor modifications. Nevertheless, we describe all the
details for completeness.
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Let 1 ≤ p < ∞,−∞ < a < b < ∞ and k ∈ N. Recall that the Sobolev
space W k,p[a, b] is the space of functions f ∈ Ck−1[a, b] such that f (k−1)

is absolutely continuous and f (k) ∈ Lp[a, b]. The space W k,p[a, b] endowed
with the norm

‖f‖Wk,p[a,b] =
( b�
a

( k∑
j=0

|f (j)(x)|p
)
dx
)1/p

is a Banach space isomorphic to Lp[0, 1]. Now, W k,2[a, b] is a separable
infinite-dimensional Hilbert space for each k ∈ N. The family of operators
to be considered lives on separable complex Hilbert spaces and is built from
a single operator. Let M ∈ L(W 2,2[−π, π]) be defined by the formula

(2.1) M : W 2,2[−π, π]→W 2,2[−π, π], Mf(x) = eixf(x).

Denote H = W 2,2[−π, π] and let M∗ be the dual operator of M . Then
M∗ ∈ L(H ∗). For each t ∈ [−π, π] we have δt ∈ H ∗, where δt : H → C,
δt(f) = f(t). Furthermore, the map t 7→ δt from [−π, π] to H ∗ is norm-
continuous. For a non-empty compact subset K of [−π, π], denote

XK = span{δt : t ∈ K}
where the closure is taken with respect to the norm of H ∗.

Now, the functionals δt are linearly independent, XK is always a separ-
able Hilbert space, and XK is infinite-dimensional if and only if K is infinite.
Moreover,

M∗δt = eitδt for each t ∈ [−π, π].

Hence, each XK is an invariant subspace for M∗, which allows us to consider
the operator

QK ∈ L(XK), QK = M∗|XK .
The following is taken from [5] and tells us when QK is mixing or non-
transitive; we omit the proof.

Proposition 2.1 ([5, Proposition 3.9]). Let K be a non-empty compact
subset of [−π, π]. If K has no isolated points, then QK is mixing. If K has
an isolated point, then QK is non-transitive.

Now, consider the set

(2.2) K =

{ ∞∑
n=1

2πεn ·
1

26n
: ε ∈ {0, 1}N

}
.

Then, as pointed out in [5], the operator QK ∈ L(XK) is mixing, but
(QK , Q

2
K) is not d-mixing. In addition, we will show that QK is chaotic

and (QK , Q
2
K) is not d-syndetic.

Lemma 2.2. Let K be the compact subset of [−π, π] defined in (2.2).
Then QK is chaotic.
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Proof. Since QK is mixing by Proposition 2.1, it remains to show that
it has a dense set of periodic points. Denote by Per(QK) the set of periodic
points of QK .

Recall that QnKδt = eintδt for any n ∈ Z+ and t ∈ K; the details can be
found in [5, proof of Proposition 3.9].

Consider the set A = {
∑k

n=1 2πεn/2
6n : ε ∈ {0, 1}{1,...,k}, k ∈ N}.

Observe that
∑k

n=1 2πεn/2
6n = 2πm/26

k
for some m and any ε in

{0, 1}{1,...,k}. So clearly {δt : t ∈ A} ⊆ Per(QK). Moreover, if r1 = 2πm1/2
6n1

and r2 = 2πm2/2
6n2 are in A, then Q26

n1 26
n2

K (α1δr1 +α2δr2) = α1δr1 +α2δr2
for any α1, α2 ∈ C, so span{δt : t ∈ A} ⊆ Per(QK).

On the other hand, since A is dense in K, we deduce that {δt : t ∈ A} =
{δt : t ∈ K}. Indeed, for any r ∈ K there exists a sequence (rn)n ⊆ A such
that rn tends to r. Hence, ‖δr − δrn‖ = sup‖f‖=1|f(r)− f(rn)| tends to 0.

Thus, XK = span{δt : t ∈ K} = span{δt : t ∈ A} = span{δt : t ∈ A} ⊆
Per(QK). So, Per(QK) is dense in XK .

A set A ⊂ N is thick if it contains arbitrarily long intervals, i.e. for every
L > 0 there exists n ≥ 1 such that {n, n+ 1, . . . , n+ L} ⊂ A.

Now, in order to obtain a mixing operator T such that (T, T 2) is not
d-syndetic, it will be enough to show that the sequence (2QanK − Q

2an
K )n of

operators is non-transitive along a thick set A = (an). We have the following
result.

Proposition 2.3. Let K be the compact subset of [−π, π] defined in

(2.2). Then the sequence (2Q
kn,r
K − Q

2kn,r
K )n∈N, 0≤r≤n of continuous linear

operators on XK is non-transitive, where kn,r = 26
n − r with 0 ≤ r ≤ n,

n ∈ N.

Now we are in a position to prove Theorem 1.4.
We follow [5, proof of Theorem 3.8], but still we give all the details. We

need to exhibit a mixing and chaotic operator T such that (T, T 2) is not
d-syndetic.

LetK be the compact set defined in (2.2). By Proposition 2.1 and Lemma
2.2, QK is mixing and chaotic on the separable infinite-dimensional Hilbert
space XK . On the other hand, by Proposition 2.3, (2QanK −Q

2an
K )n∈N is non-

transitive for some thick set A written increasingly as A = (an)n. Hence,
there exist non-empty open sets U, V in XK such that (2QanK −Q

2an
K )(U)∩V

= ∅ for any n ∈ N. In other words,

{n ∈ N : (2QnK −Q2n
K )(U) ∩ V 6= ∅} ∩A = ∅,

i.e. the set {n ∈ N : (2QnK − Q2n
K )(U) ∩ V 6= ∅} cannot be syndetic. In

particular, (QK , Q
2
K) is not d-syndetic. Indeed, pick a non-empty open set

V0 such that 2V0 − V0 ⊆ V (denote by B(x; r) the open ball centered at x
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in XK with radius r; pick x ∈ XK and r ∈ R+ such that B(x; r) ⊂ V ; then
set V0 := B(x; r/3)). Hence,

{n ∈ N : U∩Q−nK (V0)∩Q−2nK (V0) 6= ∅} ⊆ {n ∈ N : (2QnK−Q2n
K )(U)∩V 6= ∅}.

Consequently, {n ∈ N : U∩Q−nK (V0)∩Q−2nK (V0) 6= ∅} cannot be a syndetic set
and so (QK , Q

2
K) is not d-syndetic. Since all separable infinite-dimensional

Hilbert spaces are isomorphic to l2, there is a mixing and chaotic T ∈ L(l2)
such that (T, T 2) is not d-syndetic. This concludes the proof of Theorem 1.4.

In order to close this subsection, we need to prove Proposition 2.3. We
follow [5, proof of Proposition 3.10], except that instead of [5, Lemma A.3],
we use Lemma 2.6 below.

To prove Lemma 2.6 we need another two lemmas proved in [5] that we
state without proof.

Lemma 2.4 ([5, Lemma A.1]). Let f ∈ W 2,2[−π, π], f(−π) = f(π),
f ′(−π) = f ′(π), c0 = ‖f‖L∞[−π,π] and c1 = ‖f ′′‖L2[−π,π]. Then ‖f‖W 2[−π,π]
≤
√

3c21 + c20.

Lemma 2.5 ([5, Lemma A.2]). Let −∞ < α < β < ∞ and a0, a1, b0, b1
∈ C. Then there exists f ∈ C2[α, β] such that

f(α) = a0, f ′(α) = a1, f(β) = b0, f ′(β) = b1,

‖f‖L∞[α,β] ≤ |a0 + b0|/2 + |a0 − b0|/2 + (β − α)(|a1|+ |b1|)/5,

‖f ′′‖2L2[α,β] ≤
24|a0 − b0|2

(β − α)3
+

12(|a1|2 + |b1|2)
β − α

.

Lemma 2.6. There exists a sequence (f26n−r)n∈N, 0≤r≤n of 2π-periodic
functions on R such that f26n−r|[−π,π] ∈ W 2,2[−π, π], the sequence
(‖f26n−r‖W 2,2[−π,π])n,r is bounded and

f26n−r(x) = 2ei(2
6n−r)x − e2i(26

n−r)x

whenever |x − 2πm/26
n | ≤ 2/(26

n
)5 for some m ∈ Z and every n ∈ N and

0 ≤ r ≤ n.

Proof. We slightly modify the proof of Lemma A.3 in [5].

For n ∈ N and 0 ≤ r ≤ n, let

kn,r = 26
n − r and hkn,r = 2eikn,rx − e2ikn,rx.

Note that hkn,r is 2π/kn,r-periodic. Let also

αn,r = 2/(26
n
)5 − 2π/26

n
and βn,r = −2/(26

n
)5.
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By Lemma 2.5, there is gkn,r ∈ C2[αn,r, βn,r] such that

(2.3)
gkn,r(αn,r) = hkn,r(2/(2

6n)5), gkn,r(βn,r) = hkn,r(−2/(26
n
)5),

g′kn,r(αn,r) = h′kn,r(2/(2
6n)5), g′kn,r(βn,r) = h′kn,r(−2/(26

n
)5),

(2.4) ‖gkn,r‖L∞[αn,r,βn,r ] ≤ max{|hkn,r(2/(26
n
)5)|, |hkn,r(−2/(26

n
)5)|}

+
(βn,r − αn,r)

5
(|h′kn,r(2/(2

6n)5)|+ |h′kn,r(−2/(26
n
)5)|),

(2.5) ‖g′′kn,r‖
2
L2
[αn,r,βn,r ]

≤
24|hkn,r(2/(26

n
)5)− hkn,r(−2/(26

n
)5)|2

(βn,r − αn,r)3

+ 12
|h′kn,r(2/(2

6n)5)|2 + |h′kn,r(−2/(26
n
)5)|2

(βn,r − αn,r)
.

The equalities (2.3) imply that there is a unique fkn,r ∈ C1(R) such that

fkn,r is 2π/26
n
-periodic,

fkn,r |[αn,r,βn,r] = gkn,r and fkn,r |[βn,r,αn,r+2π/26n ] = hkn,r .

2π/26
n
-periodicity of fkn,r and the equality fkn,r |[βn,r,αn,r+2π/26n ] = hkn,r

imply that fkn,r(x) = 2ei(2
6n−r)x − e2i(26

n−r)x whenever |x − 2πm/26
n | ≤

2/(26
n
)5, for every m ∈ Z with |2m| ≤ 26

n
and all n ∈ N and 0 ≤ r ≤ n.

Since fkn,r is piecewise C2, we have fkn,r |[−π,π] ∈W 2,2[−π, π]. It remains to
verify that the sequence (‖fkn,r‖W 2,2[−π,π])n,r is bounded.

Using the inequality |eit − eis| ≤ |t− s| for t, s ∈ R, we get

|h′kn,r(2/(2
6n)5)| = |h′kn,r(−2/(26

n
)5)| ≤ 2(26

n − r)2 · 2/(26n)5.

Hence by (2.4),

‖fkn,r‖L∞[αn,r,βn,r ] ≤ 3 + 5−1
(

2π

26n
− 4

(26n)5

)
· 8(26

n − r)2

(26n)5
< 9.

Since ‖hkn,r‖L∞
[βn,r,αn,r+2π/26

n
]
≤ 3 and fkn,r is 2π/26

n
-periodic, we obtain

(2.6) ‖fkn,r‖L∞[−π,π] ≤ max{3, 9} = 9.

Next,

|hkn,r(2/(26
n
)5)− hkn,r(−2/(26

n
)5)|

=
∣∣2(e

i(26
n−r) 2

(26
n
)5 − ei(2

6n−r) −2

(26
n
)5 )− (e

2i(26
n−r) 2

(26
n
)5 − e2i(2

6n−r) −2

(26
n
)5 )
∣∣

=

∣∣∣∣4 sin

(
2 · 26

n − r
(26n)5

)
− 2 sin

(
4 · 26

n − r
(26n)5

)∣∣∣∣
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= 4 sin

(
2 · 26

n − r
(26n)5

)(
1− cos

(
2 · 26

n − r
(26n)5

))
= 16 sin3

(
26
n − r

(26n)5

)
cos

(
26
n − r

(26n)5

)
≤ 16

(
26
n − r

(26n)5

)3

≤ 16

(26n)12
.

On the other hand,

|h′kn,r(2/(2
6n)5)|2 + |h′kn,r(−2/(26

n
)5)|2

βn,r − αn,r
≤

32 (26
n−r)4

(26n )10

2π
26n
− 4

(26n )5

≤
32

(26n )6

2π
26n
− 4

(26n )5

=
32

2π(26n)5 − 4 · 26n
≤ 32

2π(26n)5 − 4(26n)5
≤ 16

(26n)5
.

Hence by (2.5),

‖f ′′kn,r‖
2
L2
[αn,r,βn,r ]

≤ 24 ·

(
16

(26
n
)12

)2(
2π
26n
− 4

(26n )5

)3 + 12 · 16

(26n)5

≤ 24 · 162 · (26n)−24(
2π
26n
− 4

26n
)3 + 12 · 16

(26n)5

≤ 24 · 162

8 · (26n)21
+

12 · 16

(26n)5
≤ 960

(26n)5
.

Since |h′′kn,r(x)| ≤ 6(kn,r)
2 for x ∈ [βn,r, αn,r + 2π/26

n
], we have

‖f ′′kn,r‖
2
L2
[βn,r,αn,r+2π/26

n
]

≤ 36 · (26n − r)4 · 4

(26n)5
≤ 144

26n
.

Hence,

‖f ′′kn,r‖
2
L2
[αn,r,αn,r+2π/26

n
]

≤ 960

(26n)5
+

144

26n
≤ 1104

26n
.

Since f ′′kn,r is 2π/26
n
-periodic, we find that

(2.7) ‖f ′′kn,r‖
2
L2
[−π,π]

= 26
n · ‖f ′′kn,r‖

2
L2
[αn,r,αn,r+2π/26

n
]

≤ 1104.

Now, by Lemma 2.4 and using (2.7) and (2.6) we obtain

‖fkn,r‖W 2,2[−π,π] ≤
√

3 · 1104 + 92 < 64

for each n ∈ N and 0 ≤ r ≤ n.

2.2. Proof of Theorem 1.5. The main ingredient of the proof of The-
orem 1.5 is a result due to Bergelson and McCutcheon concerning essential
idempotents of βN (the Stone–Čech compactification of N), and Szemerédi’s
theorem for generalized polynomials [4]. So, we first need some background
on βN.
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Recall that a filter is a family F invariant by finite intersections, i.e.
A,B ∈ F implies A ∩ B ∈ F . The collection of all maximal filters (in
the sense of inclusion) is denoted by βN. Elements of βN are known as
ultrafilters; endowed with an appropiate topology, βN becomes the Stone–
Čech compactification of N. Each point i ∈ N is identified with the principal
ultrafilter Ui := {A ⊆ N : i ∈ A}, which yields an embedding of N into βN.
For any A ⊆ N and p ∈ βN, the closure clA of A in βN is defined as follows:
p ∈ clA if and only if A ∈ p.

Given p, q ∈ βN and A ⊆ N, the operation (N,+) can be extended to βN
so as to make (βN,+) a compact right topological semigroup. The extended
operation can be defined by: A ∈ p+q if and only if {n ∈ N : −n+A ∈ q} ∈ p.
Now, according to a famous theorem of Ellis, idempotents (with respect
to +) exist. Let E(N) = {p ∈ βN : p = p+p} be the collection of idempotents
in βN. For further details see [10]. Given a family F , the dual family F ∗

consists of all sets A such that A∩F 6= ∅ for every F ∈ F . The following is
a well-known result.

Lemma 2.7.

(1) If F is an ultrafilter, then F ∗ = F .

(2) If F =
⋃
α Fα, then F ∗ =

⋂
α F ∗α.

In particular, whenever F is a union of some collection of ultrafilters, then
F ∗ is the intersection of the same collection.

The collection of essential idempotents is commonly denoted by D.

The collection D (of D-sets) is the union of all idempotents p ∈ βN such
that every member of p has positive upper Banach density. Accordingly,
D∗ is the intersection of all such idempotents.

The following result of ergodic Ramsey theory is due to Bergelson and
McCutcheon [4]. It is indeed a sort of Szemerédi’s theorem stated originally
for generalized polynomials, and it will be crucial for proving Theorem 1.5.

Theorem 2.8 ([4, Theorem 1.25]). Let F ⊂ N have positive upper Ba-
nach density and g1 . . . , gr be polynomials. Then{

k ∈ N : Bd
(
F ∩ (F − g1(k)) ∩ · · · ∩ (F − gr(k))

)
> 0
}
∈ D∗.

We can now prove Theorem 1.5.

Fix r ∈ N. Let T be reiteratively hypercyclic. Then there exists x ∈ X
such that Bd(N(x, U)) > 0 for any non-empty open set U in X. First, let
us see that

(2.8) NT (U, . . . , U︸ ︷︷ ︸
r

;U) = {k ≥ 0 : T−kU ∩ · · · ∩ T−rkU ∩ U 6= ∅} ∈ D∗
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for any non-empty open set U in X. We will show that

AU :=
{
k ≥ 0 : Bd

(
N(x, U) ∩ (N(x, U)− k) ∩ · · · ∩ (N(x, U)− rk)

)
> 0
}

⊆ {k ≥ 0 : T−kU ∩ · · · ∩ T−rkU ∩ U 6= ∅}.
In fact, let k ∈ AU . Then there exists a set A with positive upper Banach
density such that for any n ∈ A we have Tn+ikx ∈ U for any i ∈ {0, . . . , r}.
Consequently, Tnx ∈ T−kU ∩ · · · ∩ T−rkU ∩ U . Now, by Theorem 2.8, it
follows that AU ∈ D∗. Thus condition (2.8) holds.

Next, let (Uj)
r
j=0 be a finite sequence of non-empty open sets in X. Sup-

pose that (T, . . . , T r) is d-transitive. We must show that NT (U1, . . . , Ur;U0)
is a syndetic set. In fact, there exists n ∈ N such that

Vn := T−nU1 ∩ · · · ∩ T−rnUr ∩ U0 6= ∅.
Thus Vn is open. Pick non-empty open sets O1, O2 such that O1 +O2 ⊂ Vn.
Then

(2.9) T jn(O1 +O2) ⊂ Uj for any j ∈ {0, . . . , r}.
It is known that D∗ is a filter. Now, by (2.8) we have

A := NT (O1, . . . , O1︸ ︷︷ ︸
r

;O1) ∩NT (O2, . . . , O2︸ ︷︷ ︸
r

;O2) ∈ D∗.

In addition, it is well known that each set in D∗ is syndetic [2]. Hence,
A is syndetic. Let us show that A + n ⊆ N(U1, . . . , Ur;U0), then we are
done because A+ n is syndetic, since the collection of syndetic sets is shift
invariant.

In fact, let t ∈ A+ n. Then t− n ∈ A, which means that

T−tTn(O1) ∩ · · · ∩ T−rtT rn(O1) ∩O1 6= ∅,
T−tTn(O2) ∩ · · · ∩ T−rtT rn(O2) ∩O2 6= ∅.

By the linearity of T we obtain

T−t(Tn(O1 +O2)) ∩ · · · ∩ T−rt(T rn(O1 +O2)) ∩ (O1 +O2) 6= ∅.
Then by (2.9) we conclude that

T−tU1 ∩ · · · ∩ T−rtUr ∩ U0 6= ∅.
This concludes the proof of Theorem 1.5.

3. Tuple of powers of a weighted shift. In linear dynamics recur-
rence properties are frequently studied first in the context of weighted back-
ward shifts.

Each bilateral bounded weight w = (wk)k∈Z induces a bilateral weighted
backward shift Bw on X = c0(Z) or lp(Z) (1 ≤ p < ∞), given by Bwek :=
wkek−1, where (ek)k∈Z denotes the canonical basis of X.
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Analogously, each unilateral bounded weight w = (wn)n∈Z+ induces a
unilateral weighted backward shift Bw onX = c0(Z+) or lp(Z+) (1 ≤ p <∞),
given by Bwen := wnen−1, n ≥ 1, with Bwe0 := 0, where (en)n∈Z+ denotes
the canonical basis of X.

As previously mentioned, the authors of [5] proved that for any weighted
shift Bw, the following holds: Bw is mixing if and only if (Bw, . . . , B

r
w) is

d-mixing for all r ∈ N. The aim of this section is to show that this result
extends to some families on N frequently studied in Ramsey theory.

Let us recall some such families:

• I = {A ⊆ N : A is infinite};
• ∆ = {A ⊆ N : B −B ⊆ A for some infinite set B};
• IP = {A ⊆ N : ∃(xn)n ⊆ N,

∑
n∈F xn ∈ A for any finite set F};

• the set A is piecewise syndetic (A ∈ PS for short) if A can be written
as the intersection of a thick set and a syndetic set.

It is known that I∗ (the family of cofinite sets), ∆∗, IP∗ and PS∗ are filters.
In addition, I∗ ( ∆∗ ( IP∗ ( S and I∗ ( PS∗ ( S, where S denotes the
family of syndetic sets. For a rich source of information on this subject we
refer the reader to [10].

The main result of this section is the following.

Theorem 3.1. Let F be the family ∆∗, IP∗, PS∗ or S. Then for any
r ∈ N the following are equivalent:

(i) T is an F -operator;
(ii) T ⊕ · · · ⊕ T r is an F -operator on Xr.

In particular, a bilateral (or unilateral) weighted backward shift Bw on c0 or
lp (1 ≤ p <∞) is an F -operator if and only if (Bw, . . . , B

r
w) is d-F .

Remark 3.2. Obviously, mixing operators are ∆∗-operators, but the
converse is not true, as exhibited in [7], and the example is a weighted
shift. Therefore, the conclusion of Theorem 3.1 concerning weighted shifts
does not necessarily follow from the statement: Bw is mixing if and only if
(Bw, . . . , B

r
w) is d-mixing, for any r ∈ N, shown in [5].

In order to prove Theorem 3.1 we will need the following results.
Recall that any tuple of powers of a fixed backward weighted shift on

c0 or lp is d-transitive if and only if it is d-hypercyclic. This follows from
[8, Theorem 2.7] and [8, Theorem 4.1]. Now, combining [8, Theorem 4.1]
and [13, Theorem 2.5] in its bilateral (or unilateral) version, we obtain the
following two propositions.

Proposition 3.3. Let X = c0(Z) or lp(Z) (1 ≤ p <∞), w = (wj)j∈Z a
bounded bilateral weight sequence, F a filter on N and r0 = 0 < 1 ≤ r1 <
· · · < rN . Then the following are equivalent:
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(i) (Br1
w , . . . , B

rN
w ) is d-F ,

(ii)
⊕

0≤s<l≤N B
(rl−rs)
w is an F -operator on XN(N+1)/2,

(iii) for any M > 0, j ∈ Z and 0 ≤ s < l ≤ N ,{
m ∈ N :

j+m(rl−rs)∏
i=j+1

|wi| > M
}
∈ F ,{

m ∈ N :
1∏j

i=j−m(rl−rs)+1|wi|
> M

}
∈ F .

Proposition 3.4. Let X = c0(Z+) or lp(Z+) (1 ≤ p < ∞), w =
(wn)n∈Z+ a bounded unilateral weight sequence, F a filter on N and r0 =
0 < 1 ≤ r1 < · · · < rN . Then the following are equivalent:

(i) (Br1
w , . . . , B

rN
w ) is d-F ,

(ii)
⊕

0≤s<l≤N B
(rl−rs)
w is an F -operator on XN(N+1)/2,

(iii) for any M > 0, j ∈ Z+ and 0 ≤ s < l ≤ N ,{
m ∈ N :

j+m(rl−rs)∏
i=j+1

|wi| > M
}
∈ F .

The following results of Ramsey theory concern preservation of certain
notions of largeness in products.

Proposition 3.5 ([3, Corollary 2.3]). Let l ∈ N and I be a subsemigroup
of Nl.

(a) If B is an IP∗-set in N, then Bl ∩ I is an IP∗-set in I.
(b) If B is a ∆∗-set in N, then Bl ∩ I is a ∆∗-set in I.

Proposition 3.6 ([3, Corollary 2.7]). Let l ∈ N and I be a subsemigroup
of Nl. If B is a PS∗-set in N, then Bl ∩ I is a PS∗-set in I.

We are now finally able to prove Theorem 3.1.

Proof of Theorem 3.1. If T ⊕ · · · ⊕ T r is an F -operator on Xr for some
r ∈ N, then obviously T is an F -operator. Conversely, let T be an F -
operator, r ∈ N and U, V non-empty open sets. We need to show that
N(U, V ) ∈ tF for any t = 1, . . . , r.

Denote

(3.1) A = {m, 2m, . . . , rm : m ∈ N} ∩ (N(U, V )× · · · ×N(U, V )︸ ︷︷ ︸
r times

).

By Proposition 3.5, if N(U, V ) is an IP∗-set [∆∗-set] in N, then A is an IP∗-
set [∆∗-set] in {m, 2m, . . . , rm : m ∈ N}. Analogously, by Proposition 3.6, if
N(U, V ) is a PS∗-set in N, then A is a PS∗-set in {m, 2m, . . . , rm : m ∈ N}.
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Denote by Πi the projection onto the ith coordinate. It is not difficult
to see that Π1(A) ∈ F for F = ∆∗, IP∗,PS∗, which is equivalent to

B = {m ∈ N : tm ∈ N(U, V )} ∈ F

for any t = 1, . . . , r.
Hence, tB ⊆ N(U, V ) and B ∈ F . Then N(U, V ) ∈ tF for any t =

1, . . . , r. Since F = ∆∗, IP∗,PS∗, it is a filter, and it is not difficult to see
that T ⊕ · · · ⊕ T r is indeed an F -operator on Xr.

If Bw is a weighted shift on c0 or lp and F = ∆∗, IP∗,PS∗, then by
Proposition 3.3 (or Proposition 3.4), we deduce that Bw is an F -operator
if and only if (Bw, . . . , B

r
w) is d-F for any r ∈ N.

Finally, let F be the family of syndetic sets. Just recall that T is syndetic
if and only if T is a PS∗-operator [7]. Hence T is syndetic if and only if
T ⊕ · · · ⊕ T r is a PS∗-operator on Xr, for any r ∈ N. If Bw is a weighted
shift, then Bw is syndetic if and only if (Bw, . . . , B

r
w) is d-PS∗, for any r ∈ N.

This concludes the proof of Theorem 3.1.
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