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Generalized Daugavet equations, affine operators
and unique best approximation

by

Paweł Wójcik (Kraków)

Abstract. We introduce and investigate the notion of generalized Daugavet equation
‖A1 + · · · + An‖ = ‖A1‖ + · · · + ‖An‖ for affine operators A1, . . . , An on a reflexive
Banach space into another Banach space. This extends the well-known Daugavet equation
‖T + I‖ = ‖T‖+ 1, where I denotes the identity operator. A new characterization of the
Daugavet equation in terms of extreme points is given. We also present a result concerning
uniqueness of best approximation.

1. Introduction. For Banach spaces X and Y , L(X,Y ) denotes the set
of all bounded linear operators from X into Y , and L(X) := L(X,X). The
set of compact linear operators from X into Y is denoted by K(X,Y ), and
K(X) := K(X,X). The Banach space of all continuous affine mappings from
X into Y is denoted by A(X,Y ). This means that A(X,Y ) = {a+T : a ∈ Y ,
T ∈ L(X,Y )}, and the norm is defined by ‖A‖ := sup{‖Ax‖ : x ∈ B(X)}.
It is worth mentioning that ‖A‖ 6= inf{c > 0 : ∀x∈X ‖Ax‖ ≤ c‖x‖} (unless
A is linear).

In 1963, Daugavet [Dau] proved that each compact operator T on the
Banach space C[0, 1] satisfies the equation

‖T + I‖ = ‖T‖+ 1.

It turns out that various classes of operators on many other Banach spaces
satisfy this equation, which is known as the Daugavet equation (DE). This
result was then generalized by Foiaş and Singer to weakly compact operators
acting on arbitrary atomless C(Ω) (see [FS]). Most of the results on the (DE)
concern Banach spaces with the Daugavet property, i.e. spaces X for which
every weakly compact operator (equivalently, every rank one operator) in
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L(X) satisfies the (DE). It is worth mentioning that every Banach space
with the Daugavet property is nonreflexive. However, there are interesting
problems concerning the (DE) for some operators on a reflexive Banach space
(see e.g. [AAB], [Lin1], [Lin2]). In particular, Lin [Lin1, Theorem 1] proved
the following result.

Theorem 1.1 ([Lin1, Theorem 1]). Let X be a uniformly convex Banach
space. For S, T ∈ L(X), the following are equivalent:

(i) ‖I + S + T‖ = 1 + ‖S‖+ ‖T‖;
(ii) there exists a sequence (xn)

∞
n=1 of unit vectors in X such that

(S + T )xn − (‖S‖+ ‖T‖)xn → 0 as n→∞;

(iii) there exists a sequence (xn)
∞
n=1 of unit vectors in X such that

‖(I + S + T )xn‖ − (1 + ‖Sxn‖+ ‖Txn‖)→ 0 as n→∞,
‖Sxn‖+ ‖Txn‖ → ‖S‖+ ‖T‖ as n→∞.

For the equation ‖T1 + · · ·+ Tm‖ = ‖T1‖+ · · ·+ ‖Tm‖ a result similar to
Theorem 1.1 was obtained in [Lin2].

The above results motivate the following definition. We say that a family
F := {At ∈ A(X,Y ) : t ∈ T } ⊆ A(X,Y ) has property (D) if for any finite
collection At1 , . . . , Atn of elements of F ,

‖At1 + · · ·+Atn‖ = ‖At1‖+ · · ·+ ‖Atn‖.

In particular, the equation ‖I+T‖ = 1+‖T‖ (or ‖I+S+T‖ = 1+‖S‖+‖T‖)
corresponds to F = {I, T} (or F = {I, S, T}). Indeed, if ‖I + S + T‖ =
1 + ‖S‖+ ‖T‖, then ‖I + S‖ = 1 + ‖S‖ and ‖I + T‖ = 1 + ‖T‖.

Our results generalize and complement Theorem 1.1 to some extent. Our
method of proof is different from that of [AAB], [Lin1], [Lin2]. In [AAB] it is
proved that a compact operator on a uniformly convex Banach space satisfies
the Daugavet equation if and only if its norm is an eigenvalue. Section 4 of
the present paper shows that assuming that the operator is compact is not
necessary (under certain circumstances). Sometimes it suffices to assume
that the space is strictly convex (instead of uniformly strictly convex). In
the last section, we investigate best approximation.

2. Preliminaries. Let (X, ‖·‖) be a normed space over K ∈ {R,C}. The
closed unit ball of X is denoted by B(X). The unit sphere of X is denoted
by S(X). Fix x ∈ X \ {0}. We set

J(x) := {x∗ ∈ X∗ : ‖x∗‖ = 1, x∗(x) = ‖x‖}.

It is easy to check that the set J(x) ⊆ S(X∗) is convex and closed. By the
Hahn–Banach theorem, J(x) 6= ∅ for all x ∈ X \ {0}.
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2.1. Extreme points in duals of operator spaces. The main tool in
this paper is a theorem which characterizes the extremal points of the unit
ball in K(X,Y )∗ in terms of the extremal points of the closed unit balls in
Y ∗ and X∗∗. We denote by ExtW the set of all extremal points of a given
setW . By the Krein–Milman Theorem, the closed unit ball B(Y ∗) has many
extreme points. In particular, ExtB(K(X,Y )∗) 6= ∅.

Theorem 2.1 ([F], [LO], [RS]). If X and Y are Banach spaces, then

ExtB(K(X,Y )∗)

= {x∗∗ ⊗ y∗ ∈ K(X,Y )∗ : x∗∗ ∈ ExtB(X∗∗), y∗ ∈ ExtB(Y ∗)},
where x∗∗ ⊗ y∗ : K(X,Y ) → K, (x∗∗ ⊗ y∗)(T ) := x∗∗(T ∗y∗) for every T ∈
K(X,Y ).

Fakhoury [F] proved ⊆; Ruess and Stegall [RS] proved ⊇ for the real
case; and Lima and Olsen [LO] proved ⊇ for the complex case.

In particular, if X is a reflexive Banach space, then ExtB(X) 6= ∅. From
Theorem 2.1 we obtain the following result.

Corollary 2.2. If X is a reflexive Banach space, then

ExtB(K(X,Y )∗) = {y∗ ⊗ x ∈ K(X,Y )∗ : x ∈ ExtB(X), y∗ ∈ ExtB(Y ∗)},
where y∗⊗ x : K(X,Y )→ K, (y∗⊗ x)(T ) := y∗(Tx) for every T ∈ K(X,Y ).

2.2. Decomposition for L(X,Y )∗. Let X be a Banach space and V
a closed subspace of X. The subspace V is said to be an M -ideal in X if
X∗ = V ∗ ⊕1 V

⊥ where V ⊥ := {x∗ ∈ X∗ : V ⊆ kerx∗}, and if x∗ = x∗1 + x∗2
is the unique decomposition of x∗ in X∗, then ‖x∗‖ = ‖x∗1‖+ ‖x∗2‖.

We recall several situations when K(X,Y ) is an M -ideal in L(X,Y ).
Hennefeld [H] and Saatkamp [Sa] have proved that K(lp, lq) is an M -ideal
when 1 < p ≤ q <∞. Note that if 1 ≤ q < p <∞, then K(lp, lq) = L(lp, lq)
and K(c0, lq) = L(c0, lq) [LT, p. 76, Proposition 2.c.3]. Several authors have
observed that K(X, c0) is anM -ideal for all Banach spaces X [Lim, Sa, SW].
It is known that K(l1, l1) and K(l∞, l∞) are not M -ideals [SW].

3. Main results. The Banach space of all compact affine mappings from
X into Y is denoted by AK(X,Y ). Thus AK(X,Y ) = {a+ T : a ∈ Y, T ∈
K(X,Y )}. If Ω is a compact topological space, we let C(Ω, Y ) denote the
space of all continuous functions f from Ω to Y with ‖f‖∞ := sup{‖f(t)‖Y :
t ∈ Ω}.

Brosowski and Deutsch [BD] proved that

(3.1) ExtB(C(Ω, Y )∗) = {y∗ ◦ ψt ∈ C(Ω;Y )∗ : t ∈ Ω, y∗ ∈ ExtB(Y ∗)},
where ψt : Ω → Y is the evaluation functional at t, i.e., ψt(f) := f(t) for all
f in C(Ω, Y ). It is well known [Si] that if W is a subspace of a normed linear
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space Z, then
(3.2) ExtB(W ∗) ⊆ {z∗|W : z∗ ∈ ExtB(Z∗)}.

Now suppose that X is reflexive. Then B(X) with the w-topology is
compact, and AK(X,Y ) can be identified in a natural way with a subspace of
C(B(X), Y ). Namely, an isometric embedding ϕ : AK(X,Y ) → C(B(X), Y )
is defined by ϕ(A) := A|B(X). The next result is a slight generalization of
Corollary 2.2.

Theorem 3.1. Let X be a reflexive Banach space. Then
(3.3) ExtB(AK(X,Y )∗) = {y∗ ⊗ x : x ∈ ExtB(X), y∗ ∈ ExtB(Y ∗)},
where y∗ ⊗ x : AK(X,Y ) → K, (y∗ ⊗ x)(A) := y∗(Ax) for every A ∈
AK(X,Y ).

Proof. Combining (3.1) and (3.2), we immediately get

(3.4) ExtB(ϕ(AK(X,Y ))∗)

⊆ {(y∗ ⊗ x)|AK(X;Y ) : x ∈ B(X), y∗ ∈ ExtB(Y ∗)}.
To prove (3.3) fix f ∈ ExtB(ϕ(AK(X,Y ))∗). By (3.4), f = y∗ ⊗ x

for some x ∈ B(X) and y∗ ∈ ExtB(Y ∗). It is easy to see that K(X,Y ) ⊆
AK(X,Y ) and (y∗⊗x)|K(X,Y ) = f |ϕ(K(X,Y )) ∈ ExtB(ϕ(K(X,Y ))∗), by (3.2).
Now it follows from Corollary 2.2 that x ∈ ExtB(X). Thus f ∈ {y∗ ⊗ x :
x ∈ ExtB(X), y∗ ∈ ExtB(Y ∗)}.

We now prove the converse inclusion. SinceK(X,Y )⊆AK(X,Y ), by (3.2)
we get
(3.5) ExtB(K(X,Y )∗) ⊆ {f |K(X,Y ) : f ∈ ExtB(AK(X,Y )∗)}.
Combining (3.5) and Corollary 2.2, we immediately get

{y∗ ⊗ x : x ∈ ExtB(X), y∗ ∈ ExtB(Y ∗)} ⊆ ExtB(AK(X,Y )∗).

The main goal of this paper is to prove the following two results.

Theorem 3.2. Let X,Y be Banach spaces with X reflexive. Then for
any subset F ⊆ AK(X,Y ) the following conditions are equivalent:

(a) F has property (D);
(b) there exists xo ∈ ExtB(X) such that ‖Axo‖ = ‖A‖ for every A ∈ F and
‖A1xo + · · ·+ Anxo‖ = ‖A1xo‖+ · · ·+ ‖Anxo‖ for any finite collection
A1, . . . , An ∈ F .

Proof. (b)⇒(a). If (b) holds, then
‖A1‖+ · · ·+ ‖An‖ = ‖A1xo‖+ · · ·+ ‖Anxo‖

= ‖A1xo + · · ·+Anxo‖ ≤ ‖A1 + · · ·+An‖
≤ ‖A1‖+ · · ·+ ‖An‖.

It follows that ‖A1 + · · ·+An‖ = ‖A1‖+ · · ·+ ‖An‖.
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(a)⇒(b). First we show that E :=
⋂
A∈F J(A) 6= ∅. Since every J(A) is a

nonempty weak∗-closed subset of the weak∗-compact unit ball of AK(X,Y ),
it is enough to show that {J(A) : A ∈ F} has the finite intersection prop-
erty, that is,

⋂n
k=1 J(Ak) 6= ∅ for every n and all A1, . . . , An ∈ F . Fix

A1, . . . , An ∈ F . Then J(
∑n

k=1Ak) 6= ∅ (see Preliminaries). We show that

J
( n∑
k=1

Ak

)
⊆

n⋂
k=1

J(Ak),

which is enough by the above. Fix any f ∈J(
∑n

k=1Ak). Then f ∈AK(X,Y )∗,
‖f‖ = 1 and∥∥∥ n∑

k=1

Ak

∥∥∥ = f
( n∑
k=1

Ak

)
=

n∑
k=1

f(Ak) ≤
n∑
k=1

‖Ak‖
(a)
=
∥∥∥ n∑
k=1

Ak

∥∥∥,
which implies

∑n
k=1 f(Ak) =

∑n
k=1 ‖Ak‖. Taking into account that |f(Ak)|

≤ ‖Ak‖ for all k, we deduce that f(Ak) = ‖Ak‖ for all k, which means that
f ∈

⋂n
k=1 J(Ak). So, E 6= ∅ is proved.

Now E is nonempty, convex, and weak∗-closed, and so it has an extreme
point h by the Krein–Milman theorem. In particular, h ∈ E and h ∈ ExtE.

We claim that h is also an extreme point of B(AK(X,Y )∗). Suppose
h = 1

2g +
1
2p, where g, p ∈ B(AK(X,Y )∗).

Fix A ∈ F . Since h ∈
⋂
A∈F J(A), we have

‖A‖ = h(A) = 1
2g(A) +

1
2p(A) ≤

1
2‖A‖+

1
2‖L‖ = ‖A‖.

Therefore
‖A‖ = |g(A)| = |p(A)|.

Thus h(A), g(A), p(A) are in {α ∈ K : |α| = ‖A‖}, and since one of them is a
convex combination of the others, they must all be the same scalar. Therefore
‖A‖ = h(A) = g(A) = p(A). Hence, g and p are both in J(A). Since A was
arbitrary, we get g, p ∈

⋂
A∈F J(A) = E. Since h ∈ ExtE, we must have

h = g = p. To summarize, it has been shown that h ∈ ExtB(AK(X,Y )∗).
By Theorem 3.1, the functional h has the form h = y∗ ⊗ xo for some

xo ∈ ExtB(X), y∗ ∈ ExtB(Y ∗).
In order to prove (b), take A1, . . . , An in F . Since E ⊆ J(Ak), we have

h ∈ J(Ak) for all k. Then

‖A1‖+ · · ·+ ‖An‖ = h(A1) + · · ·+ h(An) = y∗(A1xo) + · · ·+ y∗(Anxo)

≤ y∗(A1xo + · · ·+Anxo) ≤ ‖A1xo + · · ·+Anxo‖
≤ ‖A1xo‖+ · · ·+ ‖Anxo‖ ≤ ‖A1‖+ · · ·+ ‖An‖,

and therefore ‖A1xo + · · ·+Anxo‖ = ‖A1xo‖+ · · ·+ ‖Anxo‖.
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It remains to show that ‖Axo‖ = ‖A‖ for all A ∈ F . Since y∗ ⊗ xo =
h ∈ J(A) for every A ∈ F , we conclude that ‖A‖ = h(A) = y∗(Axo) ≤
‖Axo‖ ≤ ‖A‖. Thus ‖Axo‖ = ‖A‖ for every A ∈ F .

The proof of the next theorem is similar to that of Theorem 3.2.

Theorem 3.3. Let X,Y be Banach spaces with X reflexive. Assume that
K(X,Y ) is an M -ideal in L(X,Y ). Let Lc ∈ L(X,Y ) be an operator with
dist(Lc,K(X,Y )) < ‖Lc‖. Then for any subset F ⊆ L(X,Y ) with Lc ∈ F
the following conditions are equivalent:

(a) F has property (D);
(b) there exists xo ∈ ExtB(X) such that ‖Lxo‖ = ‖L‖ for every L ∈ F and
‖L1xo + · · · + Lnxo‖ = ‖L1xo‖ + · · · + ‖Lnxo‖ for any finite collection
L1, . . . , Ln ∈ F .

Proof. In a similar way to the proof of Theorem 3.2, we obtain (b)⇒(a).
We now prove (a)⇒(b). Much as in the proof of Theorem 3.2 we can

show that
E :=

⋂
L∈F

J(L) 6= ∅.

Now E is nonempty, convex, and weak∗-closed, and so it has an extreme
point h by the Krein–Milman theorem. As in the proof of Theorem 3.2, it
can be shown that h ∈ ExtB(L(X,Y )∗).

The only difficult point is to show that h ∈ ExtB(K(X,Y )∗). In partic-
ular, h ∈ J(Lc) and hence
(3.6) h(Lc) = ‖Lc‖.
By assumption we have

L(X,Y )∗ = K(X,Y )∗ ⊕1 K(X,Y )⊥.

Let h = h1 + h2 with h1 ∈ K(X,Y )∗ and h2 ∈ K(X,Y )⊥. Then ‖h‖ = ‖h1‖
+ ‖h2‖. We show that h2 = 0. Assume that h2 6= 0. Since dist(Lc,K(X,Y ))
< ‖Lc‖, there exists T ∈ K(X,Y ) such that ‖Lc − T‖ < ‖Lc‖. So, we have

‖Lc‖
(3.6)
= h(Lc) = h1(Lc) + h2(Lc) = h1(Lc) + h2(Lc)− 0

= h1(Lc) + h2(Lc)− h2(T ) = h1(Lc) + h2(Lc − T )
≤ ‖h1‖ · ‖Lc‖+ ‖h2‖ · ‖Lc − T‖ < ‖h1‖ · ‖Lc‖+ ‖h2‖ · ‖Lc‖
= (‖h1‖+ ‖h2‖) · ‖Lc‖ = ‖h‖ · ‖Lc‖ = ‖Lc‖,

a contradiction. So, h2 = 0 and h = h1 ∈ K(X,Y )∗. The rest of the proof is
similar to that of Theorem 3.2.

4. Applications. Now, we present some applications of our main re-
sults, which generalize some results of [AAB].
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Theorem 4.1 ([AAB, Corollary 2.4]). A compact operator T ∈ L(X) on
a uniformly convex Banach space satisfies the Daugavet equation if and only
if its norm ‖T‖ is an eigenvalue of T .

The next lemmas will be useful later in this section.

Lemma 4.2 ([Lin2, Theorem 2.1]). Let X be a normed space. Then ‖u1+
· · · + um‖ = ‖u1‖ + · · · + ‖um‖ if and only if ‖α1u1 + · · · + αmum‖ =
‖α1u1‖+ · · ·+ ‖αmum‖ for all α1, . . . , αm > 0.

Lemma 4.3. If ‖a1 + · · · + an‖ = ‖a1‖ + · · · + ‖an‖ and k ≤ n, then
‖a1 + · · ·+ ak‖ = ‖a1‖+ · · ·+ ‖ak‖.

Proof. Observe that
‖a1‖+ · · ·+ ‖ak‖+ · · ·+ ‖an‖ = ‖a1 + · · ·+ ak + ak+1 + · · ·+ an‖

≤ ‖a1 + · · ·+ ak‖+ ‖ak+1 + · · ·+ an‖
≤ ‖a1 + · · ·+ ak‖+ ‖ak+1‖+ · · ·+ ‖an‖
≤ ‖a1‖+ · · ·+ ‖ak‖+ ‖ak+1‖+ · · ·+ ‖an‖,

so ‖a1+· · ·+ak‖+‖ak+1‖+· · ·+‖an‖ = ‖a1‖+· · ·+‖ak‖+‖ak+1‖+· · ·+‖an‖.
It follows that ‖a1 + · · ·+ ak‖ = ‖a1‖+ · · ·+ ‖ak‖.

In particular, continuous operators I, T1, . . . , Tn : X → X on a Banach
space satisfy the generalized Daugavet equation if and only if the family
{I, T1, . . . , Tn} has property (D). Now we apply Theorem 3.3 to generalize
Theorem 4.1. In particular, we show that it is not necessary to assume that
T is a compact operator. Moreover, we may assume that the space is strictly
convex (and not necessarily uniformly convex).

Theorem 4.4. Let X,Y be Banach spaces with X reflexive and Y strictly
convex. Let T1, . . . , Tn ∈ L(X,Y ). Assume that K(X,Y ) is an M -ideal in
L(X,Y ). Suppose that dist(T1,K(X,Y )) < ‖T1‖. The following conditions
are equivalent:

(a) ‖T1 + · · ·+ Tn‖ = ‖T1‖+ · · ·+ ‖Tn‖;
(b) there is an xo ∈ ExtB(X) such that T1

‖T1‖xo = · · · = Tn
‖Tn‖xo and

‖T1xo‖ = ‖T1‖, . . . , ‖Tnxo‖ = ‖Tn‖.

Proof. To prove that (a) implies (b), suppose
‖T1 + · · ·+ Tn‖ = ‖T1‖+ · · ·+ ‖Tn‖,

and consider the family F := {T1, . . . , Tn}. As in the proof of Lemma 4.3,
we can show that F has property (D). By Theorem 3.3 this implies that
(4.1) ‖T1xo + . . .+ Tnxo‖ = ‖T1xo‖+ . . .+ ‖Tnxo‖
and
(4.2) ‖T1xo‖ = ‖T1‖, . . . , ‖Tnxo‖ = ‖Tn‖
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for some xo ∈ ExtB(X). Fix k in {2, . . . , n}. By (4.1) and Lemma 4.3, we
have ‖Tx1 + Tkxo‖ = ‖T1xo‖+ ‖Tkxo‖. Then by Lemma 4.2,∥∥∥∥12 T1

‖T1‖
xo +

1

2

Tk
‖Tk‖

xo

∥∥∥∥ =

∥∥∥∥12 T1
‖T1‖

xo

∥∥∥∥+ ∥∥∥∥12 Tk
‖Tk‖

xo

∥∥∥∥ = 1.

Thus 1
2
T1
‖T1‖xo+

1
2
Tk
‖Tk‖xo ∈ S(Y ). Since Y is strictly convex, this implies that

(4.3)
1

2

T1
‖T1‖

xo =
1

2

Tk
‖Tk‖

xo.

Combining (4.2) and (4.3), we immediately get T1
‖T1‖xo = · · · =

Tn
‖Tn‖xo.

Conversely, assume that for some xo in ExtB(X) we have T1
‖T1‖xo = · · · =

Tn
‖Tn‖xo and ‖T1xo‖ = ‖T1‖, . . . , ‖Tnxo‖ = ‖Tn‖. Then∥∥∥∥ T1

‖T1‖
xo

∥∥∥∥+ · · ·+ ∥∥∥∥ Tn
‖Tn‖

xo

∥∥∥∥ = n

∥∥∥∥ T1
‖T1‖

xo

∥∥∥∥ =

∥∥∥∥n T1
‖T1‖

xo

∥∥∥∥
=

∥∥∥∥ T1
‖T1‖

xo + · · ·+
Tn
‖Tn‖

xo

∥∥∥∥.
So the result follows from Theorem 3.3 and Lemma 4.2.

Now, we are ready to present a generalization of Theorem 4.1. As an
immediate consequence of Theorem 4.4, we have the following.

Theorem 4.5. Let X be a reflexive and strictly convex (not necessar-
ily uniformly) Banach space. Let S1, . . . , Sn, T ∈ L(X). Assume that K(X)
is an M -ideal in L(X). Suppose that dist(T,K(X)) < ‖T‖. The following
conditions are equivalent:

(a) ‖I + S1 + · · ·+ Sn + T‖ = 1 + ‖S1‖+ · · ·+ ‖Sn‖+ ‖T‖;
(b) there is an xo in S(X) such that S1xo = ‖S1‖ ·xo, . . ., Snxo = ‖Sn‖ ·xo

and Txo = ‖T‖ · xo.
Theorem 4.6 ([AAB, Corollary 2.5]). A compact operator T : lp → lp

(1 < p < ∞) satisfies the Daugavet equation if and only if its norm ‖T‖ is
an eigenvalue of T .

Again, it is not necessary to assume that T is a compact operator. The-
orem 4.6 can be strengthened as follows.

Theorem 4.7. Assume that 1 < p < ∞. Let S1, . . . , Sn, T ∈ L(lp).
Suppose that dist(T,K(lp)) < ‖T‖. The following conditions are equivalent:

(a) ‖I + S1 + · · ·+ Sn + T‖ = 1 + ‖S1‖+ · · ·+ ‖Sn‖+ ‖T‖;
(b) there is an xo in S(lp) such that S1xo = ‖S1‖ · xo, . . ., Snxo = ‖Sn‖ · xo

and Txo = ‖T‖ · xo.

Proof. Since K(lp) is an M -ideal in L(lp), the result follows from Theo-
rem 4.5.
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5. Best approximation in spaces of continuous affine operators.
As an application of Theorems 3.2 and 3.3 we consider the problem of best
approximation. Assume that X, Y are Banach spaces. Let M be a linear
subspace (not necessarily closed) of AK(X,Y ). For U ∈ AK(X,Y ) set

PM(U) := {V ∈M : ‖U − V ‖ = dist(V,M)}.
Let V1 ∈ PM(U). The operator V1 (which need not be unique) is called an
element of best approximation (briefly a best approximation) fromM to U . In
general, the problem of finding an element of best approximation effectively
is complicated. For this reason in approximation theory the following two
principal problems are posed:

(e) existence of best approximation (PM(U) 6= ∅);
(u) uniqueness of best approximation (cardPM(U) = 1).

The aim of this section is to present some results concerning problems (e)
and (u) in the case of the space of all linear (or affine) continuous mappings
from a Banach space X into a Banach space Y . It is clear that if M is a
finite-dimensional subspace of A(X,Y ), then each U ∈ A(X,Y ) has a best
approximation inM.

Lewicki [Le] obtained characterization theorems of a best approximation
operator from a finite-dimensional subspace of K(X,Y ). We present a nec-
essary condition for a subspace of K(X,Y ) to be a non-Chebyshev subspace,
which extends some results of [Le].

5.1. Examples and lemmas. We say that an affine operator A : X→Y
has property (INJ ) if

kerA = {0}, where kerA := {x ∈ X : A(x) = 0}.
For X,Y set

INJ (X,Y ) :=
{
A ∈ A(X,Y ) : kerA = {0}

}
.

Example 5.1. Let T ∈ L(X,Y ). It is easy to see that T ∈ INJ (X;Y )
⇔ T is injective.

Example 5.2. Let T ∈ L(X,Y ) be injective. Let S ∈ A(X,Y ) be such
that T (X) ∩ S(X) = {0}. It is straightforward to verify that if α 6= 0, then
αT + βS ∈ INJ (X,Y ).

First, we give some preliminary lemmas.

Lemma 5.3. Suppose that (Y, ‖ · ‖) is a strictly convex Banach space. If
‖a+ b‖ = ‖a‖+ ‖b‖ and ‖a‖ = ‖b‖, then a = b.

The proof is rather simple, so we omit it.

Lemma 5.4. Let X,Y be Banach spaces with X reflexive and Y strictly
convex. Let U,A ∈ AK(X,Y ). Assume that
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(5.1) ‖U − αA‖ = ‖U‖
for some α > 1. If A has property (INJ ), then ‖U −A‖ < ‖U‖.

Proof. First we will show that
(5.2) ‖(α− 1)U + U − αA‖ < ‖(α− 1)U‖+ ‖U − αA‖.
Assume, contrary to our claim, that

‖(α− 1)U + U − αA‖ = ‖(α− 1)U‖+ ‖U − αA‖.
Then by Lemma 4.2 we also have

‖U + U − αA‖ = ‖U‖+ ‖U − αA‖.
We set F := {U,U − αA}. By Theorem 3.2 we have

(5.3) ‖Uxo‖ = ‖U‖
(5.1)
= ‖U − αA‖ = ‖Uxo − αAxo‖

and
(5.4) ‖Uxo + Uxo − αAxo‖ = ‖Uxo‖+ ‖Uxo − αAxo‖
for some xo ∈ ExtB(X). Since Y is a strictly convex space, this implies
that Uxo = Uxo − αAxo (see (5.3), (5.4) and Lemma 5.3). Thus Axo = 0.
Then by property (INJ ), we get xo = 0, which is a contradiction. So, (5.2)
is proved.

It follows that

‖U −A‖ =
1

α
‖αU − αA‖ = 1

α
‖(α− 1)U + U − αA‖

(5.2)
<

1

α
((α− 1)‖U‖+ ‖U − αA‖)

(5.1)
=

1

α
((α− 1)‖U‖+ ‖U‖) = ‖U‖.

By a reasoning similar to that for Lemma 5.4, using Theorem 3.3 (instead
of 3.2), we can prove

Lemma 5.5. Let X,Y be Banach spaces with X reflexive and Y strictly
convex. Assume that K(X,Y ) is an M -ideal. Let U,L ∈ L(X,Y ). Assume
that ‖U −αL‖ = ‖U‖ for some α > 1. Suppose that dist(U,K(X,Y )) < ‖U‖
or dist(U−αL,K(X,Y )) < ‖U−αL‖. If L is injective, then ‖U−L‖ < ‖U‖.

5.2. Uniqueness of best approximation. Now we formulate the main
result of this section.

Theorem 5.6. Let X,Y be Banach spaces with X reflexive and Y strictly
convex. LetM be a linear subspace of A(X,Y ) withM⊆ INJ (X,Y )∪{0}.
Assume that U, V ∈ AK(X,Y ) and V ∈ PM(U). Then PM(U) = {V }.

Proof. Assume, contrary to our claim, that there exists V1 ∈ PM(U)
such that V 6= V1. So, we have
(5.5) ‖U − V ‖ = dist(U,M) = ‖U − V1‖.
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Fix α ∈ (1,∞). In view of (5.5), we have

(5.6) ‖U − V ‖ =
∥∥∥∥U − V − α · 1α(V1 − V )

∥∥∥∥.
Define Û , Â : X → Y by Û := U − V , Â := 1

α(V1 − V ). Now (5.6) becomes

‖Û‖ = ‖Û − αÂ‖.
It is a straightforward verification that Â 6= 0 and Â ∈ INJ (X,Y ). By
Lemma 5.4, ‖Û − Â‖ < ‖Û‖. It follows that

(5.7)
∥∥∥∥U − V − 1

α
(V1 − V )

∥∥∥∥ < ‖U − V ‖.
In particular, V + 1

α(V1 − V ) ∈M, which yields

dist(U,M) ≤
∥∥∥∥U − (V +

1

α
(V1 − V )

)∥∥∥∥ (5.7)
< ‖U − V ‖,

and so V /∈ PM(U), a contradiction.

By a reasoning similar to that for Theorem 5.6, using Lemma 5.5 (instead
of 5.4), we can prove

Theorem 5.7. Let X,Y be Banach spaces with X reflexive and Y strictly
convex. Assume that K(X,Y ) is an M -ideal in L(X,Y ). Let M be a linear
subspace of L(X,Y ) withM⊆ INJ (X,Y )∪{0}. Assume that U ∈ L(X,Y ),
V ∈ PM(U) and dist(U − V,K(X,Y )) < ‖U − V ‖. Then PM(U) = {V }.

5.3. Chebyshev subspaces in the space of compact operators.
Applying Theorem 5.7 we can prove a sufficient condition for M to be
a Chebyshev subspace. Let B be a Banach space. Recall that a subspace
M ⊂ B is called a Chebyshev subspace if cardPM(U) = 1 for every U ∈ B.
In this subsection we will be concerned with the case of B = K(X,Y ).

Theorem 5.8. Let X,Y be Banach spaces with X reflexive and Y strictly
convex. Assume that K(X,Y ) is an M -ideal. Suppose thatM⊂ K(X,Y ) is
a finite-dimensional subspace. Assume kerT = {0} for all T ∈ M \ {0}.
ThenM is a Chebyshev subspace.

Proof. Fix U ∈ K(X,Y ). Since dimM <∞, we have PM(U) 6= ∅. Then,
using Theorem 5.6 we conclude that cardPM(U) = 1.

Applying Theorem 5.8 we can prove a necessary condition for M to be
a non-Chebyshev subspace.

Corollary 5.9. Let X,Y be as in Theorem 5.8. AssumeM⊂ K(X,Y )
is a non-Chebyshev finite-dimensional subspace. Then there exists T ∈M\{0}
such that T is not injective.

To end this paper we present a characterization of one-dimensional Che-
byshev subspaces in K(H1, H2).
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Proposition 5.10. Suppose that H1, H2 are Hilbert spaces such that
dimH1 < ∞ and dimH1 ≤ dimH2. If T ∈ K(H1, H2) \ {0} then span{T}
is a Chebyshev subspace if and only if kerT = {0}.

Proof. To prove “⇒”, it may be assumed that ‖T‖ = 1. Assume, con-
trary to our claim, that kerT 6= {0}, so there exists z ∈ kerT such that
‖z‖ = 1. A straightforward computation gives H1 = {z}⊥ ⊕ span{z}. Fix c
in T ({z}⊥)⊥ such that ‖c‖ = 1. Define U ∈ K(H1, H2) by

U(k + αz) := T (k) + αc

for k + αz in H1 = {z}⊥ ⊕ span{z}.
Now if k + αz ∈ H1 = {z}⊥ ⊕ span{z} (i.e., k ⊥ αz), then
‖(U − T )(k + αz)‖ = ‖αc‖ = |α| = ‖αz‖

=
√
〈αz |αz〉 ≤

√
〈k + αz | k + αz〉 = ‖k + αz‖.

Thus ‖U − T‖ ≤ 1. In fact, ‖(U − T )z‖ = ‖c‖ = 1, so that ‖U − T‖ = 1.
Now if k + αz ∈ H1 = {z}⊥ ⊕ span{z}, then

‖U(k + αz)‖2 = ‖Tk + αc‖2 = ‖Tk‖2 + ‖αc‖2

≤ ‖k‖2 + ‖αz‖2 = ‖k + αz‖2.
Thus ‖U‖ ≤ 1. In fact, ‖Uz‖ = ‖c‖ = 1, so that ‖U‖ = 1. Fix λ ∈ K; then

‖U − T‖ = ‖U‖ = ‖U − 0‖ = 1 = ‖c− 0‖ = ‖Uz − λTz‖ ≤ ‖U − λT‖.
Thus T, 0 ∈ Pspan{T}(U), which contradicts the fact that span{T} is a Cheby-
shev subspace.

The converse statement is immediate from Theorem 5.8.
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