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Soient A, B, D, E e p définis comme au Théoréme 3, e soit 4 < B.

8t m désigne le nombre d'éguotions résolubles en nombres entiers x et y parmi
les equations (28} on a ou m =0 ou m =1,

Dang le cas exceptionnel

w?4-y* = Hp,

olt p = 1{mod4) on a évidemment m == 2.
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Representations of real numbers
by series of reciprocals of odd integers

by

A. Orrewee™ (Legon, Ghana)

Huarold Davenport in memoricm

1. It is well-known that a real number ¢ between 0 and 1 can be
expanded into a series of reciprocals of integers (a “sorites” of Sylvester)
originally found by Lambert (see Perron [2]) as follows:

101 1
(1.1) =y = — ..
a0y dy

where the positive integers «, are given in guccegsion uniquely by the
algorithin
1
(1.2) ey =141/}, @y =2— ! 0 <@y <,
1
The process iz unending: the integers a, satisfy the inequalities
(1.3) =2, e,zé—a+l (iz1).

A convergent geries (1.1) in which the integers «; satisfy (1.3) is
necessarily the Sylvester expansion of its sum. For rational z equality
must oecur eventually in (1.3), i.e. for all ¢ > 4y, @;,; = ai—a;}1. The
converse is trivially true. : :

I have taken the algorithm so that the process is non-ending. If we
take 1/, << #; < 1/(e;—1), the process ends for rational ; for irrational
numbers the Hwo processes naturally yield the same series.

Variations of (1.1) exist in which signg can be attached to the terms
in accordance with prescribed rules (and appropriate changes in (1.3)).

2. Engel (anticipated by Lambert: see Perron [2]) obtained another
kind of series for  in (0, 1):

1 1 i

@1) v =-0_1_—l_ €105 + €106y T
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by the algorithm

(2.2) 6 =3+[ljml=2, @y, =qu—1, 0 <y, <.

The process is nnenmding; the integers ¢, satisfy the inegualities

(2.3) 622, 6am0 (1)

A convergent series (2.1) in which the integers ¢ satisfy (2.3) iy
necessarily the Engel series of its sum. For rational », equality occurg
from some point on in (2.3), i.e. ¢, = ¢ for all ¢ > 4,. The converse
iz trivial.

Variations exist wherein signs are attached to the successive torins.
Modifieations are needed in the inequalities (2.3).

3. Bome years ago I obtained (but have not published) a remarkable
extension of these series which include not merely the series of Liwoth
(Perron [2]) but also the well-known infinite product of Cantor (Perron [2])
and its generalizations by myself (Oppenheim [1]). In this note I consider
series of the types (1.1) and (2.1) where in place of the integers a,, ¢
we use numbers with residue 4 modulo 1 or alternatively numbers which
are odd integers.

The following series arise:

(3.1) 2 Li@d+1),

(3.2) D e (@01,

(3.3) | > éi/(2d1+1)(2d2+1) oo (Bd41),
(8.4) | Do, 2‘/(2@_1»1“1) (2d,+1) ... (2d,41),
(3.5) D 1j(2d+1)(2da+1) .. (2d,+1),
(3.6) Doy gy (20, 1) (2d, 1) ... (24, 1).

In these expansions of an arbitrary positive o {which needl not ho
restricted to the interval 0 < @ < 1), the d; are integers to be determined
by algorithms shortly to be deseribed; the &; take the values -1 or —1
a,ccojrt.i'mg to certain rules. In each case a unique expansion exists. Various
quesﬁmns arise: (i) to determine the inequalities necesgarily satistied by
thfa Integers d;; (i) given a series (3.1) say in which the dy satisfy appro-
briate inequalities, to determine whether the series is dorived |fmn'i its
sum by the algorithm in question; (iii) to find the kind of expansion,
whick necessarily obtains when @ iy rational.

It is curious to nete that for the series (3.2), (3.4), (3.6) comyplete
answers can be given to these questions. For the seentingly simpler series
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(3.1}, (3.3) I cannot answer questions {(ii} and (iii). For (3.3) I cannot
answer question (iii). But somse interesting eonjectures arize which I
illustrate with (3.3). This series is derived by the algorithm

1 .
d, = [%+ ;‘] s Ty = (A He—1 (2=1,2,...52>0);

(s

the integers 4; satisfy the inequalities

di 1 >2>d; 20 (and at least one 4; = 1).

The expansion is nnique. A eonvergent series (3.3) in which the d; satisty
the conditions d;,, > d; = 0 i3 necessarily the expansion of its sum by
algorithm.

CoXJECTURE 1. The series {3.3) in which the integers d; satisfy the
conditions d,, = d; = 0 and ot least one d; = 1 4s rational if end only if
from some point on either all the d; are equal or each d, 48 twice its predecessor.

This conjecture can be put thus: take positive coprime integers
P1. ¢,. Define positive coprime integers p;, ¢4; and an integer d;= 0 by
the relations (¢ =1,2,...)

0 <ip = 2d;4+1)p;—2q; < 2p;,
iy = 2¢;

so that d; = [$+¢,;/p;] and 2; I8 a positive integer.

CONTECTURE 2. Fither p; = 1 (all large 1) or p; = 2 {all large ).
The first case leads to d, ., = 2d;; the second case o dy, = d;.

Theorems relating to these series are stated below but not all proofs
are given. Some further conjectures are also made.

In the expansions so far described the numbers 4;, ¢, d; bave been
selected from a zingle set, Plainly we may congider a sequence of sete {8},

S L€ (1) < 05(2) < #(3) ... > o0

and associate with given #; > 0 a unique number of §; and a real number
x, > 0 by & rule B,; with o, 2 unique number of 8, and a real number
@y > 0, and so on. The nombers a;(n) need not be integers. Thus arise
seriss such as :

1 1
2 a(ng) Z @i () v v @z{my)

generalisationy of Sylvester-series and Engel-series. The first series
includes also Cantor-series (Perron [2]). I have obtained a number of
theorems relating to these expansions.
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4. The series (3.2). For # =, > 0 define a sequence of positive
integers d;, a sequence of real numbers z;, f; and mgns g == sgnf; by
the algorithm (for i =1,2,...)

d; = [w], Ljmy = dy4+$—0;, —3 < 6; <4,
s = sgnb, (Lif 6, 0,0 if 6, =0, —1 if 6, < 0),
@y = 1/(d+ )+ &y, (30 that o, > 0 if 5 = 0).

(4.1)

The process terminates if a zero 6; is reached (and in this case
must be rational).

TaEoREM 1. The algorithm (4.1) applied fo @ = @, > 0 yields either
a finite sertes with sum @ or an infinite series

(4.2)

816y ... g /{d;+3) (8o = 1)

HMg

with swm . The series 4s in any ocose wniquely determined. The won-
negative integers d, satisfy the conditions

2d5 4+ d; (& =1);
2di+3dy+1 (g = —1).
Proof. Tt is plain that if 6, = 0

(4.3)

di+1 =

dotd—6, 7 dt+d (D& E—0)
so that
d2+%'— 8, = (df+d1+i')/181[“51(d1+%)7
.dz > 2di +2d,— &y (A + 1)+ 6,
Thus dy > 2d; - dy if ¢ = 1; dy > 283+ 8d,+1 if e, = — 1 since
-t < g, < &

But this is (4.3) for ¢ = 1. So for 4= 2.

Suppose now that 20 <&, < 2n+2 for some integer n < 1. Then
dy=...=dp, =0; 23 =2,—2,...,2, =,—3% ko that 0 < w2,
But, for 0 <, <1,4d,>1 80 that d now increases (and indeed rapidly)
for i >n. Ifhowevel 1 <®,<2, then d, =0; either 8, = 0,2, = 2
or s, = —1 and so d,,, > 1; d; increases for T > n-- 1.

In any case the series terminates or d;, - oo and By4p =+ 0; the geries
(3.2) has sum o

icm
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Conversely we have
THEOREM 2. Suppose that the positive integers d; satisfy the inequalilies

di+1/2d2+d (E.i ':-1),
iy 2 28+ 3d+1 (5, = —1),

for oll i = 1. Then with one exception the convergent infinite series

2 8185 ov. g [{d; 1 })

is the expansion of s sum by the algorithm (4.1).
The emception occurs when for some ©

g = ~—1, d, =2d+8d1,

(ep = 1)

and
g =1, & =2&+d (4l jz=i+]). |
Remarks. 1. I have assumed for simplicity that d; > 1 and that

the series iz non-terminating. It is easy to adapt the proof for the other
CABER.

2. In the excepted case m; = 1/(d;-+1) for which there is the ex-
pansion Y 1j{w+3), % = d+1, %54, = 2u54-u; (§ 2 10).
jzi
To prove Theorem 2 it iz enough to prove that for ¢ 1,

1
<<= (g =1),

i+ 3 o d
1 1
< @; - = —1).
d¢+l\m'<di+% (2 )
Note that
NMij4+p =18 when §>1
S
and

b = 2848 (=4, i+1,...

It follows at once that for any ¢ ®; < 1/d; (with equality if-and only if
dyyy = 2d3--d; (all § 3= 1)). Since w,, < 1/d;y;, it follows that for & = —1

1 - 2 1 1
T e — () - = .
S T Wb Y ARE R Y IR § Y RNIC | S A
There is equality i#f &, = — L, &y, — 2d3+-8d+1and 5 = 1, &y, = 245+ d;

for all j > i+1. The argument shows also that =; >0 (all i) and so, for
& = 1,0, > 1)(d+ 1), for & = —1,4; <1/(d;41) as stated. And The-
orem 2 is proved.
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TrmorEM 3. If @ is a positive rational number, then either the series
terminates or from some slage on

iy = 2d;+d;, g =1.
And conversely.
The converse is trivial. To prove the first part: if @, is rational, each

a; is rational. Let a; = p,/g; for positive coprime integer p, and ¢; (exceph
that some p; = 0 if the process ends). Then

»; 2

Pia _
9 2d;-+1

iy
AP = [9;(20;+-1)—2¢,| < py,
A = q:(2d,+1),

ZFO_I? some Integer ;2 1. Hence ;> p;., > 0; either we reach o suffix
¢ for which p; = 0 and process ends or else for some suifix ¢ p,,; = p,
and s0 4 =1, p(3d+1)—2¢g =p;,p; = 1,0 = d;, Gipy = di(20;+ 1),
Pip =1 and so on for all j = 4.

H

5. The series (3.4). For # =, > 0 the algorithm (4.1) iy slightly
modified; .

%1 = (+$w—1,
_% < Bi < é:

@ = [1fm], 1jo; = d;+ 31— 6;,
(221},
The process ends it 6, = 0 for some ¢ (and then of course x iy rational).

'_ TeeorREM 4. The algorithm (B.1) applied to x> 0 leads o a URIGUC
series (finite or infinite)

(5.1)
& = Sgﬂ 91;

(3.2) 2‘5152 o G (@A 1) L (2d,1) (g = 1)
1

with sum . The non-negative integers d; salisfy the inequalitios
oy > 24,

gy 2 20,42

(& =1},
(g, = —1)

(5.3)

and at-least one ;> 1.

TanoREM 5. Given a convergent series (5.2) in. which the integers d, = 0

satisfy (5.3), then with one exeception the seri ) i
i o B 70 series (B.2) is the ewpamsion of

The exception occurs when for some i

By == -—1,

dﬂ+1 = 2di+2
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and

Ejzl’ dj,*_! :2d7-

(all § = 441).

TuasorEM 6. For rational x > 0, the algorithm (5.1) leads either to
a finite sum or an infinile series in which eventually d.., = 2d;.
T omit the proofs of Theorems 4, B, 6.

6. The series (3.6) 3 sy5,... 5_,/(2d, +1) ... (2d;+1) (5, = 1). Precise
results can also be given for (3.6). These are given without proof in
THEOREM 7. For @ =, >0 use the algorithm

@ = [12x], 1fo; =2¢;+1—¢;, —1l<g<1,;
{6.3)

& = 8EN@;,  s@, = 24+ 1Lw—1  (i=1,2,..)
(the process ending if any ¢ = 0). The series (3.6) so found is unique; its

suth is @. The integers &= O satisfy the conditions

{6.2) i1 0 (6 =1), dy, 26+ (5 =—1).

The necessary conditions are also sufficient. An infinile series (3.6}
in which the integers d, = 0 satisfy (6.2) and ot least one d;> 1 is the cw-
pansion of its sum by (6.1).

For rvational » the series terminates or else the d; become periodic, ¢.e.
g =1 and d;., = d; for all large i.

7. The series (3.5) ) 1/(2d;+1) ... (2d;+1). For this series we use
the algorithm on w = @, > 0,

(7.1} @ = [(z+1) 2], @y = @&+ 1)e—1  (G=1).
A unigue convergent series with sum « is obtained. Necessary con-

ditions satisfied by the integers d,=0 are

(7.2) oy = 3 d; (4, even), dyy > 3(d;—1) (d; 0dd)

but these conditions are not sufficient. A simple set of sufficient con-
ditions to ensure that (3.5) is the expansion of its sum by the algorithm
{7.1) iz given bv

(1.8)  dya = 3d+1 (& even), &y > Hd+1 ) (6 odd).

This set can be weakened but the result is not the best possaible.

For rational @ > 0 & precise theorem can be stated.

THEOREM 8. When the algorithm (7.1) is applied to rational x > 0,
the resulting sequence of integers {d;} is ultimately periodic.
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Proof. From the algorithm
T = m1'= Uy ot oo Wy By
t; = 1/{2d,+1) ... (2,4 1)
where ‘
0 <@y, = (2d;+1)my— 1 < 20,
Hence in succession

P =)
_guj<m; Zu,- =u < B; w0 a8 1 = oo

Wy =020 U0 =&y,

The sequence {z;} must contain a bounded subsequence. For if not
then @ — oo ag 41— oo} d; =[3+1/22,] =0, all 4>4,. But then
¥y = u; (all ¢ >4, and 34, cannot be convergent.

Thus the sequence {®;} ccntains a bounded subsequence. For thig

subsequence %@, —> 0. » = 0, Y u, = @,. Now suppose that z, is rational

and so all @; are rational, »;, = p,/g; for powitive coprime integers p,, ¢;.
From a;,, = (2d;+1)2;—1 we obtain

Ao = (2di+1)Pi— 4 < 200y
Afeyy = @ (A =1 integer).
Henece, for all 1 >4, ¢; =@ > 1,1, ==1. Now we showed above that
there is a bounded subsequence of x;. Bince ¢; = @ (all i > 4,) there is
a bounded subsequence of p;. Hence there must be one value of p, = P
which occurs at least twice:
_ =P =p,, G=Q@=¢q (1L<h<h.
But clearly periodicity of the d; results. Theorem 8 follows.
8. The series (3.3) ¥ 2/(24,+1) ... (2d;+1).
ToeorEM 9. Apply to ¢ = 2, > 0 the algorithm

(8-1) de: = [%‘i'l/wm‘]r Ly = (di“f"%)a"'t_'l (?: == l: 2: )
Then
(8.2) 2 = 22"/(207,1—1—1) v (28,41)

where the integers d; = 0 satisfy the conditions

8.3) dip1=d;  (and at least one d;=1).

These conditions are both necessary and sufficient for the expamsion.
I omit the proof.
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The rationality question remains open. It is easy to see that the
swn is rational in each of the cases:

(i) d;,, = d; eventually,

(i) d;,y; = 2d; eventually.

To repeat what was stated earlier (Section 3) I conjecture that these
are the only cages of rationality; in other words the sequence of operations
on positive coprime integers p,, ¢, defined by

Do (2di41)}p—2g,
H

Fit1 24;

gives nltimately all p;, = 2 or all p, - 1. The first case leads to dyy = &
eventually; the second to d;., = 2d; eventually.

9, The series (3.1) Y 1/(2d;,+1). The algorithm for this series is
given by

dy = [3+122], @ =

0 < (2d+L)p;—2¢; <2p; (i=1,2,...)

1

sy ezl
*

Necessary conditions for the validity of the expansion are

dpa =@ (and at least one d; > 2).

But these conditions are not sufficient. A simple set of sufficient conditions
iy given by

iy > G+ 1.
Another and a weaker set of sufficient conditions iz provided by

dipy = & and  dy, = %dz?+1+ Yo+ 4.

Naturally a complete et of necessary and sufficient conditions is
given by

1 { 1 n 1 ot 1 , g > 1

2d,—1 2d+1 23 T 26441 1 )

for 1<i<j;i,j=1,2,8,... But to obtain in a simple form a set
of necessary and sufficient conditions appears to be very difficuls.

I am unable to determine the form the expansion takes when
(and so each x;) iz rational. We have

CONJECTURE 3. @iven coprime pogitive imiegers Di, dui, determine
coprime positive integers p;, g (i > 1) as follows:

2 .
dipy 2z dp o

0 < APppy = Pil2d+1)—g; < 2p;  (d; integer),
Ailig = ¢;{2d;+1)

Then the numeralors p, ave ultimately periodic.

(A; imteger).
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Representation of Markeff’s binary quadratic forms
by geodesics on a perforated torus

by

Harvey CoEN (Tueson, Arizona)

In memory of Hareld Davenpori

1. Imtroduction. One of Harold Davenport’s most remarkable
contributions was a succession of papers (notably [4] and [5]} on the
minima of the product of three ternary homogeneons linear forms (compare
Mordell [11]). Davenport showed that (with unit deferminant) the two
largest minima, 1/7 and 1/9, are discrete. No further minima have besn
established since then.

One of the reasong that this problem is o intriguing and challenging
is the comparison one naturally makes with the Markoff theory of binary
(indefinite) quadratic forms (see [10],[6], [2]). The Markoif theory
represents a state of perfection at the fringes of utter chaos! A discrete,
convergent sequence of minima exists with & limit point (1/3) below which
the spectrum of minima varies locally from continuous to discrete ([9],
{12]). The original theory depended heavily on continued fractions,
although & revision of Frobenius [7] made the theory depend more on
chains of reduced forms. A paper of the author [3] used as a substitute
tool some algebraic (matrix) identities which, in principle, are less specia-
lized than continued fractions. .

We now return to our earlier approach [3] in the hope that additional
ingight might be gained in understanding the discrete nature of the minima
by an exploration of the geometric aspects of the Markoff forms. We
interpret these formas in terms of closed geodesies of preassigned homology
type on & perforated torns. It is possible, specifically, to gain a better
understanding of some of the “fringe” behavior at the limit point of the
diserete set of minima. '

2. Rational Markeff forms. We briefly summarize the classical theory.
Let [10] -

(1) Qw,y) = aat+boy+cy?, 4 =bi—dac>0



