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AN #-SILENT-VS.-NOISY DUEL
WITH ARBITRARY ACCURACY FUNCTIONS

1. Introduction. The aim of this paper is to give a generalization
of the game presented in [7]. The class of games of timing is described
in details in [2]. Some new types of these games have been published in
[1] and [3]-[6]). We consider the following model of a duel:

Two opponents, denoted by 4 and B, have n and one bullets, respec-
tively. None of the » shots of A is heard by B. The shot of Bis heard by 4.
The probability of hitting the opponent (an accuracy function) is a function
of time, P({) and Q(t) for A and B, respectively.

We assume that

(i) P(t) and Q(t) are differentiable, and P’(f) >0 and @Q’'(t) > 0
for te (0,1);

(ii) P(0) =Q(0) =0 and P(1) =Q(1) =1.

Player A gets a value +1 if he hits B not being hit himself, and
a value —1 if he is hit by B not hitting B before. The game is over when
one of the opponents is hit. The situation is reverse for player B so that
the game is a zero-sum game. The pure strategies for the players, i.e.
the moments of shooting, will be denoted by x; with + =1,2,...,n,
x;¢ [0,1], and by y with ye [0,1] for A and B, respectively.

For this game we give optimal strategies for both players. At first,
we define the spaces of mixed strategies for both players and evaluate
the game pay-off function. Next, in Section 3, we formulate a system of
integral and differential equations for the density functions of the optimal
mixed strategies for A and B, and discuss the existence and uniqueness
of its solution. Section 4 contains the equations for determination of
constants appearing in the analytical form of the strategies found. Sec-
tion 5 gives a proof of optimality, and in Section 6 we present a nu-
merical example of the described game.

2. Pay-off function for the game of timing. It is easy to find the form
of the pay-off function using the induction with respect to n. We prove
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that, for every natural » > 2, the pay-off function has the following form:
(1) K (2 Zay ovs Tps Y)

1-[14+QWI [[ 1—P(=)] it ;;<@<...<w,<y,

7

={1-2Q [[ (1-P(x)] it @ <y<a,,
i=1 .
i=1,2,...,n—1,
1—-2Q(y) fy<m<zw,<...<uw,.

Let n = 2; then we obtain

( P (@) +[1—P(a1)]| P (@) — (1 — P(22))Q (¥)]
=1—-[14+Q(I—P(x)][1—P(w,)] for s <wy<y,
K (91,85;9) ={ P(2,)+[1—P@)[—Q(¥)+1-Q )]
=1-2Q(y)[1—P(=,)] for @, <y < a,,
\ —Q(y)+1—-Q(y) =1—2¢(y) for y < z, < w,.
Clearly, expression (1) is valid for » = 2. Now, we assume (1) to be

valid for some n = k. We prove its validity for » = k41, denoting by
2z, the first moment of shooting for A. We have to consider the following

cases:
1° I wg< @, < ... < @, < y, then

K(moy Tyyeeey Ty ?/)
= P(#0) + (1 — P (@) K (@1, @2, -, 15 9) = 1~ [1+Q)][ [ (1 —P(x))].

2°If v, <y<w;y, and ¢ =0,1,2,...,k—1, then

K(wm L1y ooy Ty ?/)
= P(@0) + (1 =P (@) K (21, @2, ..., 75 9) = 1-2Q() [ | (1P ()]

P Hy<w,<z<...<ua, then
K (g, @1y ooy @5 ¥) = —Q(¥)+1—Q(y) = 1—2Q(y).

It is sufficient to renumerate the variables x; to see that we have
obtained form (1) for n = k1. )

Now, let us define a class of mixed strategies for both players in which
we shall seek optimal solutions. They will represent density functions of
Tandom variables «; (¢ =1, 2,...,n) for player 4, and g(y) with-weight
B = P{y =1} for player B.
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Thus we have, for A, {f;(#;); @;€ [a;y @;11)}iz1,2,... n» With a normali-
zation condition
41

2) [ fil@)do; =1, i'=1,2,..,n (4,,, =1),
and, for B, a function ¢(y), ye[a;,1) and f > 0, such that
; .
(3) [g)dy+p =1.
a)

3. System of integral-differential equations for the functions f;(x;)
and g(y). We assume heuristically for the beginning that there exists
a value of the game. We justify this assumption later in Section 4.

Thus, if yesuppg, then, by (1), we have the following expressions
for the value v

(4) f [1—2Q(y)[1 —P(2)]|fu () do; + f [1—2Q(y)1f:(2y) da,

a
if yela,, a,);
a a

) v= .. [f[l 20(y ”[1 — P(a)]] filwo) da, +

ay a1 9
LOES |

+f [1—200 ”[1 _ P(a)]fs(= dm]]nf,(w)dm

if ye[a;, a;,,) With z =2,3,...,mn—1;

® o= [ | [f[l—(1+Q )[][1 —P(@)])fu(@) do, +

2 “nlan

+f[1 2Q(y H[l —P(2)]fu( dw]]nf,(w 5, . i ye[ag, 1].
We use (2) to obtain

v =1-2[QW)—Q [P@)fil@)dw|, yela,ar);

= 1:] Jf (%)]fj(wg)dmj [Q(?/)—Q(?/) fp(wi)fi(wi)dwiL
7 Ye[a;y a;11), ":;2’37---""’/_1;

-1%+ v
H f —P(2))1f;(@)da; |(1+ Q@) [ (1 —P(@y))fu(@a) da, +

1
+2Q(y) ffn(mn)dwnL Ye [a,, 1],
. ) v
instead of (4), (5) and (6), respectively.
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The differentiation by sides with respect to y of these expressions
leads to

P(y)f:(y) Q'(y)
(7) v = y  Yelay, as);
1— [ P(u)fy(u)du Q)
P(y)fi(y) Q' (v) :
(8) v = v Yelay a,,), 0 =2,3,...,n—1;
1— [ P(u)f;(u)dw Q) *
—(+PW)fuly) Q (¥)[1+P(y)]

(9) _ :
1— [P@fywaut [fuds LTEOIL—PEI-2¢@)

ye [a,,1).
Taking into account the boundary conditions

Q@) Q@) _
fl(al)—P(al)Q(al)’ fila;) = P(ai)Q(ai)’ =2,3,...,m—1,
fn(an) = 2Q (a’n)

2Q(a,) —[1+@(a,)][1 —P(a,)]’
we have the following solutions of (7), (8) and (9):

_ Q(a,)Q (2,) .
Ji(2,) = P20 (@)’ Ty € [ay, as);
(10)  fi(w;) = %7 @€ [y a,4,), 1=2,3,...,m—1;
Ja(@s) =
_ 2Q' (w,) {f Q' (w)[1+P(u)]du }
2Q (z,) — [1+ Q(x,)][1 — P (,)] [1+Q(w)][1—P(u)] —2Q(u)
Zpe [ay,1].

Assumptions (i) and (ii) assure the existence and uniqueness of these
solutions.

Now, let x;esuppf;, ¢ =1,2,...,n. Then we have the following
expression for the value of the game with respect to player B:

n—-1 Tk+1

v_f[l 2Q(y)1g(y dy+2f [1-20@) H[l P(2,)1|9(y)dy +

=1 =z,

+ [ 1-f+ow) []t1-Peloway+8[1—2 [ 11 -2,
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Requiring (3) to be satisfied, we obtain
%+1

1) ov=1- 2[@(y)g(ydy 22”[1 P(z )]{f Q(y)g9(y)dy +

k=1 8=
Tk+1

+ [ @w)g(y)dy}— n [1—P(x)] f [1+Q(y)]y(y)dy—2ﬂ” [1—P(x)].

Ck+1
Let us differentiate this expression by sides with respect to z,. We get

111 —P@)1{20 @ 9(00 —P (@) [ [1+Q(w)g(w)dy—

—[1—P(2,)1(1 +Q (@) 19(2,) — 2 8P’ (@)} =
or, equivalently,

—[1+Q(@,)]g(®,) P'(z,)[1+Q(x,)]

(12) _ - )
26+ [[1+Q@ gy LTI =P -2¢(z)

The solution of the original integral equation (12) has the following
form:

(13) g(y) =

1

_ 26P'(y) oxp {_ P (w) [1+Q (u)]du }
2Q%) — (L +QWIL—P(y)] J Tremin—Pwi -2’

Let us introduce

2K, =2 f Q(¥)g(y)dy+[1—P(x ]f[1+Q(y)]g('y dy + 281 — P(x,)].

By (12 , we know that

dK,,

.dwn

which means that 2 K, is constant in [a,, 1]. In the special case where
z, = a,, using (12) and (13), we have

=0 for z,¢[a,,1],

(14) 2K,,=2ﬂ[1—1>(an)]exp{ P (w)[1+@Q(w)]du }

2 P)Q(w)+P(w) +Q(w)—

Thus relation (11) reduces, by (13), to
+1

£9 1 n-2 k
(15) v =1-2 f Q(y)g(y)dy—tzz nu—Pm)]{f Q) g(y)dy +
Zk

Tr+1

n—1
+ [ Qw9 dy}—2n[1 —Pla)] fQ(y y)dy—2K,[ [[1—P)].

41
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The differentiation of (15) by sides with respect to x,_; gives
n-—1

[] 2t —P@)){Q@-)9(@ ) —P (@) fQ )g(y)dy —

i=1

(1= P(2,_)1Q @) 9 (@ 1) — P (3, ) K} = 0

or
(16) Q(w";nl)g(mﬂ—l) P ((w l) wn—le [a’n—U an]'
K.+ [ Qg(ydy Fn
ITn—1
As the solution of (16) we have
la_ P
W) g0) = R where by — P@)E,, yela, ., a).

Now, using (17) in (15), we obtain a new expression

v=1-2 f Q)g(y)dy —

—22[_[[1 P(a,) ]lfl(m y)dy + flcz(y)g(y)dy}—
“k+1
_217[1 —P(a,)] f Q(y)g(y)dy — f[u _P(z nllp(l::“’:)“l).

ITn—2

We differentiate this expression with respect to z,_, and continue

step by step the procedure outlined above. As the result of this method
we obtain

(18)
(P for yela;,a;,,), ¢t =1,2,...,n—1,
Q)P () |
9(y) = 28P'(y) o U‘ u)[14Q(u)]du }
PW)QW) +P)+Q -1 "\ Q(u )+P(w)+Q(w)—1
' for ye[a,, 1),
where

li+1 =—1—_‘m+—1)*, 1= 1,2, ey M—2, and ln—l =P(a,,)K,,.
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Relation (11) is reduced to

19 _ g 1P
(19) v__1W° ,

Relations (10) and (18) give an analytical form of the strategies bel-
onging to the class defined above.

4. System of equations for constants l;,a; (¢ =1,2,...,7),  and ».
We assume that the strategies are given by (10) and (18) and evaluate
corresponding integrals

%+1
’)f P () Q2 ,)

L | 1 B 1 _ Q(a;)
=1 Q(a])[Q(aj) Q(a’i+l):| Q(ayy)’

i—1
Q(a,) .
l 1 =1,2,...,7n
IIQ ai)’ Y Rl | VAR

J+1

Q(

=1,2,...,n—1,

and

to obtain, instead of the expressions on page 207,

(20) v =1-2¢(a,), ¢1€ (a1, as),
Q(a,)

2 =1-2 1)

(21) 0(a) ) Q(a,)

.'I/'iG [a ,a/i+1), i - 2,3’..-,’”/—1.
Let us write

1

S(y) = [1+Qy]f[1 — P(@) ) (%) 42, +2Q(Y) [ fo(@y,) v,

We shall prove that

(22) S(y) = 2Q(a,) for yela,,1)
which leads to

(23) v =1—

We already know by (9) that 8'(y) =0 for ye[a,,1). Thus S(y)
iIs constant in the interval. It is sufficient to prove the existence and
uniqueness of a,e (0, 1) such that (22) is valid for arbitrary functions P(#)
and @ (?) satisfying our assumptions (i) and (ii). It is easy to see that S(y)
is a continuous function and, for the constant a, satisfying (22), the nor-
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malization condition (2) is also satisfied. If y = 1, then we have to prove
that there exists a constant a, such that

(24) f[1 —P(x,)lf.(2,)dz, = Q(a,), 0<a,<1.

First, we use the form of f,(x,) given by (10) to evaluate the following
integral:

1

B ¢ W+Pw)du
(25) af[l +P(wn)]fn(wn)dmn—2_2exp{— P(u)Q(u)—l—P(u)-{—Q(u)——l}'

Adding by sides (24) and (25) with condition (2) satisfied, we obtain

(26) Q(a L f u)(1+P(u))du
a P(u)Q ) +P(u) +Q(u) —
Let
at Q' () (1 + P (u)) du Q(2)
P(u)Q(u)+P(u)+Q(u)— +ln 2 ’ 2 (0,1)
Then
Ve Q'(u ) (1 —P(u))
r (z) Q(u (P -i—P( )+Q(u)—1) <0, ZE(to,l),

where #, 7 1 is the unique root of the equation
P)Q(t)+P()+Q(t)—1 =0 in (0,1).
It is easy to check that r(z) is a continuous function and

limr(f) = oo and r(l) = —-Iln2<0.
>t

So, there exists a unique constant a,e (f,,1) such that r(a,) =0
and (22) is valid. Thus, (23) gives v = 1 —2Q(a,).

We shall use the existence of a, to prove, by induction, the existence
and uniqueness of a,_,, @,_,, ..., a,. First, let us show that there exists
2 unique a@,_, such that (2) is satisfied. Let

() Q(wn 1) 4%, . 1
=) P, )@@ ) 0@

and

1
P(z)Q%x;) Qo)
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‘We notice that s,_,(2) is continuous and

Q'(2)[P(2) —1]
Q*(2).P ()

Sn_1(2) = <0, =2¢(0,a,),

and

lim Sn 1(2) = o0 sn—l(a’n) = = <0

1
z—0t - ’ Q (a’n)
Thus, there exists a unique a,_, such that (2) is valid and a,,_, € (0, a,).

Let us assume the existence and uniqueness of a;, € (0, a;,,). To prove
that there exists a unique a;¢ (0, a,,,) for (2) we notice that

. Q@PR-1]

8;(2) = P(2)0%(2) <0, e (0,a;,,),

and
lim s;(2) (@;41) ! <0
1 Si 2) = o&© 8.[ a; = — .
20t ’ i Q(ai+1)
Thus we have proved the existence and uniqueness of 0 < a, < a,
<a<...<a, <1.
Requiring equations (20), (21), (23) and (19) to be consistent we
must put
P(a,)Q(a,)
which gives an expression for v = 1—2€¢ (a,).
We take into account relations (18) and (27) to evaluate all coeffi-
cients l; (¢ =1,2,...,n—1).
Now, we determine the coefficient 8. To do this we divide by sides
expressions (14) and (26) and obtain

(27) l, =

2K, . [ P'(WQ(w)+Q ()P (w) + P (u) +Q'(u)
9,y ~ T (“"”exp{a{ T s T T ——
_ 26[1—P(a,)]
S W(a,)
‘where

W) =P1)Q@1)+P1)+Q()—
It is sufficient to use l,_, = P(a,)K, and (13) to get
W(a’n)ln 1

28 8 = S 0
(28) ? T —P(@)1Q(a,)P(ay)

It is clear that 0 < B < 1.

4 — Zastosow. Matem. 14.2
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It remains to check the normalization condition (2), i.e.

n—1 %41

_P(y)dy
=9 Z f Q(y)Pz(y
2BP'(y) P’ (u)[1+Q(u)]du } |
+a,, P(y)Q(y) +P(y)+Q(y) — UPW QW) +Pw) +Qm—1f ¥
+p =1

Integrating by parts and using (2), we have

. P(y)dy —z[ 1—Pla;) 1 ]
‘JoewPy Q(a)P(a)  P(a;y,)Q(a:41)

and
l; . P(a,)Q(a,)
hyy = ——r—— (1=1,2,...,0—2), 1l =770
i+1 1—P(a;,,) (¢ y2y ...y M—2), 1 1—P(ay)
we obtain, after reduction, instead of (29) the following relation to be
proved :

l

e TCATICR I
N 2 6P (y) { C O P'(w)[14Q(u)]du }
p dy +
2 PORQW+PW+Qw -1  |J Pu)@u)+P(u)+Q(u)—1
+8 =1.
In the Appendix (p. 224) we prove the following relationship:
P'(y) o {  P'()[1+Q(w)du } i
) P@OW)+PW)+Q)—1 P(u)Q (%) +P(u) +Q(u)—1

P'(u)[1+Q (u)]du E‘K"
P(u)Q(u)+P(u)+@Q(w)—1 2p
n K _ K,,.
B(1—P(a,)] 28
Thus, the left-hand side of (30) is equal to

= —1 +exp{

by 2K, B bay
P(a,.m(ﬁ*(‘“ T 1-P(a) 'K")” =1 Bla)Qan
_ W(a’n)ln—l — 2ln—] ln—l ln—l
[1—P(a,)1P(a,)Q(a,) ' [1—P(a)]P(ay) Play) ~  Plag)

o 1= P(an) + P(a,) +@Q(a,) +P(a,)Q(a,) —1 —2Q(a,) + Q(a,) — P(a,)Q (ay)
[1_P(a’n)]Q(a’n)

=1.
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Thus, the functions g(y) given by (18) and g given by (28) define
a probability distribution function which we denote by G(y). The strat-
egies described for players A and B will be denoted by S, and Sg, respec-
tively. We shall prove that these strategies are optimal. It is clear that
in case where B has fired and not hit, player A will use the pure strategy
at 1 with one of his remaining bullets. Further, the actual number of
bullets in possession of 4 has no effect on the mixed strategy of player B
during the game.

5. Proof of optimality for S, and Sz. We prove that S, and Sp
are optimal against each other, whence, by the general theorem, we have
their absolute optimality. '

Let player A follow his strategy S,. We denote by K(S,,y) the
value of the pay-off function when A applies a mixed strategy S,, and
B a pure strategy y. We define K (z,, 25, ...,2,; Sg) in a similar way.
We have to show that
(31) minK(S,,y) =v =1—2Q(a,).

0<y<1

Let us consider the following cases:

1°If y< a,, then K(8,,y) =1-2Q(y) >1—2¢Q(a,) = .

2°If ye [a,, 1], then, by (19) and (27), we have K(S,, y)
=1—2Q(a,) = .

Hence it follows that Sy is relatively best against §, and (31) is valid.

Now, let us assume that player B follows his strategy S;. We have
to show that
(32) max Kz, 23y ..., 2,5 Sp) =0 =1—2Q(a,)

0T STy<...<T) <1

or, equivalently, that
1
(33) [ K (2,200, @5 y)dG(y) <v forall 0< o <2 <... <@, <1,
a9

where G (y) is the distribution determined by g¢(y) and f is given by (18)
and (28).

We prove (33) by induction with respect to the number of variables
2, (+ =1,2,...,m; » = const) lying in the corresponding intervals
la;, ag,,]. Let %, be a vector (,, z,, ..., #,) whose n—r last components
lie in their corresponding intervals [a;, a; ;] for i=r+1,7+2,...,n
(@, = 1).

The first step in the induction procedure requires to check that (33)
is valid in the case r = 1. According to the value taken by z, with
Z;e [a;, a;, ] for i = 2,3,...,n, we have the following cases:

1° If 2, < a,, then

K(zy, @3y ...y @p5 Y) = P(2) +[1—P(2)) | K(2y, &3y ...y T3 Y).
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Integrating with respeet to dG(y), we obtain
1

JE (@ @y 205 9)AG(Y)

a;

a LP (y)d
— Pl +1-Pln)] | [1-200)) g 5t

+[1—P(@)] [ K@, @, ..., 2,5 9)dG(Y).

as
1
The expression f K(zy, x4, ..., 2,; y)dG,(y) represents the wvalue
a
v =1—2Q(a,) of the game when 4 has n—1 bullets and if
P(a,)Q(a,)[1—P(a,)]
P(a,)Q(a,)
This is true because of the remark made at the end of Section 4 and

the fact that z;esupp f; (+ = 2,3, ..., n) which implies the validity of
the corresponding system of equations for constants 1, a; (¢ =2,3,...,n)

aa,(y) =

aG(y).

and §f.
Thus
1 1—P(a,) —2Q(a,
fK(xl, Zoyooey Xy Y)AG(y) = P(xy) +[1 —P(x,)] — 1(1)})(01 ?(a
- 1_P(“1)_2Q(a1) P )*ZQ(al)
B 1—P(a,) Y1— —P(ay)

The left-hand side of this expression is an increasing function of x,
and it achieves the value v =1—2Q(a,) at z, = a,.
2° If #,¢[ay, a,], then, by (11),
1
fK(wu Tyy ooy T Y)AG(Y) = 1—2Q(a;) = 0.
a)

3° If 2, > a,, then z,¢ [a,, ,], since z, < &, and z,e [a,, a;].
Hence, taking into account relation (11), we can write in this case

wal,ac”... 2,3 ¥)dG(y) = 1— 2“@ )Gy +sz/dG?/)

+[1—P(ay)] [f@ \da(y +Z”[1—. 1]@ )da (y) +
+H[1—P(w,->] fl“Q(y +ﬂ]_[ [1-P ]}
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We attach new terms in this expression to obtain, after the integration,

P(a,)Q(a,
(a)Q(a)( 1 1 )+

1—P(a,) \P(a,) P(ay)

1
fK(wla%’---ymn; ¥)dG (y) =1_2{
a9

+ [ Q)de(y)—[1—P@)] [ Q(y)da(y)+[1—P(w1)]L(x2,m3,...,m},

ag
where

L(wyy @3, ..., x,)
Tr41

= sz(y)dG(y)+Sﬁ[l—P(wj)]f Q(y)dG (y) +
as k=2 j=2 Tk

+[7 [1—P(x;)] flﬁ—f(—y)da(y)Jrﬁﬁ[l—P(wj)]-

Comparing this expression with (19) and using the fact that
z;esupp f; (¢ =2,3,...,n) we see that

. _y, 1Pl
(Lgy L3y ooy @) =1y P(a,)
and obtain the relation
1 . B Q(a,) P(a,)Q(a,)
a]fK(wl,wz, ooy By Y)AG(Y) =1 —2 ll_p(al) " [1—P(a,)]P(ay) +
11 1-P(ay) }:P(%)}
+P(wl)lz[P(a2) —p(wl)] tla P(a,) Pla)l, P(a,)
_ l Q(a,)
.=1—-2 lm -12+P($1)l2}

which is a decreasing function of x, attaining the value v =1—2Q(a,)
at x; = a,. Thus the first step in the induction is completed, i.e. (33)
Is valid in this case.

Secondly, let us assume that, for any fixed r (1 <r < n),

1
(34) JE(Z; 9)aG(y) <o.
a;
We prove that, for each Z,, ,, there exists a vector z, such that

(35) [ K (%115 9)d6(y) < [ E(Z,; 9)dG(y).
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By the assumption, we have

1.

[ K (%115 9)dG(y) < v

a)
According to the value of =, +1, We consider the following cases:
1° I z,,, < a,, then

r k
K (415 ¥) =P(@)+ D) [[ (1 —P@)1P (@) +
k=1 j=1

r+l1

+ [[ 11— P(@)1K (@12, - @i 9)-

=1

Integrating with respect to dG(y), we give

1 r k
[ B (@, @2, ..., @a; ¥)dG(y) = P(@,) + Z [] (1 —P(#)1P(2;,)
r+l1

+H[1 P(w,]fK(wm,. ) Tn3 Y)AG(Y).

The left-hand side of this expression is an increasing function of
z,,, in the interval (0, a,).

2°Let o, <@, <a@a,,, and ;< a, (1 =1,2,...,8). For definitive-
ness, let @, e [ay, @) A< k<), xj¢ [ay,a) (J =s+1, s+2, ...,p)
and ze[ay, v,,,] I =p4+1,p+2,...,7). In this case

(36) [ E(Z,..;y)dG(y)

= T(@y, 3y 0y @ +f [1—20 [ 1—P]acw)+
t=1
g 41 r41
+ ] 120w ][] 1-P@)]asw) +
Tr41
42 r+1
+ f [1 2Q?I)[][1— m,]]de)+
841
1 r+1 Zpio
+ [ aa(y) - —2[Ju-P@) [ Qwaaw)-
a,.+2 ap i3

Tg+1

2 3 []n- ~P@) [ Qwaet)- f[1+Q )1d6(y Hu ()],

S=r+2 j=1
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where

s—-1 &k

T(%y, Tsy ..., ¥,) = P(@y) + n[1 — P (2;)]1P(2,,) +

k=1 ¢

-

Tg4+1

+ [ [1-20w) [] [1—P(a; ]]dG(y)+

r—1 ""'_7+1

+ X [ - 2Q(?/ [1 —P(z,)]|d6(y).
n=8+1 x;
We notice that
@i r+1 1
37 aG 2 -
(37) fQ(y) (y) = ky [ p(am)]
a1 t=k+l
and
he+1 1 1
(38) P(wr+l)zr£ Q(y)dG(y)=lkP(wr+1)[p(w,+1)—P(ak+1)]’
(39) bigs L -

P(a,,,)  P(a,.)

Now, we add and subtract the term

fr [1—20 [] 1 —P@1|d6(y)
az t=1

in (36) to get, using (37), (38) and (39), the relation

[ E@in; w6 w)

= T(@, 0,y 2)+ [d6@)— [ [1-20@) [ [1-P@)1dae) -
ap aj {t=1
r Tr 41 P’
9 ”[I—P(wj)]{lk f Pz(i//) dy +
Te+1 P ) Gr4i2
- Pa) [ 3 By @t —PEa] [ ewaew) +
Tpag 41

+[1 =P, l)]S('rrlivmr»i—:H"°7wn)}7
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where

S(2, 9y @pyzy -0y Tn)
Trig Te+1

= | ewaew) +2 ]][1 P ]f Q(y)d6(y

ar+2 k=r+2 j=r+2

1
+ H [1— P(a))] f i PO [] [1—P(z)]

j=r+2 )
By similar considerations as above for the function L(x,, z,, ..., 2,)
with the assumption #;e [a;,a;.,] (¢t =74+2,74+3,...,n) we have

1—-P(a,,.,) [/
40 29 Xpyzy eeey by =lr~2 = :
(40) 8(@riar Trasy ooy @) = lpa = =7 = 5
Hence
1
[ E (@05 pae)
= T(@1, 005 -, 3)— [ [1-20) [[[1 P(z)]|a6(y) +fdG(y
ap
_2”[1 —P(x {fHQ YAG(y) — U+ ——— b —P(x,,) Srjm’
¥ -P(ar+2) ! ;:7! P(a,,,) .

Thus, the left-hand side of this expression is an increasing function

of x,.,, since I, , > 1, for every s =k, k+1,...,r, and assumptions (i)

and (ii) concerning the function P (t) are valid. In the above-given consid-
1

eration %k is arbitrary, so [K(Z,,,; ¥)dG(y) is an increasing function of

1
Z,., in the interval [a,,a, ]
3° If »,,,¢[a,,,, a,,,], then this leads directly to assumption (34).

4° Now, let x,,2,,,y..., 2,4, (p =1,2,...,741) lie in the

1
interval [a,,,,x,.,]. In this case we prove that [ K(Z,,,; y)dG(y) is

.
a decreasing function at each z,, @, ... T,, 2,,;.
Denoting by T'(z,, 2,, ..., z,_1) the sum of the first terms depending

only on x,, z,, <oy ®,_,, we have
1
| K@ 9)d6(y)
a

=T(@y, Ty ..., 2,_;) + [1 20Q(y) ” [1—P(x;) ]] da(y) +

42
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r4+1 41

+ 3 [ 20w [o-rerlww +
t=p =z
Ty i3 r+2

+ [ 120w [] n-Pe|aw) +
r;ris r+2

+ f [1 20 (y) ”[1—P(-’I7j)]]da(?/)'|‘
43

3T 20w n[l — P(a,)]|d6() +

s=r+3 xg

+ f[l_(1+Q<y)H[1— 2;)]|d6 ()

j=1

Now, we add and subtract a new term to obtain, after the integration,.

(41) [ K (%45 9)dG(y)

=T (®y, Tgy ..oy Tp_y) + fdG(y 2”[1 —P(z {fQ )G (y) +

Tprt2 9ri2
Ty 1 r+1 Tr+1
+2”[1 P(mj]f Q(y)dG(y }+2[][1 —P(z)] [ Q)
r+1; ~ a:,.+2 ’J;ZH
—2”[1 ~P@@))| [ Q) ae()+ Z ”[1 —P(x ]f Q(y
ap o k=r+2 j=r42

n

+5 [] 1-P ]f(1+Q )6 (v)}.

j=r+2

We use (40) in (41) and evaluate these 1ntegmls. Hence

(12) [ K@i 9)d60) = T(@s, @y oy 2p0)+ [ () +

ari1
r+1

1
Plree [] [1=P) [ (@4 5) B P("Dr+1)_] B
r+2 [1—P(a,,,)]
2 ]] [1—P(a)] Pl ,Hn 1—Pla)| e

| ey ~ T |
P () P(@y1) )

k=p j=p
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We use the following relation to reduce some of the terms in (42):
1 i+2

1 1

j=

= _]i[[l—P(a:j)], t=p,p+1,...,r.
j=p

Thus, we have

43) [ E@.,;0d6w)

1
= T(ay, @3y oy )+ [ G+

a.
n—-1 r T2

+2t,. [ [u-Pen|[ [ n-Penn-pe.-

j=1 j=p

r 1 r . X )
_11——1 [1—P(w])] P(wr+1) +” [l_P(x])]— P(ar+2) B P(-'If'p) a
r k

J=p

1 1
_ZUD_P(@-)J[I)(%) P ]}

J
— r+1

= T(@y, Tay ooy @)+ fldG(y)+2l,+2i [1—P(w,.)]{1—[ [1—P(z;)]+

Gr+2 i=1 Jj=p

r r—1
+[[o-pen+ [ [o-Pen+..+11—P)- +1f
jmp j=n P (ar+2)

We see that the left-hand side of (43) is a decreasing function at
@Very &, &y, -++y &y, Which lie in [a,,,, a,, ;] and it achieves the greatest
value if all z,,®,,,, ..., 2,,, are equal to a,,,.

Thus, we have proved that (35) is valid and the second step in the
induction is completed. This means that (34) is valid for every 1 <r < n.
This, in turn, implies that (32) and (33) are also satisfied; and whence
the strategy S, is relatively optimal against Sg.

Taking into account (31) and (32) we see that the strategies S, and
Sy for players 4 and B are optimal. This completes the proof of optimality
for the strategies S, and Sjp.

6. Numerical example of the game of timing. As an example of the
presented game let us consider two cases:

I.n =3, P(t) =Q(t) =t, te[0,1].

IL. n =3, P(t) =1, Q(t) =t, te[0,1].
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In case I, according to (10) and (18), for player 4 we have the optimal
strategies
fl(mz) = a2 for z,¢ [ay, a,),
Ja(@s) = apa;® for @;e [a,, as),

fol@ws) = V2ay[a?+22,— 17 for @ye [a,, 1],

and, for player B,

ll?/_s for ye [ay, a,),
gly) =1Ly~ for ye [as, a,),
2V2By2+2y—117%"  for ye[ag, a)), 0, =1,
where
2 2
l1 — al , l2 — aq
l1—a, (1—a,)(1—ay)
and

%

T S ey(—a)(i—a) T¥=H:

p

In case II for player A we have the optimal strategies

fi(@y) = a ar? for z,¢ [a,, a,),
fo(®) = apu;? for z,¢ [a,, a,),
2 s (14+u2)du .
Ja(wg) = Preli_1 eXPi— f us—l—uz—{—u—l} for x;e [a5, 1],
as
and, for player B,
(2Ly~* for ye [a,, a,),
@) 2L,y~* for ye [a,, a,),
g\y) =
4By * 2u(14u)du
exp for ye [a5, 1),
y*+y:+y—1 utt+uttu—1
where
Lo 1, = o
Pl-at’ 7 (Q-dh(1-a)

and
[a5+ a5+ a;—1]a}

=P{y =1}.
(1—a?)(1—al)(1—al)a’ {y =1}

g =



224 A. Styszynski

The values of the constants appearing in the analytical form of the
strategies found, i.e. a,, a,, a;, f and v, have been evaluated according
to the formulas given in Section 4 and are listed in the following table:

1 I

a é 0.2182 | 0.3640
@ | 0.2007 0.4350
a; | 0.4494 0.5700
g | 0.0773 0.0790
v | 0.5636 0.2720

It is interesting to mnotice that player A needs 6 bullets more in
case II to assure the value of the game equal to the value in case I.

The problem of the general mixed game of timing, for instance of
an n-noisy-vs.-silent duel, is still open.

Appendix. We prove that

. 2K,
(44) f g(u)du = -l—P(aE —K,.

From (12) we obtain

f P'( u) (1 +Q(w))du
P(u

26 + f (14+Q(u))g(u)du = 2fexp o+ P 1T |

Thus, for y = a,, we have

1 d

Let us put 2, =1 in the definition of K, on page 209. It leads to

the equation
1
[ @i = K,
an

Taking into account equation (14) we obtain (44).
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A. STYSZYNSKI (Wroclaw)

GRA CZASOWA TYPU #2nx1 0 ROZNYCH FUNKCJACH SUKCESU

STRESZCZENIE

W pracy rozpatruje si¢ model gry czasowej typu pojedynku, gdzie przeciwnik
4 ma n cichych kul, a przeciwnik B — jedna kule gloéng. Prawdopodobieristwo tra-
fienia przeciwnika jest funkcja czasu P (t) i Q (¢) dla te [0, 1] odpowiednio dla pierwszego
i drugiego gracza. Podano postaé strategii mieszanych dla obu graczy oraz wykazano
ich jednoznaczno$é i optymalnoséé. Przedstawiono réwniez dwa przyklady liczbowe
Opisanej gry czasowe;j.



