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linear control, STAM J. of Control, 1974 (to appear). § 1. The property Q

Recent work on the existence of optimal controls and related problems (v. refs.

-cited in [3]; also [6]) has employed an alteration made by Cesari (op. cit.) in the
classical notion of the upper semicontinuity of families of closed sets that applies
in the special case where the sets involved are convex.

What is done is to assign to each point (¢, X) in some index set J belonging,
typically, to R x E,,, a closed convex set XK(#, x) in E,,, and then to form, at each
fixed point (7, ) in 1, the set

0@, % = pocl co U K x).
>

(thx)EN g
Here, ‘cl’ and ‘co’ mean closure and convex hull, resp., and 4/ denotes a d-neighbour-
hood of (7, X).

If the resulting set Q(, %), which is clearly closed and convex, coincides with'
K(t, %), then, in the terminology of Cesari, the sets K(z, x), “have the property 0
at the point (%, X). As Cesari observed, omission of the ‘co’ from the formula converts
it into the classical definition of closed or topological limes superior, and the classical
notion of upper semicontinuity of closed sets emerges.

Cesari’s operation can also be regarded as a limes superior—this time, in the
lattice of closed convex sets, when they are ordered by inclusion and the lattice
operations are defined by

/\lKl. = m;I(ss
V. K, =clcol . K.

Then the operation @ is just the order limes superior, when / is made into a directed

set by preordering points according to their distance from (7, ). Since the order
limes superior is preserved under order isomorphisms, we can expect to arrive at
equivalent characterizations of the property Q when we replace the lattice of closed
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convex sets by any lattice isomorphic to it. That, indeed, is the underlying theme
of this paper, but we shall try to relate it to corresponding developments in cal-
culus of variations and control theory.

§ 2. The réle of property Q in variational and control problems

In problems of the calculus of variations and optimal control theory, the property Q
typically occurs in the following way. We are given a real-valued integrand F(1, x, u),
where ¢ is a scalar and x and u are vectors, and we are asked to find
e
min § F(¢, x, Wt
to

over all absolutely continuous curves ¥ = x(¢) that satisfy the control equation

%, = G(t, %, u) a.e.
along with some given initial and/or terminal conditions, where the control variable
u = u(t) is constrained to lie in a given control region U.
We “deparametrize” the problem by introducing the function

igf{F(r, x, )] G(t, X, u) =z, ue U},
+o0, if G, x u)+#z forany uel,

[ x,2) = {

where z is, for the moment, just a dummy variable. It is ordinarily assumed that
the infimum is finite. We then seek to minimize
ty
1 = § £, x, Hat
. fo
over all absolutely continuous curves x = x(t) with derivative dx/dt = X, satisfying
the initial and terminal conditions.

Now the problem has the form of a classical problem in the calculus of varia-
tions, with the effect of the control variable being felt as an infinite penalty. Integrals
of this sort are to be found in papers of McShane from the thirties. Their deduction
from control problems seems to have occurred to a number of people, of whom
Zachrisson [11] was perhaps one of the first.

Classical criteria for the lower semicontinuity of I[x] involve, at the least, (1) the
convexity of f in the variable z (expressed classically by the non-negativity of the
Weierstrass E-function), and (2) some sort of semicontinuity of fin f and x, A rather
refined notion of the latter, which Cesari [3] attributes to McShane and Tonelli,
is the idea of weak seminormality. Assuming that, for a certain range of ¢ and x,
[ is everywhere finite as a function of z, this criterion takes the form.:

S is weakly seminormal in z at the point (f, %, %) if, for every & > 0 there are
numbers & > 0 and r, and a real vector y, such that

Ft, %, 2) = vz, »)
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Sor all z and all (¢, x) in a S-neighbourhood of (¢, %), and

ft,%2) < r+{z,y)+e.

In the case where the function f can take the value + oo for certain values of z
and x, Cesari [3] has added a further condition which can be expressed in the lan~
guage of convex analysis in the following way. Recall that the domain of a convex
function, abbreviated simply by ‘dom’, is the set of points where the function takes
finite values, and the epigraph of a function, ‘epi’, for short, is the set of points that
lie on or above its graph. Consider now the sets

K(t, x) = eplf(t, %, 2) = {(r, 2)| r = f(t, x, D)},

and form from them the set Q(7, ¥) according to the prescription given above. Then
Cesari’s supplemental conditions takes the form

if (r, w) belongs to Q(t, X), then w belongs to dom, f(f, %, ).

Let us agree to call the notion of weak seminormality, together with Cesari’s
further condition, weak seminormality in the extended sense.

In [3] Cesari proved the following remarkable theorem.

CESARI’S THEOREM. Let the function f (1, x, z) be lower semicontinuous and convex
in the variable z for t and x in a certain range, and suppose that f never takes the value
—co. Then the sets K(t, x) = epi, f(, X, z) have the property Q at the point (&, %)
if and only if the function f is weakly seminormal in the extended sense at the point
(t, %).

With this theorem Cesari has shown how his own use of the property Q in
existence questions extends a classical notion in the calculus of variations. We
personally regard this “harmonization” of the ideas of optimal control with those
of the traditional calculus of variations as eminently desirable, particularly when it
exposes the underlying geometrical character of the classical ideas, as in the present
case.

§ 3. A characterization of the property Q in terms of the Hamiltonian

The new feature of the property Q that comes out of its equivalence with weak
seminormality is the emergence of the dual space of the z-space in the scalar product
{z, ¥>. This suggests that the duality theory of convex functions could be applied
to give a dual characterization of the property Q in terms of conjugate convex func-
tions.

The conjugate function, also known as the “Young-Fenchel transform”, of the
function f(, x, z) is the function f* (¢, x, y) defined for y in the dual space ¥ by the
formula

Q) X %, y) = sup[Kz, y) —f(t, %, 2)].

Here, the variables (z, x), of course, just play the r6le of parameters.
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The closure of a proper convex function is the function whose epigraph is the
closure of the epigraph of the original function. The property of being “closed”,
i.e., having a closed epigraph, is equivalent to the lower semicontinuity of a function.
In the case of finite-dimensional spaces, the passage from a proper convex function
to its closure amounts at most to the replacement of the values of the function at
the relative boundary of its domain by the limits. of the values assumed by the func-
tion as its argument proceeds along line segments extending from the relative interior
of the domain to the relative boundary: in all, a minor regularization process. It
can be shown that the conjugate function is always closed, even if the original func-
tion is not.

In the next section we shall show how general considerations concerning conju-
gate convex functions in locally convex spaces lead, as a very special case, to the
following result. '

THEOREM. Under the assumptions of Cesari’s Theorem, the sets K(t, x) will have
the property Q at the point (t, %) if and only if the conjugate function f*(t, x, ¥) satis-
fies

W%, -) = dl,[limsup f*(t, x, )]
(t, x)=(t, x)

Here, ‘cl,” denotes the closure operation described above, when the term in
brackets is finite or + oo for all y; otherwise, it assigns the value — oo.

This theorem means that the property Q is equivalent, modulo closure, to the upper
semicontinuity of the conjugate function f* in the parameters (t, x). If it occurs that
the lim sup is finite-valued for all y, as is frequently the case, then it is automatically
closed, because it is convex and, therefore, continuous, in y. In this case, the property
Q is equivalent to the upper semicontinuity of f*(z, x, y) in (¢, x) for fixed values of y.

In the general case, we cannot omit the closure, but we can exploit elementary
facts concerning the conjugacy operation to establish the following

COROLLARY. The sets K(t, x) will have the property Q at (t_, X) if and only if

[, %) = [limsup f*(, x, y)*.
(¢, ) (¢, x)

This expresses the property Q solely in terms of the pointwise limsup and the
conjugacy operation.

Now, it is known that when £ is smooth and a Legendre condition is satisfied,
the conjugacy relation (+) reduces to the Legendre transformation, and the function
f* is just the Hamiltonian corresponding to the Lagrangian f. The virtue of the for-
mula (x), however, is that it eliminates these restrictions and defines the Hamiltonian
globally. The Hamiltonian is thus available, now, in problems that could not have
been treated classically with rigour because of the local character of the Legendre
transformation and the need to consider only finite-valued Lagrangians.

It thus emerges that the classical notion of weak seminormality has its natural
formulation as the upper semicontinuity of the Hamiltonian, modulo closure. Never-
theless, this simple formulation seems to have escaped the attention of classical
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workers in the field. If we seek an explanation that goes beyond an abhorrence
of the non-rigorous way in which- Hamiltonians were sometimes treated, it may lie,
in part, in the fact that, even in free problems, the conjugate function f* may well
assume infinite values, and the crucial notion of closure for such functions had not
been worked out prior to the 1949 paper of Fenchel [4]. If, on the other hand, coer-
civity conditions are placed upon fas a function of z, as is usual in existence theorems,
thereby forcing f* to be finite-valued, the weak seminormality of f gets converted
into seminormality, and the simple formulation in terms of the Hamiltonian be-
comes obscured.

The foregoing suggests that it might be easier in existence questions to use
the Hamiltonian directly, instead of arguing in terms of the Lagrangian. Recent
work of Rockafellar bears this out. '

§ 4. The property Q in locally convex spaces

In the present section, we shall establish a characterization of the property Q in
terms of conjugate convex functions on dual locally convex topological vector spaces.
Our use of such general spaces is not meant to be frivolous. They arise as soon as
one looks at function spaces endowed with a weak topology. Moreover, they occur
as the natural setting in the treatment of convex functions, and it is remarkable that
everything that we want to do can be carried out in them without introducing any
further restrictions.

Thus, following Moreau [8] and Brendsted [2], we consider two linear spaces Z
and Y over the reals R, paired by a bilinear form <z, y)> on Zx Y which separates
points both of Z and of ¥. Each space is endowed with a locally convex topology
that makes the other into its topological dual with respect to the pairing. Such topo-
logies, which are evidently Hausdorff (or séparées), are said to be compatible with
the pairing. Any such topologies will do for the theory, since they all give the same
closed convex sets. The direct sums R @ Z and R @ Y are placed in duality by the
paiting (r @ z, s @ y) = rs+{z, y); the product topologies are compatible when-
ever the underlying topologies of Z and Y are. All compatible topologies on Z then
yield the same closed convex sets in R @ Z, and, thus, the same class of closed
convex functions on Z, for they are just the extended real-valued convex functions
whose epigraphs are closed in R @ Z. Similar remarks, of course, hold for Y.

There is a subclass of the closed convex functions on Z which are said to be
regular with respect to the pairing (cf. Asplund [1]). They are the ones which can
be written as the supremum of extended real-valued affine functions:

f(@ =supl{z,y>—c], forallzinZ,
L
where the ¢, are extended real-valued constants and ¢ runs over some index set.
Practically speaking, what this means is that f cannot take the value —oo without
being constant. A similar definition of regularity applies to Y.
Restricting attention to the regular convex functions on Z, in their natural
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ordering, they become a complete lattice under the operations
(V. 1) @ = sup f(2),
(AS) @ = suplh(2)] k< f, for all i)
h

for all zin Z, where ¢ runs over any index set and 4 denotes a generic extended real-
valued affine function.

If we try to compare these operations with the lattice operations already de-
fined on closed convex sets in § 1, by setting X, = epif;, we find that

/\eepif, = (M epif, = epi VA2
in all cases, while
\/,epiﬁ = clcol_Jepif; = epi /\Lf,,
provided that (M) epif, does not extend to —oco in the R-direction. If it does, then

there is a discrepancy, which can be remedied by redefining clK to be R ® Z when-
ever K extends to — oo in the R direction. Understanding ‘cl’ in this sense, the opera-
tions of § 1 again yield a complete lattice, and the passage from epigraphs of regular
convex functions to the functions themselves is an anti-isomorphism of their respec-
tive lattices.

Similar remarks, of course, apply to the regular convex functions on ¥,

We now introduce the corjugate function f* on Y of a regular convex function
Jfon Z by means of Fenchel’s formula

*0) = sup Kz, y> =1 ().

Clearly, f* is a regular convex function on Y. Dually, we have for the conjugate g*
of a regular convex function g on ¥

g*@) = SLylp Kz, y>~g ()]

It is known that this correspondence between regular convex functions is biunique.
By means of Fenchel’s formula, lattice operations on families of regular convex
functions on one space are transformed into dual operations on their conjugate
functions. These conjugate operations are given by
The Fenchel-Brendsted formulas:

[/\lfl]* = \/t.f;*:
[\/xfx]* = /\l./;*'
Thus conjugacy acts as an anti-isomorphism between the two function lattices. This
means that we can arrive at a lattice isomorphism by placing in correspondence the
epigraphs of the regular convex functions on one space with the conjugate functions
themselves on the dual space.
Now suppose that the index set Lis a set directed to the left by an order relation <
and possessing (as we may assume without loss of generality) a least element . Then
we can define the order limes superior in the lattice -of epigraphs of regular convex

icm

DUALITY OF CONVEX FUNCTIONS AND CESARI’S PROPERTY Q 95

functions on Z:
O'Iin'll Slup epif, = /\hém \/ <aepif,.
€

This is just Cesari’s operation Q, the element w playing the role of (7, ¥) and the
remaining elements of the index set being preordered by their distances from (z, %).
The functions f, thus have the property Q at w if and only if epi f,, is given by the above
expression.

The isomorphism just mentioned carries the order limes superior in the lattice
of epigraphs onto the order limes superior of their images in the lattice of conjugate
functions on Y. Thus we have proved the first part of the following

THEOREM. Let I, < be a directed set with least element w, and let f,, 1€ I, be
a net of regular convex functions on Z. Then f, has the property Q at w if and only if

fz = /\l#w \/t-{lﬁ*: or, equivalenﬂya fw = [/\la&w \/x{lf;*]*‘
The second part of the theorem is an immediate consequence of the involutary
nature of the conjugate transform: [f*]* = f.
In the special case treated by Cesari, the index set is totally preordered, i.e.)
any two elements are comparable. In this case, the formulas of the theorem can.
be simplified. The functions

& = \/t»(l./;*
are then not only monotonic in their dependence upon A, but also totally ordered.
As Brendsted ([2], p. 21) has observed, this means that the function inf g, is convex,
2
We may therefore appeal to the following
LemMA. If the directed set I is totally preordered by <, then

Clil;fga = /\l.gl-
To prove the lemma, we observe, to begin with, that Brendsted’s observation
implies that
epiinf g, > col_J;,epig;.
a
It follows that the same inclusion holds when we pass to the closures of the sets in

question, even Wwhen the closure is taken in the emended sense described above.
Consequently,

clinf g, < /\Agx,
1

and we clearly have equality whenever {_,epi g; extends to —co in the R-direction.
To see that we also have equality in the contrary case, it is enough to show that

epiinf g; < clco (U, epigy,
3

for then we shall have equality when we take the closure of the set at left. Now, if
this inclusion did not hold, we could strictly separate some point in the set at left
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from the closed convex set at right by means of a non-vertical closed hyperplane.
Hence, for some constant ¢ and some point y we would have

ir;fg,(y) <c<g)

for all A in I. Taking the infimum over A at right then leads to a contradiction.
With this lemma in hand, the first part of our theorem yields the
COROLLARY. If, in addition, I is totally preordered by <, then the net f,, 11,
has the property Q at w if and only if

f¥ = cllimsup f*.
-0

Indeed, replacing I in the lemma by I\ {w} and using the definition of g; given
above, yields

PNisa \/,_« Jf* = clinf sup f;* = cllimsupf*,
Askw 1 <2 -

by definition of the limes superior.

The second part of the theorem can be put into a nicer form by observing
that g* = [cl g]* whenever g is convex. Proof: g** = clg by [2], p. 15, and g*** =
= g* by [2], p. 12. Consequently,

COROLLARY. When 1 is totally preordered by <, the net f,, « € I, has the property
Q at o if and only if

Jo = [ll'mSUPHmﬁ*]*-

When specialized, these two corollaries give the results cited in § 3.

The first corollary allows us to give another proof, valid in locally convex
spaces, of Cesari’s Theorem, by establishing directly the equivalence of weak semi-
normality in the extended sense with the formula given in the corollary. For lack
of space, we shall not enter into details here,

§ 5. A limes inferior and notion of convergence related to property Q

We have seen in the preceding section how Cesari’s property Q is related to the order
limes superior in certain complete lattices. It is both possible, and tempting, to intro-
duce the order limes inferior (by inverting the order of the lattice operations) as
a companion notion, and thus to define a convergence'when these two partial limits
coincide.

Nevertheless, experience with the topological limits of closed sets teaches us
to be cautious, and to define the limes inferor in a different way (cf. [5]). Thus
let # denote the class of all cofinal subsets I’ of the directed set Landlet K, cel,
be a net of elosed convex epigraphs over the space Z. We then define

liminf o K, = Nres Nino \Vizw Ko,

where, once again, o is the minimal element of I, In other words, we take the limit
superior over all cofinal subsets of I, and then their intersection.
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We say that a net K,, ¢ € I, converges if the limes inferior and the limes superior
agree. In the present case, this means that the limes superior does not change when
we pass to cofinal subsets of I.

Our order isomorphism from the lattice of epigraphs of regular convex functions
on Z to the lattice of their conjugate functions on ¥ preserves these operations and
gives us, as a necessary and sufficient condition for the convergence of a net of epi-
graphs, the stability of the order limes superior of the conjugate functions under
passage to cofinal subsets of I.

Whenever the directed set I is totally preordered, the limes inferior, defined
above, when expressed in terms of the conjugate functions, can be shown to take
the form

Nres Nmo \Vi<i £ = cleofliminf, .o £¥],
where the liminf is taken pointwise, for fixed elements y. Thus, the notion of con-
vergence here is, essentially, pointwise convergence of the conjugate functions,
followed by closure.

It is of interest to note that just this notion of convergence (under hypotheses .
which render unnecessary the taking of the closure) has been applied under the name
of “G-convergence”, by de Giorgi and his associates, to the conjugate functions
of energy integrals in order to study the convergence of sequences of uniformly
elliptic differential operators, v. [7].
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