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0. Introduction. The game analyzed in this paper is one of the exam-
ples of games of timing. We consider the following model. Two opponents A
and B duel. Player 4 has p silent and n noisy bullets (p > 1 and »n > 1),
and player B has 1 noisy bullet. A fires off his silent bullets first. The
terms noisy or silent say if the players are able to hear the shot or not.

We assume that the accuracy function (probability of hitting the
opponent at the time ¢) for both players equals ¢, te[0, 1].

The pay-off function is denoted by WTI[S,; S,], where 8, and S,
are strategies for A and B, respectively, and it is equal to

(%) WI[S8;:; 8;] = Pr{A survives alone} —Pr{B survives alone}
for adopted S, and 8,.

The above information is known to both duellists.

We show that the game has a value and we find an optimal strategy
for player 4 and an e-optimal strategy for player B.

In Section 1 we evaluate the pay-off function for pure strategies,
we describe classes of mixed strategies and we find optimal strategies.
In Section 2 we prove the optimality of the strategies found.

The case p = 1, n = 1 of our game with arbitrary accuracy functions
for both duellists was solved by Smith in [4], and the case n = 0 by
Styszynski in [5]. The converse duel, i.e. when player A shoots his noisy
bullets first, was considered by the authors in [3]. Other types of games
of timing are considered in [1] and [2].

1. Mixed strategies. Denote by z, the vector (z,, «,,...,x,), and
by z, the vector (z,,%,,...,2,), Where

0< 2 <& ... KT S22 ...<2, < 1.

Let W([Z,, z,;y] denote the pay-off function when player A fires
his silent bullets at the moments determined by the vector z,, the noisy
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ets at the moments determined by the vector Z,, and player B fires
his noisy bullet at the moment y, 0 < y < 1. Clearly, we assume that
: 1 for 2, <y, and 2z, = 1 for y < z,. The pay-off function is of the form

Wlz,, z,; y]

1—2y if y <@,
L)
1—2y [[(1—a)) it @, <y <@y, (s=1,2,...,p—1),
i=1
D
1—2yn(1—wi) if @, <y <z,
i=1

y 4 8
1-2y[Ja-e)[[a—2) iz <y<a,(s=1,2,..,0-1),
i=1 =1

S~

D 1
1—2~z)y [[a—a) [[1-2)

=1

ify=2(=1,2,...,n—-1),

v

l_n(1_$z)ﬁ(1_zt) li:l/ = %py
t=1

=1 [
» n

1—2n(1—m,.)n(1—z,.) if y> z,.

i=1 i=1

It is easy to obtain these equations directly from the definition of
pay-off function.

We seek for an optimal strategy S, for player A in the following
s of strategies.

A shoots his i-th silent bullet at time x; belonging to the interval
a;,,) according to the density function f;(x;,) (¢ =1,2, ..., p). Funec-
s f;(@;) satisfy the normalizing conditions

®i+1

f fi(w,)dx; =1 for i =1,2,...,p.

A will shoot his j-th noisy bullet at moment ¢; (j =1, 2, ..., n) with
bability 1 under the condition that B does not shoot his bullet until
time { = ¢, yet. In the opposite case, A will shoot his last noisy bullet
b= 1.

We assume furthermore that

0<a1<"'<ap<a’p+l=cl<c2<"'<on<1'
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In order to describe the class of strategies for player B we define
an accessory class of strategies in a noisy duel. In the duel two opponents C
and D have n and 1 noisy bullets, respectively. The strategy for player D
will be defined by induction with respect to the number 7 of noisy bullets
of C.

1. For » =1, the strategy S(1) for player D is the following:

If D does not hear his opponent’s shot until the time ¢ = ¢,, he will
shoot at this moment. In the opposite case, he will wait to the moment
t = 1 with his action.

2. For r = k < n, we assume that the strategy S(k) for player D is
known. ‘

3. For r = k+1, the strategy S(k+1) is obtained from S(k) in the
following manner:

If player D does not hear his opponent’s first noisy shot until the
time ¢t = ¢,_,,, he will begin to shoot during the interval (¢,_;, ¢,_;+ &,_z)
with probability density 1/e,_, (0 <e; < min[(¢;,,—¢;), €/2°], i =1, 2,
..., n—1). However, he breaks the shooting after he had heard the shot
of C in the interval (¢,_;, ¢,—;+ ¢,—;)- Then he follows the strategy S(k)
considering the second noisy shot of C as the first one. In the opposite
case, i.e. if player D hears the shot of his opponent before the time ¢t <e¢,_,,,
then he will at once follow the strategy S(k) considering the next shot
as the first one.

Now we can describe the class of strategies in which we seek for an
e-optimal strategy for player B.

Player B shoots his bullet at time y belonging to the interval [a,, ¢,)
with probability density g(y), and with probability g follows the above-
defined strategy S(w»). The described strategy for player B will be de-
noted by 8%.

Clearly, the following condition is satisfied:

31

(3) [9wdy+p =1.

a;

It follows from the definitions of 8 ,, S and W[S8,; 8,] that

a2 a3 ‘1 P
(4) WiS;yl= [ [... [ WIZ, 291 ] [file)da,
ay ay a, i=1

and
‘1

(5)  WlEy, %5 851 = [ W&y, %5 ¥19(y) dy + W Z,, %03 S(n)].
a1

Let us assume that the following conditions (6)-(9) are satisfied:

(6) W[S, ;y] =const =v for every yela,, ¢),
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(7) WI(z," ¢,; 8] =v for every z,*,

where Z," denotes any vector %, the components of which are restricted
by x;¢[a;,a;,,) for ¢ =1,2,...,p and by ¢, = (¢, €3y ..., ¢,),

(8) lim W(S,;y]=v fori=2,3,...,n,

u—>ci

(9) W8, 1] = .

We show that strategies S8, and S% obtained by (6)-(9) are the sought
ones.
It follows from relations (1), (4) and (6) for ye[a,, a,,,) and s =1, 2,
.., p that

(10) v [f[1 2yn (1—a)] £, (@) da, +

al ag—1 Gg
g1

+f [1 2yn1 ﬂv)]fs9”)‘i'-’*‘”]1_1fl

0
Notice that [[(-) —
i=1 ¢
Differentiating twice both sides of equation (10) with respect to y
we have

F(y) 3
() = ——y— for yela,, a,,,), s =1,2,...,p,
and
. k,
(11) fs(®s) = = for xela,, a,,,), s =1,2,...,p.

Putting (11) into (10) we obtain

= fo Jlffonl B

ag—1

Since v does not depend on ye[a,, a,,,), we have

(12) k,=a, fors=1,2,...,p.
Therefore, for s =1,2,...,p we have
“z+1
S Y ) (0] TR ) Y A
az—1 i
ky & k
=1-2k,— 2.2 —1_2q,.

a, a, a,
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In the last transformations we have used (2). Putting (11) and (12)
into (2) we obtain

(13) 1 1 2 for 1 =1,2
—_— = — Ir 9 = ces .
a; a12'+1 a; 1S P

Therefore, condition (6) holds if equations (11)-(13) are valid and
(14) v =1-—2a,.
From (1), (5) and (7) we get

(15) v=2p‘( [1 2y”1 m)]g(ydy+

i=1 a;
a1

+f [1 2:!/”(1 m]g(y)dy)-{—ﬁ[l n(l ;) ﬁ(l_ci)]'

Differentiating twice both sides of equation (15) with respect to =,
for 1<s<p we have

g’ (z,) 3
= = f
g(ms) @, or wse[a’s’ a’s+1)
and
l
(16) 9(y) =y_: for ye[a,, ag,y), s =1,2,...,p.

Putting (3) and (16) into (15) we obtain

11 .
17 v =1-— 2[§'z” (_a-_a —1+a“"' )+
3 ] 'i-l-l\

=1  j=1 ¢

From relations (1), (4) and (8) it follows for s = 2, 3, ..., n that

v_ff f[1 20 1(1 w)”(l—c]n da,
—1-2, n —e; alfazazfas G{H1 ;)

. .
- 1—2c,n (1—¢,)
=1 a
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whence
s—1 s
v = 1—2csn(1—ci) aal = 1_2"s+1n(1_ci) aal_
i=1 p+1 i=1 P+1
for s =1,2,...,n—1.
Therefore
(18) Copy = 1508 for s =1,2,...,n—1.

By relations (1), (4), (9) we have

n al
v=1—2n(1—c,,) ,
i=1 aIp+1
but also
n—1
@,
v = 1—20,,”(1—01.)
i=1 Op+1
and, in this manner,
1
(19) Cp = ‘2—

It follows from formulas (18) and (19) that

1 .
(20) Ci:m for’t=1,2,...,’n.

By relations (17) and (20) we obtain

p i—-1 »

v =1-2 (Zl,-nu—w,-)(% - a.l —14 )+ﬂcln(1—m,-)]

L Si=1 =1 ) T+1 T+1 =1
S 1 1 ;

—1-2| Y[ [a-a){- —— -1+ )+
| a’l 1+1 a’i+l

p—-1
l l x, 1
+I—_l[(1—wj)(;’;: — a” —1,+ =22 +ﬂap+1—wpﬂap+l)] = 9.

p+1 Ap i1

Note that a,,, = ¢;. The last expression does not depend on z, if
the following equation holds:

(21) 1, = Ba%,, = A

(n+1)2"
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We repeat step by step the procedure outlined above for the coeffi-
cients p—2, p—3,...,1 and obtain

1.
(22) I, = 1‘_‘; for i =2,3,...,p—1
T

L
v =1_2 _‘—ll).

On the other hand, by (14), v = 1 — 2a, and, therefore,

and

a
23 I, = —* .
{(23) s

By (21)-(23) we have

and also

1——0, )

S |
(23a) B =(n+1)a] ”

We have to prove the normalizing condition (3) which is equivalent
to the equation

l l l
—+-t 4+ 4p =1,
al a2 ap

and this to the following

p K
) 1 1
(24) a2 E'——’ I— +8 =1.
< a; 1 1—aq;
i=1 j=1

By (13) we have

1 y 2
— —(n+1) = —
Up ap
which implies
a,+ay(n+1) =1—a,,
whence
2 2

a a
25 p__ 122 =1,
(25) iyt

Note at first that equation (13) can be written in the form

1 1 1—a; .
p +;;—= a2l for ¢t =1,2,...,p.
i+1 : i
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Using this relation we transform equation (25) making p —1 opera-
tions, where the j-th operation is carried out in the following manner:

We multiply the equation obtained from (25) after j—1 opera-
tions by 1/aj_;,,; then we add to both sides 1/a,_; and multiply by
a;_;/(1—a,_;). For example, we show the first operation:

al (n+1)a; 1
a,(1—a,) 1—a, ’
1 (n+1)° _ 1
ay(1—a,) 1—a, a?’
1 1 (n+1)? 1 1 l—a,_
+ ) = —2 + = 2 p-1 ’
ap_y a,(1—a,) l1—a, a, Ay, ap_)
Op_1 @y ag_y(n-+1)°

al—a ) T al-ayl—a_) @ (Q-a)l-a,)

After p —1 operations we obtain (24).
By (23a), (24), (13) and (20) we have
0<pB<l, 0<y<...<0y =0,<C<...<¢,<1.

In this manner we have found all the parameters and density func-
tions which define the strategies of both players. Now we have to show
the optimality of them.

2. Proof of optimality of strategies S, and S5. In this section we
show that

(26) min W[S ;y]l =0
o<y<1
and
(27) max W(z,, 2,; Spl < v+e.

0<7) <... <xp <2 <. <2y <]
At first we prove equation (26) considering the following cases:
1. If y < a,, then W[8,;y] =1—-2y >1—2a, = .
2. If ye[a,, c,), then, by (6), we have W[8,; y] = ».
3. If ye(eg, ¢ey4) for s =1,2,...,n—1, then, by (8),

WiS,;91>= lim WS, ;9] = .

V>Cs 11

4. If y =¢, for s =1,2,...,n—1, then

Qy l as

WIS,;9] = f f...j}[l—(2_03)031?1(1_“7»:)]]17%‘1‘”1’
ap i=1 1 ¢

al a2 t=
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as a3 P
a:
> [ f[l oe, [ [ (1—a, —e)| [ [ 5w
! [lo-[fo-ol[]
= lim W [S‘_i,y] = 0.
y—c,

8

5. It Yy = Cpy then? by (9)’

W[sA;cnjzfaﬂ...Tl[ n(1 2, H c)]ﬁ%dwi
=fa2...7+1[1 2”1 m)n(l—-c ]” dz,

= W[S,,;1] =0o.
6. If y > ¢,, then
WIS, y1= WIS,;1] = w.

This completes the proof of equation (26).

Let z,_, and z,_, denote the vectors 7, and z,, respectively, without s
first components. Assume that z, is composed from %, by setting the
components greater than ¢, equal to ¢, and the components smaller than a,
equal to a,, and suppose that z, is composed from z, by setting the compo-
nents smaller than ¢, equal to ¢,.

Before the proof of inequality (27) we give some lemmas.

LEMMA 1. a. If y > o, for s, 1 < s < p, then

(28) W&y 2,591 =1—[[ 1—a)+ [ [ A —a)W[Z,_s, 25 9],
i=1 =1

where W(z,_,, Z,; y] denotes the pay-off function in the duel “p —s silent
and n noisy bullets versus 1 noisy bullet”.
b. If y >z, for t, 1 <t< m, then
t

(29)  WI[Z,, Z,;9] =1— Hl ; H )+

t

#[Ja=a[Ja—2 W1,
i=1

i=1

¢. The following equations hold:

(30) “7[52” En; S(n)] = 1“‘”(1—‘”1'){1_W[§p—s’ zn; S(’)’L)]}
=1

for s, 0 <s<p,



e

302 T. Radzik and K. Orlowski

¢

p»
(31) W&y, 23 8(m)] =1—[[(1—a) [[1—2) {1 —W[Z,_;; S(n—1)]}

i=1

if 2,<<Cpy 25 <X gy ooy <Gy, 0<E<N—1.

8
Proof. 1 — [](1 —=;) denotes the probability of hitting the player B

i=1

by player A with any of his s first silent bullets, and n 1—a;) is the

probability of the contrary event. In the flI'St case the pay off for player 4
equals +1, and in the second case the pay-off equals W([z,_,, z,; ¥].
Thus by (*) we have relation (28).

We can similarly show relation (29) to be true. In an analogous way
we prove equations (30) and (31). We show, for example, equation (31).

Wiz,, z,; S(n)] is the pay-off of player 4 when he shoots his bullets
at the moments determined by (z,, z,), and player B uses the strategy
S(n). From the definition of the strategy of player B it follows that if
2, < €y %3 < €3y ...y 2 < ¢, then this player omits his opponent’s ¢ noisy
shots, the (#4-1)-st noisy shot he considers as the first one and follows
the strategy S(n—t). If player A hits B with any of his silent bullets
or with any of his ¢ first noisy bullets, the probability of this event equals

D t
1—H(1—wi)n<1~z,-)

and his pay-off is +1.
On the other hand, if player A does not hit B with any bullet of his
p +t first shots, the probability of this event equals

P [4
[[a-e)[[a—2)

and his pay-off is W[z, ,; S(n—t)]. Thus the proof of relation (31) is
complete.
LeMMA 2. If o, <a,< 2z, then

W[ p7 n7 SB] W[(“l’ Ayy «oey Oy, ms+1, ws+2’ AR wp)’ zn; SZ’]?
N e’
8 times

where s (1 < s < p) 18 the number of those componenis of the vector x, which
are smaller than a,.
Proof. By the definition of S and by (28) and (30) we have
°a

W IRy, 2,5 851 = [ WIZy, 2,5 y19(y)dy + BW (%, Z,; 8(n)]

ay
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= [[=[]0o-2)0-WIE,., 2; yD]eway +

FBW(@yy @y eevy Oyy Byyqy Tgrgyenny Zp)s 23 S(n)]
S Wlay, @y ooy @1y Bopy By ooy Bp)y 2,5 8]
t times

In the above transformations we used obvious relations
1-W[Z, 5, %,;9]1>0 and 1-W[z,_,,z,;8(n)]=>0.

Thus the proof of Lemma 2 is complete.

LemMmA 3. If ¢, < @, then, for & 0 < & <1/10n(n+1),

Wz,, z,; Sl < W@y, @2y ..., gy €1y 1y «.vy €1)y 2,5 SE],
S
p—s times

where p—s (1 < p—s < p) is the number of those components of the vector ,
which are greater than c,.

Proof. Let x,,,> ¢, and y = min(z,, ¢,+¢,). We consider two
cases: @y, 1= ¢ +¢& and ¢ <o, < +t&.

1. For x,,, > ¢, +¢;, by (5) and the definition of §(n) we have

cl+81

W (Z,, 2,3 S5] = fW[ 23 919(y dy+ﬁf [1- 2?’”1 o)) - ay

fW[ Lyy Lay ooey Tgy Cpy Cpy oaey €1)y 2,5 Y19(y)dy +
~————

p—38 times
c1+51
+,Bf[1 2y”1w 1—e¢,)? ] dy
= W[(wlywzy ceey Tgy Cpy Cq, -"’01)7 n;SB]'
N——’
p—s8 times

2. For x,,, ¢, < #g,; < €+ &, let us denote by r the number of those
components of the vector r, which are smaller than ¢, +¢,. Therefore,
2; < ¢ +e fori=1,2,...,7, and

- 1
Wiz, 7 851 = fW[ n;y]gw)dyw{fwwp,zn;yls—dw

1
c1+&;

+f[ [ [a—zo—2) +n1 ) —zl)W[nl;S(n—l)]]-::dy}_

3 — Zastosow. Matem, 15.3
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Let us consider W(Z,, 2,; S] as a function of x,,, and denote it
by H(#,,,). Then

Zg+1

Tys) = fW[ 02 73 Y191 y)dy+ﬂ{f 1- 2-”” —a; —dy+
a

+ Zl fm[l 2y”(1 —)) ]—dy+ [1—2yﬁ(1—wj)]eidy+'
i=s+la; j=1 !
ey+e )

+ f [1 1 a:,-)(l—zl)[l—W[En_l;S(n—l)]]];dy}

1 ﬁ — ;) T

= [ Wiz, 2 9190 dy—l—ﬁ——=—?-m—{f+l2?/dy+

n S7+12y”(1 _a, dy+f2yn(1 — ;) dy +
iss+1a; j=8+1 Z,  j=s+1

etem) | [ @-eot—s =Wz 50— 1)

i=s1

Remark that in the last part of this equation the first two terms
do not depend on @, ,. Therefore, for » > s +1 we have

—pJ](1—ay |
H'(x,,) = 1=:1 {3w§+1_a’§+2_

(waa%n 1—a dy+f2yn (1—a, dy)
t=842z; j=s+2 t=8+2

— (e Fe1—7) ﬁ(l—w»(l*zl) [1 =W s S(n— 1))}

i=8+2
—B[] - vt
< igsl : {30%—(01‘}‘81)2—‘[4" 2?/‘1?/_51}

1
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8

_-ﬁIZ(l__wﬁ 1
= = 467 —2(c;+ &) —¢6) <0 for0<e<< ————
. {4 (€1 +&1)%— &} r € 10n(n+1)

since ¢; = 1/(n+1), and & < ¢/2.
For r = s+1, by similar transformations we obtain

8
_ﬁn(l—mi) 1
i=1 {3 — 92—} <0 for 0<e< ———0.

H'
(1) < o 107 (n+1)

Therefore, H(w,,,) is a decreasing function of x,,, in the interval
[¢1, @5, ) if r > 841 and in the interval [¢,, y] if r =¢+1, and

W[-'z'p’ Z,; Sl < W[(@y, %3y - ..y By, €1, Tgyay -1 ®p)y 2,5 Sp] for r>s41.

By (1) this inequality holds also for r = s. This completes the proof
of Lemma 3.

LeEMMA 4. If a, < 24, then

W [y, 203 S51< WIEy, 20 851 for 0< o< s

The lemma easily follows from Lemmas 2 and 3.

LEMMA 5. Let s be the number of those components of the vector z, which
are smaller than a,. Then

Wiz,, z,; Szl < W Zps (Ayy Qyyevny Byy Zegry ooy 23 Sg].
~———

8 times

Proof. By (5), (29) and (31) we have

o'
W%y, 2,3 851 = [ WIZ,, 2,5 ¥19(y)dy + BW[Z,, 2,5 8(n)]
a)
€ » s
= [[-J]a—2 [Ja—20 0 —Wiz_; yB]ow)dy +
» 8
+pf—[Ja—a) [[1—2) 1 -W(z,_s; S(n—9)]]}
=1 i=1

¢ D 8
< [i-T]a-a)[Ja—a)Q—Wiz,_; yD|ow)dy+
a) i=1 i=1

p 8

+aft—[[—a) [[1—a)[1—Wz_; S(n—s)1]]

=1 =1

1
= f W[Epa (Bry Byy oooy Byy Boryy Ropay ooy %) y19(y)dy +
al \'_-v———/

s times
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+IgW[5’p; (@13 Byy ooy Bry Zgpny Bgyas -o09 2p)5 S(N)]
b\p-/
8 times
= W[Zpy (1) By ooey By Zoyyy Bgpay -oey ) S%].
‘V-/
8 times

LEMMA 6. Let | be the number of those components of the vector z, which
are smaller than ¢, . Then

.1V[Ep7 Zn; 851 < W[Egn (C1y Cryoeey €1y Zppny ooey %) Sz]
‘/—/
! times
for 0 <e< 1
4 _—
10n(n+1)

Remark. Blackwell and Girshick have shown in [1] that S(m)
(1 < m < n)is an ¢,_,-optimal strategy in the duel “m noisy bullets versus 1
noisy bullet” for the player having 1 bullet. The value of the game eval-
uated there equals (m—1)/(m+1). Then

n—Il—1

(32) Wiz,_;; S(n—=1)]1< m

+81.

Proof. By Lemma 5 we can assume that z;e[a,, a,,,). Let

-1

max(g,_,, a,) if 1>1 ;
) (2115 @) . " and A =n(1—wi)”(1_z")'
max (@, a,) if l =1, =1

i=1

Using (29), (31) and (22) we can write
2

b
W%y, 25 851 = [ WIZp, 25 y19(9)dy + [ [1—2yA]g(y)dy +
b

ay
‘1

+ [ [1—29(1—2) A1g(y)dy + BW [Zy, 2,3 S (m)]

g

which will be considered as a function F(z;) of ;. Then

1 cl

b
P(z) = [ Wiz, 2 yl)dy+ [ gw)dy+p—24 [ yg(9)dy -
a; b b

—24{x [ ygay+1-2) S LW, s Stn-D]].
7

Observe that in this expression the.first four terms do not depend
on z,.
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Using (32) we estimate F'(z;):

d %g41 21 i+1
F(zz>=—2A[ﬁg(—zqu wndr—s 3 [ )

_ 5(1 —WI(Z,_; Sw—l)])]

=—2A[ ls _(ls+l _ls+1)_(lai_ls+2)_ _
s 11 Qg1 Qg Og2 Qg1 3

_ (ll _ L) _ g (=W Z.i; S(-n—l)])]

ap  Gpn

> —2A[( Ly _&L) +(ls_+l _ls_+2)+
2% Ag 13 g g Tgt2

4 —ﬁ(l notAl s,)]

_l_(kl__l_p +
a  a

ay,,, 2\ n—1-—1
A 8 |
> —2A —ls+1_ls+2— see T p+ ap+l - n—l+1 +ﬂsl+1
1 1 '
> —24 —
ﬁ[(n+1)3 n—1+1 +8’+‘]
2,3[ 1 1+]>O for 0<e< 1
— — —— 8 —_—
m+1P w ' ° 10n(n+1)’

since ¢, < ¢/2 <e.

Therefore, the function F(z;) increases in the interval [ag, a,,,) and,
since it is continuous in the interval [b, ¢;), we conclude that it increases
also in [b, ¢;). Hence

W[Epy Z,; S1 < W[y, (21 2y ooy 211y C1y By« 2n)5 SB]

which completes the proof of Lemma 6.
LEMMA 7. W[Z,, 2,; 851 < W[Z,, Z,; 8%l
This lemma is an easy inference from Lemmas 2-6.

To cdmplete the proof of the ¢-optimality of the strategy 8% of player B
we must show that

W[ * _* ; O] < [5;*? En;S§;]+e, where ¢, = (01,¢27 ceey Gy

‘Since condition (7) is valid, i.e. W[Z,* ¢,; 83] = v, it will be suffi-
cient for the e-optimality of the strategy S%.
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By relations (31) and (32) we have
W[EZ, 2:5 N
Cl )

- f W 5:;“,,222;y]g(y)dy+ﬁ{1—n(l—wi)ll*W[§:5S("”]}

ay =1

»

2
< fW[v‘c;, n;y]g(y)dy+ﬂ=1—”(1—mf)(n+1 —*’)}

ay i=1

p n—1

< f Wz, En;y]y(y)dyqtﬁ{l—n(l—wi)n(1—ci)}+e

a) =1 t=1

since

The obtained result we formulate as
LEMMA 8. W[Z,, Z,; Sg1< W[, 6,; Sg]l+¢ for 0 <e<1/10n(n+1).
It follows from Lemma 8 that in order to complete the proof of ine-
quality (27) it is sufficient to prove the condition
(33) Wz, &; 851 < WIZ,", G Szl

The following lemma gives an accessory equation.
LEMMA 9. If o, _, < a;, and x;e[a,, a;.,) (¢ =k, k41, ..., p), then

Zp:{fiyﬁ(l—wj)g(y)dw leﬁ(l—w,-)g(y)dy}+
i=k a; j=1 x; j=1
k-1

s l
oo [ Jaei = [Ja-ea Gt -4).
i=1 k

i=1

Proof. Using (21) and (22) we prove this by induetion with respect
to the number £k, the first induction step beginning from &k = p.

1. For k =p we have

b I | %p+1 P
fyﬂ(l—w dy+f ynl a)gy)dy+pe, [ [ 1-a)
a, i= j=1

%+1

—n 1—a; {fyy dy+f y(1 )g(y)dy+ﬁcl(1—wp)}
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l l l
[Tl -y o)
" p+1

D p+1

2. For k =r> 1, we assume that the following equation is valid:

zpj{f{yi—j(l—wg-)y(y)der'}*ly[i[(1—w,-)g(y)dy} +ﬂclﬁ(1—mj)

r

= n(l—wi) (i—r —l,).

3. For k£ =r—1, we obtain

i;i {afy j:l (1—$j)9(y)dy+Zhy!j(l——wj)g(y)dy} +ﬂ01!j(1—“’i)
B {a _}—1-’/]Irj(1—”%).¢1(?/)dy+mf@/Jij(1--00,).(1(y)<71y}nL

This completes the proof.

Let z,” be a vector Z, with components w;e[a;, a;,,] for 7 = r+1,
r+2,...,p (r=20,1,...,p). Consider any vector Z,* for 0 < u < p.
Inequality (33) can be replaced by

(33) W[Z,", 6,5 851 < WIE, , T3 8]  for 0<u<p.
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For v = 0 inequality (35) is true. Assume that 0 < u < p. From this
assumption it follows that

Byp1€[@upry Guysly Bupo€l@yysy Cyysly ooy Bpelap, ay ] i w <p.

We have to consider the following cases:

(a) v, < a, if u>2,

(b) z,>a,,, if u<p-—-1,

(C) mu‘[am a’u+l]'

It is clear that in case (c¢) there exists a vector a_c;““ = 7,* such that

D
(36) Wiz, ™, Gy 851> WIZ,", Ty S5l

We show now that also in cases (a) and (b) there exists a vector :L*“ !
for which (36) is valid.

For case (b) we assume that z, > a, ., and #,_, < a,,, if s > 1, and
specify two subcases: v <p—1 and v = p—1.

1. For u <p—1 we use (34) and obtain

Cu+1
Wz, B S5] = fK B, i N)9(9) Y+ f[l 2y[]1 2| 9w ay +
Q41
w Tit1 Qy+2 u+1
5 [y e ey R e P
i=s8 x; = $u+1
ai+1

e 3 tw a-alowar T s Jusoorn)

T=u+42 a;

Fu+1

-+ﬂ[1—2c1[p]<1—wi)]=f W Z", 5; y1g(y) dy + 3 —

s—1 u Tl I
—2n(1—w { fyy dy+2 f J”l ;) g(y)dy +
i=1 Ayt i=8 x;
Cut2  utl u+1
+ f ynl @; g(:t/dy+n(1 w)(““ u+2)}=¢(ws),
Tu+1
p+1
where M = f g(y)dy + B,
Ayt1

u T4l i

— _9 ﬁ(l_a}i { w+1 2 f n u+1 dy —

Tst1 S, z;  i=s+1
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Au+2  u+l u+1 I
f n 1 a; 1L+l dy _ ” (1 —$1') (a’u+2 _ lu+2)}
Tyry F=8+1 i=8+1 u+2
Qy42
— 2 ” = u+1 __ f lu+1 dy _ lu+2 + lu+2} — 0.
PTs1 y? By t2
s+1

2. For u =p—1 we have

p
;) = WIE", C,; 85] = f Wz, 6.5 y1g(y)dy +

p—1 Ti41

+f[1 2y”1 w]gy)dy+2 [ - 23/”(1 2] (y)dy +

ZSZ,‘

2p+1 u+l

—}—f [1 2y”1 w]g )dy—|—ﬂ[1 201 (1— a;)]

= fW[f "y S y1g(y)dy + M — 2]7 (1- w){fyg )dy +

%
p—1 Ti4+1 T ap+1  u+l P
+Zf y[[a—2away+ [ y[]a—a)g@)ay+pe][a—an],
i=s T3 J1=8 D ] S i=8
Ip41
where M = f y)dy + B,
p
s—1 I p—-1 Ti41 2 1
\ |
’ = —2 —z)—— — 1—a)2 dy —
v@) = -2[]a :m{ws“ 2 [Jo-apa
i=1 i=8+1 x; j=s+1
p+1
-1 [To-a o [Ta-s)
Ty j=s8+1 ° t=s+1

“p+1

lp
<——2lll m{ f — dy — fe,
Ts11 )
Ts+1
s—1 lp
- 2] [a-so
i=1 ap'l']

L—o.

Thus ¢(x,) is a decreasing function of «,. The expression W [?c;",“, . Szl

increases for ¢, = a,_,. We have the same fact for &, = a,;, #5417 = Gy,

..y &, = @,,,. Therefore, in case (b) we can find a vector z,* ' for
which (36) is valid.
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Let us consider now case (a) in two parts. Assume that a, <z, < a,,
and b = max(x,_,, a,).
1. In the case x, < a, for 2 < u < p we have

b
W(z,", 6,5 8%] = fW[o‘v}'i", > Y19(y)dy 4

Tu u—1 541 u
! !
4+ — —z |2 d — —z) |-
bf[l 2y U(l wl)]gﬁ y+f |1 2@/[._[(1 w@)]yady+

a;41

+ 3 ([l fJo-aliea)s [ o[ Jo-m] o
+,3[1—201]£[(1—m,.)]+ i‘ }+1[1 2y” (1—,) ]—dy
i=1 i=8+1 a;

p+1 l I

=be[az; %5 ¥19(9) dy+f 9(y)dy+p— 2”1 m =——

8

A1

l l l l
_ls+ swu +(1—$“)( utl —lu+l)+(1_wu)( exl. =¥ + AL

s Byt Qg iy g yo g to
‘ l l ’
842 u u
+ . - = 'P(%),
g3 Ay Ayt

+(ls+l _ ls+2)_|_ +(lu—l _l_u)+( lu _ lu+1 )+lu+ll
a a’u au+1 a’u+l ]

a’s+2 g2
- -2]_[(1 @) {—lp1—Tlgsg— - —lysr+lu g} > 0.

2. The case #x, < a, for v = p can be proved in the same way as
the condition ¢’(z,) > 0 in case 1. Thus y(«,) is an increasing function
of z, in the interval [b, a,_,). Therefore, also in case (a) there exists a vector
9?;‘“‘”, arisen from 7, by setting «, = a,,, such that (36) is valid.
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Hence we have shown that for every vector EI";“ (v > 1) there exists
z,*~1 such that inequality (36) is valid. Then it follows that

Wz, 6, S51< WIZ, 6,5 851 for 0<u<p

which completes the proof of (33). Thus 8% is an e-optimal strategy for
player B.
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T. RADZIK i K. ORLO WSKI (Wroclaw)

GRA CZASOWA MIESZANA TYPU (p+n)x1

STRESZCZENIE

W pracy rozpatrzono jeden z przykladéw gier czasowych. Dwoéch uczestnikow
gry A i B toczy pojedynek. Gracz 4 ma p kul cichych i » glosnyeh (p > 1, n» > 1),
a gracz B ma jedna kule gloéng. A strzela kule ciche przed gloénymi. Obu przeciwnikom
przypisano jednakowe funkcje celnoéci P(t) = ¢, te[0, 1]. Oznacza to, ze w danej
chwili ¢ prawdopodobieristwo trafienia jednego gracza przez drugiego jest jednakowe
z obu stron. ZaloZenia te znane s3 przeciwnikom. Przyjmujemy nastepujaca funkeje
wyplaty dla gry:
W [S;; 8p]= Pr {4 sam przezyje caly pojedynek} — Pr {B sam przezyje caly pojedynek}.
Zadaniem A4 jest ma.ksymahzowa.me danej funkeji wyplaty, zadaniem B za$
minimalizowanie jej.

Wprowadzamy randomizacje, pokazujemy, Ze gra ma wartodé i udowadniamy
optymalnosé¢ strategii gracza A i s-optymalnosé strategii gracza B.



