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A NEW FORMULATION AND SOLUTION
OF THE SEQUENCING PROBLEM: MATHEMATICAL MODEL

Many sequencing problems have been formulated and solved lately
by using disjunetive graphs. In this paper a more general model of se-
quencing problems leading to a new construction of the disjunctive graph
is presented. The algorithm of solving this problem is based on the branch-
and-bound method. The way of review of the graph-tree of solution is
based on new properties of disjunctive graphs. These properties allow us
to construct a relatively efficient algorithm for solving the problems
of greater size. An example from the literature is solved and the results
are compared.

This paper consists of two parts: in the first part the mathematical
model of the problem is presented, and in the second one an implicit algo-
rithm is given.

1. Mathematical formulation of the sequencing problem. We have n
operations which should be carried out on ¢ machines. Some of the op-
erations should be carried out in a certain technological order. To solve
the sequencing problem we have to find such a sequence of the operations
that the total time of all operations is minimal and the following assump-
tions are satisfied:

(a) Every operation should be carried out on a particular machine
and every operation can be carried out on not more than one machine;
every machine can perform only one operation simultaneously.

(b) The operations should be carried out according to some re-
quired technological order.

(c) The sequence of operations on every machine is arbitrary.
(d) Every operation cannot be interrupted.
(e) The set-up times are equal to zero.

Now we can give the mathematical formulation of the sequencing
problem. Let N = {1, ..., n} be the set of operations (numbers of opera-
tions) which should be carried out by using the set of machines @ = {1, ..., ¢}.
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Further, let RT < N X N be the set of relations expressing the techno-
logical requirements of the operation order. Let N, < N be the set of
operations which have no predecessors,

= {jeN | VieN A i, j>4RT},
and let N, = N be the set of operations which have no successors,
N, ={jeN |VieNAj,i)¢RT}.

Let N* < N be the set of operations which should be carried out
on the machine k, and let the following relations be satisfied:

UNt=N, N AN =0 (k,1eQ,k #1).
keQ
Assume that #7 denotes the starting time of the operation j, #7 — the
finishing time of the operation j, ¢; — the duration of the operatlon Jj
(¢;> 0 for all jeN), t, — the starting moment, and {, — the finishing
moment of all operations.
We may write the sequencing problem in the following form: find
ty, b, 85, 1Y, jeN, satisfying

29 by U
(1) t, = min,

(2) t/—t;>¢; (jeN),

(3) ti—t >0 ({,)>eRT),

(4) ti—1%=>0 (jeN,),

(5) t,—t >0 (ieN,),

(6) to tz7t;v7t;y>0 (jflv)y

(7) (F—=0v(EF—t>0) (i,jeN* i #j, keQ).

Conditions (1)-(7) constitute the problem which will be called Prob-
lem P. Constraints (2) require that the difference between that starting time
of the operations and the finishing time cannot be less than the duration
of the operations. Conditions (3) give the required technological order
of operations, and (4) and (5) state the condition that ¢, is the starting
moment of all operations and ¢, is the finishing moment of all operations.
Constraints (7) are disjunctions, each of which requires that two opera-
tions cannot be carried out on the same machine at the same time.

Problem P without constraints (7) is known as the linear programming
problem of finding the critical path of the graph. An example of a graph
concerning this problem is shown in Fig. 1.

Nodes «; and y; represent the starting and finishing moments of
the operation jeN and the variables #7, t¥. Let X and Y be the sets of all
nodes «; and y;, respectively. The node 0 represents the start of all op-



Sequencing problem 327

erations, and the node z the end of all operations. The variables ¢, and ¢,
are connected with these nodes. The set of all nodes equals

(8) A =XuvYu{oju{z}.

Fig. 1

Each are <{z;,y;) for x;¢e X, y;¢Y, jeN, defines the natural order
of starting-and finishing the operation j, expressed by constraints (2).
The set of these arcs is denoted by U,. To each arc let us correspond
a real number ¢;, called the arc length, representing the duration of the
operation j.

Arcs of the form (y,, #;> for y,e Y, x;¢ X, {i, j> ¢ RT, with zero length
represent the technological order of relations and constraints 7 —t? > 0.
The set of these arcs is denoted by U,.

Arcs <0, z;) for x;¢X, jeN,, with zero length represent the relations
between the starting moment of all operations and that of every operation
from the set N, expressed by the constraint #f —,> 0. The set of these
arcs is denoted by U,.

Arcs of the form (y;, z) for y,eY, 1¢N,, with zero length represent
the relations between finishing moment of every operation from the set N,
and the finishing moment of all operations expressed by the constraint
t.—1? > 0. The set of these arcs is denoted by U,.

The set of all ares equals

(9) U=U,vU,vU,uU,,
so the graph is of the form
(10) D =<4, U).

To make our considerations easier we introduce the following nota-
tion. Let C(x, y) denote the set of arcs of the longest path (if it exists)
between nodes x,yeA. The length of this path is denoted by L(z, v).



328 J. Grabowski

Sometimes the set of arcs of the longest path of the graph will be denoted
by C. Let d(x, y) be the arc set of some paths (not necessarily the longest)
between nodes #,yeA. The length of this path is denoted by 1%(x, y).

The disjunctive constraints (7) can be expressed as disjunctive pairs
of arcs. Each constraint

(=10 > 0)v (£ —t > 0)

will be associated with a disjunctive pair of arcs <{y,, ;>, <{¥;, #;>. Such
a pair of disjunctive ares is shown in Fig. 2.

Fig. 2

We supplement the graph D of problem (1)-(6) by all pairs of dis-
junctive ares {y;, #;>, <¥;, x;> such that i, jeN¥ i = j, keQ. In this way
we form the disjunctive graph D. The set of all disjunctive arcs is denoted
by V.

" Now, we can represent Problem P by the disjunctive graph

(11) D =<4, U;V>.

This definition of a disjunctive graph is more general than that given
in [1]-[4].

The described disjunctive graph D = (A, U; V) enables us to
consider the cases where it is necessary, from the technological consid-
eration point of view, to assemble several elements into one unit (Fig. 3a)
and to split one part into its elements (Fig. 3b). In general, the graph
D = (A, U) (in which every operation is represented by a pair of nodes
with the linking them arc) can represent any structure of carried-out
operations. '

Besides, the disjunctive graph (11) allows us to consider problems
in which instead of the set of operations N we have the set N of produc-
tion tasks. Each production task jeN consists of a set of operations which
are to be carried out according to the required technological order. To
solve the above problem we find such a sequence of the production tasks
that the total time of all production tasks is minimal. Every production
task jeN can be represented in form of the graph D’ = (47, U7, analo-
gously as in the case of the graph D = (4, U>. In the graph D’ the nodes
representing the starting and the finishing moments of the whole produc-
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tion task are denoted by 0’ and 2/, respectively. The disjunctive graph
for the problem is similar to the graph D. The nodes «; and y; in D have
their counterparts in 0’ and 2’, and arcs {(w;, ;> in D have their counter-
parts in the graph D’ = (47, U?). The lengths of arcs <z;, y,> in D have
their counterparts in the lengths of the critical paths of D;. The disjunc-
tive pairs of arcs [<y;, z>, <¥;, #;5] in D have their counterparts in the

pairs [<#, 0%, <&, 07)] (Fig. 3c).

a)

o/ zl
(x;j) (yj)

Fig. 3

Therefore, all considerations in this paper referring to the graph D
include also the above problem after adjustment to new notation.

The disjunctive graph described in [1]-[4] does not enable to solve
all such problems. It makes only possible to take into account those cases
where it is necessary to assemble several elements into one unit (Fig. 3a).

An example of the disjunctive graph for

N'={1,4,8}, N*={2,5,7}, N°®={3,38},
V= {1, 2>y Yay 8105 <Y1y Ty Yoy @105 <Yy Tady Yy T}y
V= {{Y2) @50, Yss 2Dy Y2y By Yoy T2y Y5y T2y Y, Tp)} s

V= {{¥s) @) 5 Ys) @3D}

is shown in Fig. 4.
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2. Properties of the mathematical model. Let be given the disjunctive
graph D = (A, U; V) of Problem P. This graph has the following prop-
erties.

ProOPERTY 1. The graph D = {4, U) has the source node 0 and
the sink node 2z and for each #eA — [{0} U{z}] there exists a path from the
node 0 to the node « and from z to 2. The graph D has no circuits.

PROPERTY 2. (a) There exist in D two subsets of nodes X < A and
Y < A such that

rXx)=y, IYY) =X,
V 3y =TIe)a ¥V 3 Y& =Ty,

zeX ye¥ yeY xeX

(12)

and each arc {x,y) (xeX, yeY) has the length ¢(x, y) > 0.

Condition (12) states that each node of the set X has exactly one
successor in D, this successor belonging to Y, and that each node of the
set Y has exactly one predecessor in D, this predecessor belonging to X.

(b) There exists a set of indices ¢ generating partitions of X and Y
such that

UxtF=x, UY =Y,
(13) keQ keQ
XnX' =0, Y Y =0 (k,1eQ, k #1), I'(X* =Y* (keQ).

It follows from condition (12) that I'"'(Y*) = X* for keQ.
ProOPERTY 3. The set V of disjunctive arcs with zero length is
(14) V=U 7V
keQ
(15) V = {Ky,2)e Y*x X* | [War(y, ) = Ov War(z, y) = 0]},
where War(«, y) is the statement function with arguments «, y ¢ A, defined
by
(16) War (2, y) = (there exists a path from the node z to ¥
in the graph D).
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Now, similarly as in [4], we introduce some notions and prove a num-
ber of properties of the disjunctive graph.

It follows from Property 3 and from condition (12) that for each arc
{y, x>V there exists exactly one arc {(u,v>eV such that the following
condition is satisfied:

(17) (w =TIz)A (v = T y).

Two disjunctive arcs [{y, ), {u, v)>] which satisfy condition (17)
are called a disjunctive pair. Any arc from a disjunctive pair is called the
complement of the other arc of this pair. Replacement of an arc by its
complement is called complementing.

The subset of the set V containing at least one arc from each disjunc-
tive pair is called a selection. A representation containing exactly one are
from each pair is called a complete selection. ‘

Let R, = {8,, ..., §,} be the family of all selections (not necessarily
complete), and let

(18) R, = {S,eR, | S, is a complete selection}

be the family of complete selections. In this paper we consider only complete
selections. Each selection §,¢R, generates a conjunctive graph

(19) Dr = <A’ UUS,) = {4, Ur>‘

The longest path from the node 0 to the node z (if the graph D, has
no circuits) is called the critical path in D,.

Let
(20) R, ={D,,...,D,}
be the family of graphs of form (19) and let
(21) R}, = {D,eR, | D, has no circuits}

be the family of graphs without circuits.

The critical path of the graph DyeR7, is called the minimaximal
path in D = (A, U; V), and the associated selection S, is called the opti-
mal selection if

(22) Ly, = min L,
D.eRp

where L, is the length of the critical path in D,.

Similarly as in [2], we can prove that Problem P is equivalent to
finding the set of arcs S,eR, of the disjunctive graph D = {4, U; V).
The set S, is such that the graph D, = {4, Uu §,) has no circuits, and the
critical path C, in D, is minimaximal in D. The length L, of the path C,
is the optimal value of {,.
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It follows from the above that the algorithm of finding the minimaxi-
mal path L, in D is equivalent to solving Problem P. For this purpose
we Pprove some theorems.

LeMMA 1. Let C, be the set of arcs of the critical path in D,eRY,. If the
arc {y,x)e8,nC,, then {y, x) i8 the only path between the nodes y and x.

Proof. Denote by d’(y, #) any path from the node ¥ to # which has
no arc <y, ). We have to prove that d’(y, «) does not exist in D, for <y, )
eS,nC,. We infer from Property 3 that for each (u, v) eS8, a path d'(u, v)
does not exist in D; so if d'(y, x) exists, it will exist in D,. That means
that there exists at least one arc <y, ;> such that

Yy YipeS,nd' (y, ®).

There is exactiy one of two possibilities: (a) the path d'(y, x) starts
with the arc {y;, y;,>¢8,, or (b) the path d'(y,z) starts with the arc

<y! yl>¢Sr

(a) If the path d'(y, x) starts with the arc {y;, y;,>€8,, there exists
a successive arc <y;, ¥,), belonging to the path d’(y, @), such that {y;, y,>¢8,
(we know from Property 3 that two successive arcs belonging to 8, cannot
exist). It follows from Property 3 that y;eX. In turn, from Property 2 it
follows that y,e¢ Y and the length of the arc ¢(y;, y,) > 0. Thus the length
of the path d'(y, ) is greater than zero and is greater than the length
of the arc (y, #> (as the length of each arc {(y, £>¢S, is equal to zero —
which follows from Property 3), which contradicts that the arc <y, >
is the longest path from the node ¥ to w.

(b) If the path d'(y, «#) starts with the arc <{y, y,>¢8,, there exists
a successive arc <y, ¥,> belonging to the path d’(y, ). It follows from
Property 2 that y,¢X, y,<Y and the length of the arc ¢(y;, y,) > 0, which
leads us to a contradiction like in case (a).

THEOREM 1. Let C, be the set of arcs of the critical path in D,eRp. Any
graph D, obtained by complementing any arc {y, ®)>eS,nC, has no circuits.

Proof. Let the arc {u, v> be the complement of the arc {y, z>eS,nC,.
Let d(v, u) be any arbitrary path from the node v to the node u in D,.
It is easily seen that it suffices to prove that the path d(v, ) does not
exist in D,. We infer from condition (17) that in D, the node v is followed
by the only node y and before the node « the only node z exists. According
to Lemma 1 the only path from the node y to # in D, is the are {y, ).
It follows from this that

d(v, u) = v, YD, Y, @y, (B, u))

is the only path from the node v to » in D,. As complementing the are
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{y, 2> in D, is made by rejecting this are, and so winding up the only
path from the node v to u, so in D, a path from the node v to » does not

exist.
For any D,e¢R}, and any node #¢4 we give a number of denotations.

The longest path from the node 0 to any #eA — {0} is

(23) L.(0, #) = max [L,.(0, y)+c(y, #)].
1/51"_117
The longest path from any node s A4 — {2} to the node z is

\

(24) L,(x,2) = max[L,(y, 2) +¢(, y)].

yel'x

Let x; and z; be nodes for which the right-hand sides of (23) and (24)
take their maximal values. For I'"'z — {#;} # @, let

(25) L,(0,#) = max [L(0,y)+c(y,2)],

vel~lz—{xy}
and for I'e—{z;} # 9, let

(26) Ly(z,2) = max [L,(y,2)+c(z,y)].

Ye I':l:-—{.‘tj}

L/ (0, z) is the longest path from the node 0 to # which does not con-
tain the are <{z;, >, and L,(z, 2) is the longest path from the node @ to z

which does not contain the arc {(w, ;).
Let

a,(0,%) = L (0,2)—L.(0,%) for #cX,

Br(y,2) = L.(y,2)—L.(y,2) for yeY.

Now we write the formula

(28)  A4,[(y, @), (u, v)]
= max[—a,(0,2), —B.(y,2), c(®,u)+ec(v,y)—a(0,z)—pB,(y,2)].

Similarly as in [4] we can prove that 4,.[(y, ®), (u, v)] exists for
all <y, #> €8, and the arc {(u, v) is the complement of the arc {y, z>.

THEOREM 2. Let D,eRy, and let D, be the graph obtained from D, by
complementing one arc {y, x)eS,nC,, where C, is the longest path in D,.
Then

Ls(0,2) = L,(0, 2) + 4,[(y, #), (u, v)].
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Proof. Note that for each <y,.:v>e0,nS,
L,(0,2)+max[—a. (0, ), — (¥, 2), c(x, u)+c(v,y)—

—a,(0, 5)—B.(y, 2)]

= L,(0, 2) + max[—L,(0, #) + L, (0, x), —L,(y,2)+
+L(y, 2), ¢(@, w)+c(v, y) — L.(0, ) + L, (0, ) —
—L,(y,2)+ Ly, ?)]

= max[L,(@, 2) + L,(0, ®), L,(0, y) + L,(y, 2),
L, (0, z) +c(@, u) +¢(v, y) + Ly (y, 2)]

= max[L,(»,2)+ L.(0, %), L.(0,v)+ L,(v, 2),
130, u) + (v, 2)].

It can be easily observed that L, (, 2) + L,(0, «) and L,(0, ) + L.(y, 2)
are lengths of paths in D, . It follows from the definitions of L, (0, «), L' (y, 2),
L(0, #), L(0, y) that {y, 2> does not belong to the paths with these lengths.
Summarizing, any path with length L, (2, 2) + L,(0, ) or L,(0, y)+ L.(y, 2)
does not contain the arc {y, #), so these paths are in D,. On the contrary,
the path with length 1¢(0, u)41%(v, 2) is the longest path in D, passing
across the arc (u, v> which is the complement of the arc {(y, x> C,. Since
the longest path in D, cannot be shorter than any other path, we have

L,(0,2)> L, (0,2)+ 4,[(y, ), (v, v)].

Therefore, by complementing the arc {y, z)>eC,, the lower bound
of the longest path C, in D, is L.(0,2)+ 4,[(y, ®), (%, v)]. It should be
mentioned that in [4] the lower bound is calculated for three given paths.
Therefore, the lower bound used in this paper is stronger and allows of
a better estimation of the longest path in D,.

The subset V? < V of disjunctive arcs is called full if it contains
arcs together with their complements. D® = (A, U; V*> is called the
d-partial disjunctive graph of the graph D = (A, U; V). Let L% be the
length of a minimaximal path of the graph D% Let

(29) R, = (D¢ = (4, TUSD)

be the family of graphs without circuits for the d-partial disjunctive graph
D* = (A, U; V. Such a family exists, for the set V* is full. It can be
easily seen that the following theorem holds:

THEOREM 3. Let D* = (A, U; V% be the d-partial disjunctive graph
of D =<A, U; V). Then
(30) L, > Lg,

where Ly and L? are the lengths of the minimaximal paths of the graphs D
and D% respectively.
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We determine a subset of nodes A® < A for any subset V% of
disjunctive ares by

(31) A® = {wed | {y, x>V}

which is called the full subset of nodes. It follows from Property 2 that
for each subset A* < X there exists a subset B* < Y such that I'(A%*) = B*®
and I''Y(B* = A® in D.

The d-partial graph D* = (4, U; V% of the graph D is called a dis-
Junctive d-connected graph if one of the following conditions is satisfied
for each unordered pair of x;, #;eA%:

(a) there exists a path between nodes #; and #; in D,

(b) there exists an arc <y,®>eV? such that y = I»; and = = &,
(or ¥y =I'w; and o = @;).

Remark 1. It can be easily seen that if the d-partial graph D°
= {4, U; V% is a d-connected graph, then for each unordered pair
Y;, Y;¢B* one of the following conditions is satisfied:

(a) there exists a path between nodes y; and y; in D,

(b) there exists an arc {y,x>eV® such that ¥y =y; and « = I'"'y;
(or y =y; and & = I'"'y;).

Since each node ze¢A® has only one successor I'zeB® and each node
yeB® has only one predecessor I'"'yeA® (this follows from Property 2),
it is sufficient to put y; = I'z; and y; = I'z;. Then the above-mentioned
property follows from the definition of d-connectivity (see Fig. 5).

Fig. 5

The d-partial graph D* = (A4, U; V*> of the graph D is called a
symmetrical graph to the node #z or, shortly, z-symmeirical if, for each pair
of nodes w;, ;e A"U{z} for which the longest path C(w;, ;) exists in D
and this path does not contain other nodes of the set 4*U{z}, we have
in D
(32) L(x;, ) = c(x;, ['w;), ie., L(I'z,x;)=0.

It should be noted that since 2z is the end node of all paths in the
graph, the first node #; of each pair of nodes is x; # 2, ;¢ A°.

5 — Zastosow. Matem. 15.3
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The d-partial graph D® = (4, U; V*> of the graph D is called the
symmetrical graph to the node 0 or, shortly, 0-symmetrical if, for each
pair of nodes x;, x;e B*U{0} for which the longest path C(w;, z;) exists
in D and this path does not contain other nodes of the set B*U{0}, we
have in D

(33) L(w;, ¢;) = e(I' 'w;, @), e, L(x;, I''w;) =0.

In order to illustrate the above notions let us consider the disjunc-
tive graph shown in Fig. 4. Let us create the disjunctive graphs

D' =<CA,U; VY, D*=<4,U; V>,
D*=(A,U;V* and D'=<4,UT;V,

where V* = V'UV2 It can be easily shown that each graph D* for
k =1,2, 3,4 is a d-partial graph of the graph D and

A = (@), 2, @g}, B' = {y1, Ya, Y}
A? = (@, 5, 7}, B = {Ya, Y5, Y1},
A? = {,, x4}, B® = {y3, ¥s},
A* = A'uA?, B* = B'uB’.

Each graph D* for k = 1, 2, 3 is d-connected. Consequently, for each
pair of nodes ;, x;e A* there exists an arc (¥, 2)eV* such that y = I'z;
and & = ;. The graph D* is not d-connected. It follows from this, for
example, that for the pair x,, #5¢ A* a path between nodes #, and x; does
not exist in D and <{y,, ;>¢V* (y, = Iz, in D). The graph D' is 0-sym-
metrical. Since the pair of nodes #,, ze 4'U {2z}, we have in D

L(wl,z) =1+2+3> 0($1,y1) =17

so D! is not a z-symmetrical graph. The graph D? is z-symmetrical. Since
the pair of nodes y;, 0e B*U{0}, we have in D

L(0,y3) =14+243> c(x;3,y3) = 3,

so D? is not a O-symmetrical graph.
The graphs D? and D* are neither 0-symmetrical nor z-symmetrical.
LEMMA 2. Let D* = (A, U; V% be the disjunctive d-partial and z-symmet-
rical graph. If for some pair of nodes ;, x;e A*U {2} the longest path C(x;, v;)
exists in D‘,‘eR'Da and this path does not contain other nodes of the set A%u {2},
then the length of the path is
(34) L(x;

‘K] wi) = c(wﬂ ij)-
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Proof. Since the graph D? has no circuits, so if there exists a path
between any nodes of this graph, then the longest path between them
exists.

In order to prove the lemma note that if the path C(x;, #;) exists
in D7, then: (a) the path exists in D, or (b) the path exists in D¢,

(a) In this case, since the graph D” is z-symmetrical, by (32) we have

L(x;y ;) = c(x;, I'z;).

(b) In this case, the path C(w;, #;) must contain disjunctive ares
of the representation S§7. Since ;¢ A% =; has one successor I'z;e B®. Now
we have

C(wy, ;) = C(wy, Tw;) VO (1'%, @p).

It is obvious that C(«;, I'z;) is a path in D, and so C([w;, ;) con-
tains the disjunctive ares. Since each disjunctive arc terminates in a node
from the set A% C(I'w;, #;) must contain at least one such node. From
the assumption of the lemma it follows that the path C(«;, x;) does not
contain other nodes (except #; and ;) of the set A*U{z} and, consequently,
x; is the only node belonging to the path C(I%;, x;). Therefore, #; must
be the end of the disjunctive arc

<P, @ eS8gnC(I'w;, 3;).

{p,®;) is the only arc of path C([Iw;, ;), i.e. p = I'z;. In order to
prove this let us suppose that p # I'z;. Since peB”, we have I' 'peA?
and also I'"'p # ;. Thus we obtain

C(I'zyy ) = O(I'z;, Irpyu(I 'p, PIV{Kp, zp}.

From the above it follows that the path C(Iz;, #;) contains another
node (apart from x;) I'"'pe AU {2} which contradicts the assumption that
the path C(I'w;, x;) contains only one node of the set A%V {z}. Therefore,
C(I'z;, x;) = {{p, %>}, i.e. p =TIz and

C(x;, 3;) = C(w;, I'my) V {{T'w;, @3},

and <{I'w;, x;»e87. Since c¢(I'w;, #;) =0, we have L(z;, ;) = c(a;, I'r;).

LEMMA 3. Let D* = (A, U; V* be a disjunctive d-partial, d-connected
and z-symmetrical graph and let C; be the set of arcs of the critical path in
D‘,‘eR'Da. If there emists an arc {y, ) eC2n 82, then the path C% contains such
a node ve A®U{z} that the path C(x, v) is of length

(35) L(z,v) = c¢(x, I'n)



338 J. Grabowski

and there exists a path d(I'"'y, v) which does not contain the arc {y, x> and
the length of this path is

(36) Iy, v) =Ty, ).

Proof. Since the graph D? has no circuits, there exists a critical
path and it can be written as

(37) 07 = 0(0,y)v{<y, 2>}ul(z,?).
Since xe A% x has only one successor I'z # 2. Thus we have
(38) C(z,2) = C(z, I'm)uC (I, 2).

Since I'm¢ AU {z}, any u e A°U {2} belonging to C(x, 2) is contained in
C(I'z, z). This path contains the node 2, so it contains at least one node
of the set AU {z}. Let » be such a node the earliest to I'x. Assume that
is the required node v. So we have to prove that the node satisfies the
assumptions of Lemma 3.

The path C(x,z) can -be defined by

(39) C(z,2) =C(x, I';)vC (I, u)VC(u,2z) = C(x, u)VC0(u, 2).

Let us consider the path C(x, #). In order to prove the first part
of the lemma, observe that we have: (a) the path C(z, %) exists in D, or
(b) the path C(x, u) exists in Df. -

Observe that, in both cases, #, ue AU {2z} and C(«, ) is the longest
path between nodes # and u such that it does not contain other nodes of
the set A*U {2} (because u is the first node in the path C(I'z, «)). In case (a),
since the graph Df is z-symmetrical, by (32) we have

(40) L(z,u) = ¢(x, I's).

However, in case (b), by (34) we obtain also relation (40). This com-
pletes the proof of the first part of the lemma.

To prove the second part of the lemma, observe that I' 'y ¢ A%U{z}.
From the property of d-connectivity of the graph D* = (4, U; V%) and
from completeness of the representation 87 it follows that: (a) there exists
a path between nodes "'y and u in D, or (b) there exists a disjunctive
arc {y, uye87 (or a disjunctive arc {I'u, x)eS,).

(a) If there exists a path between nodes I'"'y and % in D, then the
path does not contain the disjunctive arc (y, #>. Further, since the graph
D* = (A, U; V% is z-symmetrical, by (32) we have

L(P_l?h u) = G(F_l?h Y).
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(b) In this case it follows from (37) and (38) that the critical path Cf
contains the path

Cly,u) = {Ky, 2>}V l(z, u).

Since the graph D% has no circuits, it cannot contain the disjunctive
arc {I'u, x>, however, it contains the complement of the arc {y, %), which
implies that there exists a path between nodes I' 'y and u:

Ay, u) =d(I 'y, y)V{y, ud}.

Since u # x, the path d(I""'y, ») does not contain the disjunctive
are <y, «> and the length of the path is

Iy, u) =c(Iy,y).

Therefore, the node % is the required node v. The above consider-
ations are illustrated in Fig. 6.

e —— —
- %\
~ ~

<y Y ~

Fig. 6

LEMMA 4. Let D* = (A, U; V* be a disjunctive d-partial, d-connected
and z-symmetrical graph and let OF be the set of arcs of the critical path in
D“eR' . If there exists an arc {y, x> C2n 8% belonging to the path C; and
if the're exist nodes from A® which belong to the path C“ and which precede
the node I''yeA® then

(41) L%(0, 2) > L0, 2).
Moreover, the graph D has been obtained from the graph D7 by com-

plementing the arc {y, ).

Proof. By Theorem 1, complementing the disjunctive arc belonging
to the critical path produces no circuit in the graph Dg.

It follows from Lemma 3 that for the arc <{y, #)eC;n 8} there exists
a node ve A"V {2z} belonging to the critical path and having the property

(42) C? = (0(0,v)UCl(v,?).

From the assumption of Lemma 4 it follows that there exists at least
one node of the set A® belonging to the path C% and preceding the node I'"'y.
Let u be the earliest such node (to I'"'y). Thus we have

(43) C(0,v) = C(0, u)VC(u, P_ly)u{<r—ly’ y)}u{(w, y}yuCl(z,v).
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Since u, ' 'yeA® and the path C(u, ' 'y) does not contain other
nodes of the set A% by (34) we have L(u, ' 'y) = ¢(u, I'u). However,
it follows from Lemma 3 that the path C(#, v) has the length ¢(x, I'z).
Therefore, the longest length of the path is

(44) L0,v) = L0, u)+ec(u, Iu)+e(l 'y, y)+0+c(x, ).

Let us consider now the path d(0, ») obtained as a result of com-
plementing the arc {y, x): ‘
(45)  d(0,v) = C(0, w)Ud(u, 2)V{{z, I'ed}u{le, I yd}ud(I 'y, v).

The path d(0, v) (if it exists) does not contain the disjunctive arc
{y, %), however, it contains the complement of the arc {(Iz, I'"'y>. There-
fore, d(0, v) is a path in D%.

Now we prove that (a) the path d(0, v) exists, and (b) the length
of the path is equal to the length of the path L(0, v).

(a) In order to prove that the path d(0, v) exists, it should be proved
that the second and the last components of (45) exist. Since u, xe A,
repeating for these nodes similar considerations as for the nodes I'"'y, u
in the second part of the proof of Lemma 3 for case (b) we can prove that
the path d(u, ) exists and that the length of the path is I*(u, ) = c(u, ['u).
Further, it follows from Lemma 3 that the path d(I""'y, v) exists and the
length of the path is ¢(I" 'y, ¥).

(b) In view of the previous considerations we have
(46) 1%(0,v) = L(0, u)+c(u, I'u) +¢(z, ') +0+e(I' 'y, y),

i.e. by (44) and (45) we obtain
(47) L(0,) =10, ). ,

Further, since d(0,2z) = d(0,v)UC(v,2) is a certain path from the

node 0 to z in the graph D and the longest path is not shorter, we have
12(0, 2) > 140, 2).

Therefore, taking into consideration (42) and (47) we obtain

(48)  L2(0,) > 10, v)+ L(v, 2) = L(0,v)+L(v,2) = L0, 2).

The above considerations are illustrated in Fig. 7.
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CONCLUSION 1. Let D* = (A, U; V*) be a disjunctive d-partial, d-con-
nected and z-symmetrical graph and let C% be the set of arcs of the critical path
m D‘,’.‘eR'Da. If there exist two disjunctive arcs {y;, >, {Yp, ¥ Cin S}
such that the arc {y;, x;> precedes {y,, x,), then

(49) L3(0, 2) = L7(0, 2).

Moreover, the graph DS has been obtained from the graph DS by com-
plementing the arc {y, x;).

Proof. Since each disjunctive arc is terminated by a node of the
set. A% so0 z;¢ A% From the assumptions of Conclusion 1 it follows that z;
precedes I' 'y, ¢ A* and, consequently, by Lemma 4 we obtain inequal-
ity (49).

THEOREM 4. Let D* = (A, U; V* be a disjunctive d-partial, d-con-
nected and z-symmetrical graph. The set Sy° defined by

(50) 8 = {(y, ®)eB*x A% | [War(y, ) = 0vWar(z,y) = 0]A
A [L(0, Iy) < L(0, %))

is the optimal solution (optimal selection) of the disjunctive graph D* with
minimaximal path L5, where L(0, x), xe A, i8 the maximal path from the
node 0 to the node x of the graph D.

The proof of this theorem will be given after stating the algorithm
for solution of our sequencing problem in part two of the paper.

For the disjunctive graph D® = (4, U; V*> which is d-connected
and 0-symmetrical we can prove similar properties as in the case of
d-connection and z-symmetry.

LEMMA 2.1. Let D* = (A, U; V® be a disjunctive d-partial and
0-symmetrical graph. If for some pair of nodes x;, ;e B*U{0} the longest
path C(z;, x;) exists in D;‘.‘eR'Da and this path does not contain other modes
of the set B*U {0}, then the length of the path is

(34") L(xj, %) = o(I' 'y, ;).

LEMMA 3.1. Let D* = (A, U; V* be a disjunctive d-partial, d-connect-
ed and 0-symmetrical graph and let C% be the set of arcs of the critical path
in D7eR . If there exists an arc {y, x> <Cin 87, then the path CT contains
such a node ve B*U{0} that the path C(v, y) has the length

(35") L(v,y) = el 'y, y),

and there exists a path d(v, I'z) which does mot contain the arc (y,x) and
the length of the path is (see Fig. 8)

(36") 1w, I't) = c(w, I'w).
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'y

Fig. 8

LEMMA 4.1. Let D* = (A, U; V% be a disjunctive d-partial, d-connect-
ed and 0-symmetrical graph and let C¢ be the set of arcs of the critical path
in D‘:eR'Da. If there exists an arc <y, x)eC:n 8T belonging to the path C2
and if there exist nodes from B¢ belonging to the path C* which follow the node
I'ze B, then (see Fig. 9)

(41') L2(0, 2) > L2(0, 2).

Moreover, the graph D7 has been obtained from the graph D¢ by com-
plementing the arc {y, x).

Fig. 9

THEOREM 4.1. Let D* = (A, U; V® be a disjunctive d-partial, d-con-
nected and 0-symmetrical graph. The set S3° defined by

(50") 83 = Ky, x>eB*x A® | [War(y, ) = 0vWar(z, y) = 0]A
A[L(y,2) > L(I'=, 2)]}

is the optimal solution (optimal selection) of the disjunctive graph D* with
minimaximal path L3, where L(y,2) (yeB) is a maximal path from the
node y to the node z of the graph D.

Remark 2. Let us consider the disjunctive graph D¥ = (4, U; V%>
(ke@), where V*is the set of disjunctive arcs defined by (15) and, as can
be easily seen, it is also the full subset of V. That is to say, D* is the
partial graph of the graph D. It follows from Property 3 that each graph D*
is d-connected, and A* = X* and B* = Y* are the full subsets. If we
assume War(z,y) = 0 for each x,ye¢X* and L(x,2) = ¢(z,2) in D for
each z ¢ X*, then D* is the z-symmetrical graph. However, if War(z, y) = 0
for each , ye X* and L(0, y) = ¢(I' 'y, y) (L(0, I'"'y) = 0) for each ze Y*
in D, then D* is the 0-symmetrical graph.
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J. GRABO WSKI (Wroclaw)

NOWE SFORMULOWANIE 1 ROZWIAZANIE
ZAGADNIENIA KOLEJNOSCIOWEGO: MODEL MATEMATYCZNY

STRESZCZENIE

. W pracy sformulowano ogélne zagadnienie kolejnosciowe, prowadzgce do nowej
konstrukeji grafu dysjunktywnego. Uogdlniono istniejace definicje i wprowadzono
nowe pojecia do teorii graféw dysjunktywnych. Pozwolilo to na skonstruowanie
stosunkowo efektywnych algorytmoéw, umozliwiajacych rozwigzanie zagadnien
o wiekszych rozmiarach.



