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MATRIX FUNCTIONS :
TAYLOR EXPANSION, SENSITIVITY AND ERROR ANALYSIS

The paper presents the Taylor expansion of a matrix funetion, where
its argument is a matrix itself. On this basis the sensitivity analysis of
& matrix function is provided. For a matrix function of a matrix random
argument, the error propagation law is derived. The derivation is provided
on the basis of the presented Taylor expansion and a new definition of
the correlation matrix. The method is applied to system theory and to
the analysis of computation errors of systems.

1. Introduction. The paper deals with matrix-valued functions of
& matrix argument. The definition of these functions is the following.

Let A be a (p x ¢q)-matrix, and B an (s x t)-matrix. If the entries of A
depend on B, i.e.,

a; = a;(B) (t=1,..,053 =1,...,9),

then the function (Y

A=[05B)]=4B) @E=1,.,p;j=1,...,0

13 called a matriz function of a matriz argument.

In many technical problems, the Taylor expansion is used, e.g., in
Sensitivity analysis [5], [7], [10], in optimum system theory [1], in sta-
bility [13], in identification of systems [8], as well as in the analysis of
data errors in computation of large systems [4], [6], [7]. For some of
these problems the notation of the Taylor expansion of a matrix function
of a matrix argument is required. This paper gives the Taylor expansion
of such a funection, and some new matrix operations are presented along
With it. The notation of Taylor series for such a function has not often
appeared in the literature. Flaming [3] and Deutsch [2] have considered
% vector function of a vector argument, and Vetter [17] has considered

. (*) Descriptions of the symbols, definitions and basic relationships can be found
In Appendix A.
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a matrix function of a vector argument. These Taylor expansions can
be used for a matrix function of a matrix argument if all objects of the
function are represented in the vector form. In many cases it can be
done by the column or row transformation (see [1], [17], and also Appen-
dix A); these transformations are not convenient, however, because the
two notations are used for one mathematical object (for matrix notation
and vector notation — see [4]-[7]).

The notation of the Taylor expansion of a matrix function of a matrix
argument proposed in this paper is compact and does not change the
form of the objects. On this basis, the sensitivity analysis of matrix func-
tions is presented.

In the statistical analysis of random vectors the correlation matrix
is used as a measure of errors of the vectors. The correlation matrix of
random matrices is not defined. In this paper two definitions of the corre-
lation matrix of random matrices are given. On this basis, two methods
of notation of the error propagation law are derived.

2. Matrix derivative, differential and integral. The derivative of a (p X q)-
matrixz function A with respect to the (s X t)-matrix argument B is defined
by Vetter [17] by

0A (B) 04 1
(1) B | (k=1,...,8; 1 =1,...,1),
Kl
where
04 oay | . .
(2) 6b,d':[6b] (t=1,..,p5)=1,..., 0.
Kl
If the operator 0/0 B is defined by
0 0 ]
ﬁ:-[bb_ (k=1,...,8;l=1,...,t),
Kl

the derivative of the matrix A with respect to the matrix B can be presented
in the form

04 0

28 ~ a8 %4

This description of the matrix derivative leads to the following
conclusions:
0%% A 0 ) p)
(aB)®k— OB ®?§®®Fé‘®ft (k factors),

0%34 d 0 0

_ 4
iBoiCodD _ aB% 3¢ ®3p %4

04\" [0 AT 9 _ . 0AT
(aB) “(ﬁ&d) =55T &4 = 5T




Matriz functions 5

Notice that a derivative of a matrix A with respect to a matrix B
can be given as

0rA day; ; P

6ZB =[61;] =125 =1,...,0),
‘where

60;,-]-:[6“«;5] (k_____l’.”’s; l=1’...,t)-

0B by

This definition gives

dpd 9
AR .
9B ® 5B

This matrix derivative is called the right derivative of A with respect
to B. Later we use only the left derivative (1), since the relationships for
the right derivative are similar (although they may be more convenient).

For the (s x?)-matrix B, the i-unit matrix funetion I, and the

-sunit matrix funetion I,, from [17] we take useful relationships of the
matrix derivative:

3(40) 04 aC
3 =
(3) 3B 7B (L;@0)+(I,®4) 3B’
0B
(4) 3B 5257
3 0BT
5) — Jptxs
( )3 0B Esxt'

The matriz differential is defined by

(6) A4 = [daz) (i=1,..,p;j=1,...,0.

The matrix row or column transformation for the (p x ¢)-matrix

function 4, the g-unit matrix function I, and the p-unit matrix function

I, gives the differential of 4 (B) in the form 173

- 9A
d4(B) = ——(a(rsB)* ®I,) = (d(esB)" @ L) 5=

The matrix differential can be expressed avoiding the column or
row transformation; in this case the differential is defined by (6), and
0 ay

(7) da; = —=L0dB,
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since

aa., da, v 0a,; af

9% 5aB = tr|2i aB* Z i b 2 da.(B).
3B (OB ) ,2 i oby %(B)

For the matrix differential the following relationships are valid:

(8) d(FG) = dFG + FdG,
(9) dFRQF) =dF G+ F ®d4d4q,
(10) A(Fo@) = dFo G+ Fod@.

Equation (8) is well known (see, for example, [2]), equation (9) can
be found in [17], and (10) is derived from the definition of the inner
product and from (8):

d(Fo@) = d(tr(FG*)) = tr(d(FG*)) = tr(dFG* +FdG*) = dFoG+ FodQ.

A matriz integral is defined by
4, i

H= [do=|[da]=4,-4, G=1,..,p;5=1,...,0.
4, 1

From the definition of the differentials (6) and (7) we obtain

2
%5 B,
oa;
_fda_ f — 0dB.
l. Bl
The formula
B, B,
9g,,(B
H = fF(B)dG(B) — fF(B)[ gg’; )odB]
B B

/
k=1,...,p;1l=1,...,9)
is a generalization of the latter integral formula.
The corollaries to formulas (8)-(10) are the following integration by
part relationships:

By
(11) [ F(B)da(B) = F(B)G(Bl de(B G(B),
B,
By
[ P(B)®d&(B) = F(B )®G(B‘ de(B ®G(B),
By
B,y
(12) [ F(B)odG(B) = F(B)oG(B) 2— f dF(B)oG(B).
B By
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3. Matrix Taylor expansion. Let A =[ay] (1 =1,...,p;i=1,...,9)
be an (N +1)-differentiable mairiz-valued function of & matriz argument B.

Then, for the (p X q)-matriz function A and the (8 X t)-matriz argument B
the Taylor expansion of A(B) takes the form

N
1 a®k "
y = @y % — B.)®k 1 pN+D)
(13)  ay(B) a,i,(Bo)-}—l;k! B B=Boo(B o) OF 474
B =1,.e,P; 5 =1yc00y ),
where
-1 6®(N+1)a,

(N _ (N+1)

() W= w f @z * 4B =2 '

i the ij-th entry of the remainder matriz RV+Y,

BV =[f*D] (i =1,..,p5§ =1, 0-

Proof. We prove this theorem by induction. At first we show that (.13)
is true for the sum consisting of one element (N = 1), and then, assuming

that (13) is valid for the sum of N —1 elements, we prove it for the sum
of N elements.

In the integration formula (11) we put F(B) = 4(B), G(B) = I,
B, = By, B, = B, and we get
B
a5(B) = ay(Bo)+ [ day(Z).
By
By (7) we have

0. n
da;;(Z) = 8‘? 0dZ = ‘% 0d(B—12),

therefore

da,
a,;(B) = ay(B,) — od(B—Z).
d ’ az

Formula (12) gives

a;(B) =

B
f ( ”)o(B —7)

or

X (B) 1,) (BO) +
/\'

(... % Pezazsle
2

(B BO) + ’ru ’
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where, from (B.9) in Appendix B, we find
—1 7 0%%a,

21 BJ (aZ)®2

0

od(B—2Z)®*

so that (13) is proved for ¥ = 2.
Let (13) be valid for the sum of N —1 elements, i.e., let

1 6®k
(15) ,,(B) = ay(By) + Z T OB |, OB B oA,
0
where
—1 [ 9%%,
(16) 8 =57 | GaeroiE-2
"y

Applying formula (12) to (16) we obtain

) 1 a@N oN 1 a@N N
1 ®
T TN (aZ)eN B2+ 3y fd((aZ)w) (B—2)
0
or
(17) N — _.1_ e (B—B)®N+1‘(N+1)
v (aB)GN 55, R
where
B
1 0%V a,
(N+Y) B—2Z
(18) T4 g Bf d((aZ)®N) °(B—2)>"
0

By (B.9) we transform (18) to the form

-1 a@(N+l)aj

N4+1)
(19) T3 = (N—}—l)' (aZ)®(JV+1)

d(B Z)@(N+l)

By (15), (17) and (19) we obtain finally

1 O@ka
1](B) - az](Bo + Z ‘J

k=1

o(B—By)® 47",

B=B,

where r"*? is given by (19). Thus expansion (13) is valid.

4. Sensitivity analysis. The above-described Taylor expansion gives
the possibility of calculating sensitivity functions of first and/or higher
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orders for matrix relationships. Let us consider a first order semsitivity
function, and let the matrix A depend on the matrix B, i.e.,

(20) A = A(B).

The sensitivity function, which describes the relation between the
variation 4B of the matrix B with respect to a fixed value B, ?,nd the
variation of the matrix A with respect to A4, (4, = A (B,)), is given by

A4 = 8(B,, 4B).
We find this function expanding (20) in a Taylor series with re-

spect to B, and neglecting the terms of second and higher orders. Thus
we have

A(B) = A(B,)+dA|p_p,.
Writing 44 = 4(B)—A(B,), by (13) we obtain
(21) 44 =8(By,4B) =[82P0AB] (i=1,...,p;j=1,...,0),

‘where

da,;
22 aB __ ~ 74
(22) S = =

B=B0

Example 1. Given the (3 x 2)-matrix function 4 of a (2 x 2)-ma-

trix argument B represented by A(B) — KBBT, where K is the con-
stant matrix:

If the variation AB of B is

0.03 0.10
4B = [—0.20 0.05]

1 -2
Bo = [3 —5]’

then the variation 44 of 4 is found. The relation between 4B and A A

is given by (21) and (22). To use it, first we find the derivative 0.4 /0B
from (3) for a 2-matrix I:

with respect to B = B,,

94  9(KBB")

d(BBT)
0B 0B '

0B

= (I®K)
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_Moreover, for a 2-matrix I, equations (3)-(b) give

d(BBT) 4B 0BT
5 — 354 ®BT)+(I®B) 5 = EX(I®BT)+(IQB) K
2b11 b21 2b12 b22
b2] 0 by 0
0 bu 0 b12
bll 2b21 b12 2b22

or
~ 2 3 —4 — 57
. 13 6 —23 -—10
A J0(BB _ - —
0 ' — (I®K) (BB”) _ 4 3 2 5
0B |B=B0 0B BB, 0 1 0 —2
3 20 —6 —34
L 2 11 —4 —18.
Therefore, we have
S"B _ 00;11 _ -2 b ] SGB _ aalz _ F3 —5]
"7 9B |g.p, L0 of " 0B g5, L1 2
aB a azl -13 - 23 aB a azg [ 6 - 10
8y = = ’ 83 = = ’
0B B=B, | 3 —6 0B B=B, (20 —34
SaB _ aaal _ —_4: —2 SGB . aalag _ " —3 5
NPy ) B=Bo_ 2 —4) ® 0B |p.p, L—11 -—18)

and the variations of the entries of A are
Aay, =8804B = —0.34, day, =85 04B = —0.71,
Aay = 8:80AB = —2.81, Aday, = 83F04B = —6.52,
Aag, = 880 AB = —0.92, Adas =82F0d4B =111,

—034 —0.71
44 =] —2.81 —6.52].

or

—0.92 1.71

5. Error amalysis. Error analysis for vector functions is provided
on the basis of the Taylor expansion. Expanding the funetion # = z(y)
(# and y are vectors) in a Taylor series and neglecting the second and
higher order terms, we obtain

z = z+8(y—19),
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where

_ sl

09 by

and y is the random vector with the mean value y, and the correlation
matrix R,

(23) R, = B((y—90) (¥ —90)")-

The mean value of the vector x is given by the relationship x, = (%),
and the correlation matrix of # can be obtained from

(24)

S

R, = E((x — ) (z—x,)*) = SR, S".

Definition (23) of the correlation matrix cannot be used for randf)m
matrices, but there are at least two methods of defining the correlation
matrix for matrix random variables. The first method consists in the
column or row transformation of the matrix. In this way, from a (p X ¢)-

matrix 4 we obtain the vector a = c¢s(A4) of dimension pg. The correla-
tion matrix of this vector is defined by

(25) RY = E((a—ay)(a—ay)*), where a, = E(a).

This matrix is called the first form correlation matriz of A. It is a square

matrix of dimensions pg X pg. The variance of a,; is at the k-th place on
the main diagonal of RY), where

(26) k= (j—1)p +i.

The correlation coefficient of a;; and a,, is in the k-th row and the l:th
column of R{), where k is given by (26), and ! by the equation
L= (v-1)qg+u.

In the second method we may avoid the column transformation, i.e.,

renumbering the matrix entries, if we let the correlation matrix of the
matrix A be in the form

(27) R = E((A—A4,)®(4A—4,), where 4, = E(4).

This matrix is called the second form correlation mairiz of A. It is
a rectangular matrix of dimensions p2x ¢%. The difference between ma-
trices R and R® consists in the distribution of their entries. The correla-
tion matrix R contains pq blocks, each of which has dimensions p X g.
The variance of a; is in the ij-th block, at the ¢j-th position in it. In other
words, variances of the entries of A are in the same places as non-zero
elements in the permutation matrix E2X2. The correlation coefficient of ay

with a,, is in the 4j-th block at the wv-th position in it.

Note that, alternatively to (27), we can define the second form corre-
lation matrix

(27a) RY = E{(4—A4,) ®(4—4,)").

6 — Zastosow. Matem. 16.1
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The relationship between the first form correlation matrices is the
same as between the correlation matrices of vectors (see (24)). This follows
from definition (25), where the matrix A is represented as a vector a.

The relationship between the correlation matrices R% and RY,
where A = A (B), can be found as follows. From (21) we obtain

(28) A4 =[83PodB] =[tx(8574B*)] (i =1,...,p;5=1,...,9),
where S;-‘B is given by (22). Defining a matrix yuk, by
(29) z]kl SGB®SM 9

we get
(30) R(z) [SPJ”OR(z] (tyk=1,...,p; 4,1 =1,...,q),
since the relationship (see [11] and [12])
tr(A ® B) = tr(4)tr(B)
implies
RY = E(44 ® 44) = E[tr(8:F AB*)tr(Ssf 4B¥)]
= B [tr((857 AB*) ® (Sif ABY))] = [tr(L5m(RE)*)]
= [ zyklOR(z)] (G, b=1,...,p; 5,1l =1,...,9).

Example 2. Let the argument B of the function A (B) in Example 1
be a random matrix with the mean value

1 -2
B0=[3 _5]7

and with the second form correlation matrix

04 00 00 0.1
—0.02 01 0.02 0.0
—0.02 0.02 01 0.0}

0.2 00 00 05

The mean value of A can be obtained from the relationship

RY —

5 13
A, = A(B,) = KB,BY =49 128},
19 55

and R can be derived from (29) and (30). We compute two entries of R®:
Ti11 = 0oy (the variance of a,,) and 7., (the correlation coefficient of
a,; and ag,). From (29) we obtain

4 —8 —8 16
0 0 0O o
SpaB — SaB —
1111 ®Sll 0 0 0 0 ’
0 0 0 0
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—9 15 15 —25
. B e 33 —54 55 90
ylZB;Z = Sl2B®S3.‘? = _3 5 —6 10 ’
11 —-18 —22 —-36
and by (30) we have

1111 = y?ﬁlo R(I? = 1.76,
T1232 = 5”‘1’32013%’ = —30.38.

In the same way we find all entries of R, and we obtain

| 1.76  4.68  4.68 9.18]
18.04 —0.40 21.30 —30.32
—3.44 —6.68 —9.68 —30.38
18.04 21.30 —0.40 —30.32
R® —=1120.38 105.04 105.04 628.80].
—5.48 —3.60 79.76 255.92
—3.44 —968 —6.68 —30.38
_5.48 79.76 —3.60 255.92
18.96 43.66 43.66  200.38

Example 3. Sensitivity and error of eigenvalues. Let us
consider the eigenvalue problem

(31) (A—1Da, =0,

Where A is the symmetric (n X n)-matrix such that

1. A has the variation 44 with respect to the fixed value 4,. The
variation AJ of the eigenvalue vector A = col(4,) (¢ =1,...,n) with
respect to 4, = 1(4,) should be found.

2. A is a random matrix with the mean value 4, and with the second
form correlation matrix R?). The second form correlation matrix R{
of the eigenvalue vector should be found.

The problem of uncertainties of eigenvalues is often analyzed in the
technical literature (see, for example, [4]-[6], [9], [14]-[16]). In [4]-[6]
this problem is solved by the use of first form correlation matrices.

The eigenvalue problem can be presented as

T
(32) j = BAm
x; @;

To solve both problems, stated above, we find the derivative 92;/0A.
From (32) and (3) we obtain

02, 1 9(x; Ax,) o 0 (@} w,)™?
04 ~ Fa o4 TuAm—

1
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but
a(m;l‘wi)—l U\ -2 a(w;rmz)
7 S v e
Then
04 6(90-TAw-) 6(9; ;)

33 b= () | — — .
We find the first derivative in (33) using formula (3):
d(a] Aw)) O] T O(Aw

A — g4 L®4z)+(I ;)
o

(I®Aw)+(I®mTA) +(I®w )%-(I@w,.).

From (4) we obtain

dA
(I®w§)ﬁ(1®wi) =IQz))Epyin(I®g;) = 27,

nxn
therefore
d(xf Ax;)  Oxf

dx;
= ) TA)y— X

Similarly, we have

6(99?50,-) ot

(35) S = 2% (1 @0) +(T@ef) T

From (33), (34) and (35) we obtain

07, (0T
o4~ @) (6A H( ))

By formula (31), the first two elements of the sum on the right-
hand side of the above equation are equal to zero. Therefore

0k  ma]
0A  aolm’
Putting
g _ Ok | _ Bute

0A |44, oi

where g,; = @y;%,; and x,; = x;(4,), we derive the variation of the eigen-
vector A from formula (28):

A1 =[8H0AA] = [gilouof04A] (i =1,...,n).
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From (29) we obtain the matrix &3 in the form

9’;?)4 = 8 ®S;'u = (goigo;')_l(woim'(}‘i) ®(%jonj)

= (o:o;) ™ (Wo; @ %y;) (%5 ®%o3) = (90:905) " Xoij X »

where X, = &, ®,;, and from (50) we derive the second form correla-
tion matrix of the vector A:

B = [#}0RD] = [(uide) " Xoyy X0 BDT (5,5 =1,..., m).

6. Conclusions. The method of the Taylor expansion of a matrix
function of a matrix argument, presented in this paper, has a compact
notation. The application of this expansion to the analysis of the para-
metric sensitivity and the statistical analysis of matrix relationships
is shown.

In the expansion the inner product of matrices is used. Notice that
this product requires a small number of computations. If the components
of the inner product are matrices of dimensions p x ¢, then, to compute
this product, pg multiplications and pg additions are required. The “reg-
ular” product requires p?q multiplications and p2q additions, and (pg)?
multiplications and no additions are required for the direct produect.

Appendix A. Some matrix notation.
A =[a;](t=1,...,p9;j =1,...,q) — a rectangular (p x q)-matrix;
col(z;) (4 =1,...,m) — (nx1)-vector;
A — the complex conjugate matrix of 4;
A* — the complex conjugate transposition of A;
cs(4) — the column transformation of a (p x ¢)-matrix A4,
cs(4) =col(a;) (¢ =1,...,9),
where a, is the i-th column of 4;
r3(A4) — the row transformation of a (p x ¢)-matrix A,
I‘S(A) = [A17 A27 EXX) 'Ap]’
where A4, is the i-th row of 4;

D
tr(C) = > ¢;; — trace of a square (p xXp)-matrix C;
i=1

E® — the Kkl-th elementary (p X ¢)-matrix, all zeros except 1 at the
kl-th position;

E3%: — permutation matrix of dimensions p2 x g2,
E£§‘3=[Ei"] (i=19“-7p;j=17-"7Q);

Eyys — permutation matrix of dimensions pq x pg,
EPXq [Eji]

axp

(t=1,u.,P;5=1,...,0);
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AQ®B — the direct or Kronecker product (see [11] and [12]) of
a (p X g)-matrix A and an (s X {)-matrix B,

AQ®B =[a;B] (@ =1,...,25;) =1,...,9);
A®* _ the k-th Kronecker power of A: .
A% — AQAQ... A (k factors),
A% =1, A®' = 4;
Ao B — the inner product of (p x g)-matrices A and B,
- . AoB = tr(4B%);
E(-) — the mean value operator.

Appendix B. Some properties of the differential.
1. The differential of the Kronecker power has the property

r

(B.1) d(Yort)) = V'Y @AY ®@ Y9,

1=0
since (9) implies the equality
A(¥e)) = (Y QRY®) =dY QY +YQR4(Y®) =dY @Y% +
+Y®4Y @ YOV Yo @d(Yer-Y) = '

= D Y% RdY @ Yor.
=0
Putting Y = B—Z we have
d(B—2)°+) = — N (B—2)** @4Z ®(B—2)°".
’ i=0

2. Let Y and U be matrices of dimensions p X ¢, and let X be of
dimensions $ x?; then '

9%%a : %%a U odX

This can be shown by noting that

0%%a O oa
(6X®6Y) odX®U) Z Z Dy 0y
% Kkl i

9%
(6Y®6X) (U®dX) = ZZayma Wt -
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Since the derivative does not depend on the succession of derivation,
and since the value of the product does not depend on the succession
of its components, it follows from the above equation that (B.2) is valid.

As the corollary to (B.2) we obtain

B3 a®3a,

. IXQURV
(B.3) (6X®6Y®6Z)O( SUSY)
0%%a

— UQIXQV) =

(6Y®6X®6Z)o( ®dXeV)
0%%a

- V& U®dX).

(0Z®6Y®0X)o( ®U®LY)

3. Let matrices 8 and Y be of dimensions s X 1, let a matrix X be

('.)Df dimensions p x ¢, and let the derivative of 8 with respeot to X exist.
hen

08
B.4 _ (S
(B.4) dSo Y = (aX)o(dX@)Y).

Let us consider both sides of (B.4) separately. For the left-hand side
we have

s i
(BB) L =dSoY — tr(a8 T 2 84 %

=1 j

To consider the right-hand side of (B.4) we put

.-a

O=% and F =dXoY.
Matrices C and F' are of dimensions ps x qt, and
ds,;
B.6 =Y
( ) cmn amkl !
(B‘7) fmn = ?/ijdmm

where m = (k—1)+4, n = (1—1)+j, and ¢ =1,...,8; j =1,
k=1,..,p;1=1,...,q; m =1,. cyP8; n =1, ,qt Ev1dently,
this nota.tlon the nght -hand side of (B 4) 18 presented as

»ps qt
E=CoF =tr(CF*) = D' > epufn-
m=1 n=1
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Substituting ¢,,, and f,,, from (B.6) and (B.7) into the latter equation

'we obtain
Q 08y
R = Z Z 2 g Vo0

It follows from comparison of (B.5) and (B.6) that R = L, i.e.,
that (B.4) is valid.
fin (B.4) welet Y = (B—Z) and X = Z, then we get

8o (B —Z)® ad ) (dZ ® (B—2)®").

= (52)°
If, in addition, we put § = 0%7a/(0Z)®", then we obtain

0Z)%" (0Z)®r+D
From (B.3) it follows that

87y &(r+1)
d((a ) o(B—2)®" = uo(dZ@(B—Z)@').

0%a 98+ 4 - |
d( (BZ) )O(B ) WO((B—Z)®1®dZ®(B—Z)®(r_'))
(¢=0,1,...,7),
whence
Qr o
(B.8) d(W)O(B—Z)

1 a@(r+1) a

- B—2)*®dZ®(B— ®<'-i)).
r 1 (6Z)®(’“’O(;( )" ®d2@(B—2)

Moreover, from (B.1) and (B.8) we obtain
r

(aZ)®r

or 1 08+ g ®(r+1)
o(B—2)® = — ) (OZ)Q(Hl)od(B—Z) .

(B.9) d(
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W. GAWRONSKI (Gdaiisk)

FUNKCJE MACIERZOWE:

ROZWINIECIE W SZEREG TAYLORA, ANALIZA WRAZLIWOSCI I BLEDOW

STRESZCZENIE

W pracy przedstawiono rozwinigcie funkeji macierzowej argumentu macierzo-

Wwego w szereg Taylora. Na tej podstawie przeprowadzono analize wrazliwoéei funkeji
macierzowych, a dla macierzowych funkeji losowego argumentu macierzowego wypro-
v.va.dzono prawo propagacji bledéw. Metoda ma zastosowanie w teorii systemoéw i w ana-
ll.zie bled6éw obliczeniowych w metodach komputerowych. Jako przyklad podano ana-
lizg wrazliwodei i bledéw wartoéei wlasnych macierzy.



