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SOLVING THE ABEL INTEGRAL EQUATION
BY INTERPOLATION METHODS

In the paper we give & comparative study of methods for solving the
Abel integral equation, based on interpolation on equally spaced data.
The formulae quoted in various papers appear to be variants of one of
two Dbasic algebraic equations. A technique based on linear inter-
POlf'iatiOIl of the data function is modified. A data random error propa-
gatlon formula for the algebraic form of the Abel integral equation
I8 derived. The sensibility of different methods to random error pro-
Pagation is compared. Systematic errors introduced by each of the
methods considered are compared using various test functions. The
Influence of the number of data points on the two properties described
above is examined. Suggestions concerning the choice of a method,
appropriate for the experimental function processed, are made.

1. INTRODUCTION

In all side-on observations of non-homogeneous axially symmetric
tFa'nSP‘&rent media, the radial distribution of the physical property inves-
tigated is determined by the Abel integral equation

R

1) fly) = 2f Mr

2 __ g2\12
g (r*—y?)

Or by the Abel inverse integral equation

R
1 afly) dy
(2) g(r) = _;—J dy (yg_rz)IIZ’

Where f(y) is the lateral observation data function, g(r) — the radial distri-
bution function to be determined, and R — the overall radius of the medium
column. None of these equations can be solved analytically for a function
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of any kind. An analytic solution can, however, be found if the unknown
function ¢(r) in equation (1) or the experimental data function f(y) in
equation (2) is, for example, a polynomial.

The solution of the Abel integral equation (1) based on the polynomial
interpolation of the function g(r) over the annular zones of equal width
has been the subject of many studies. Mach [8] assumes that the radial
distribution function to be determined is of the step type, its value in
each zone being equal to the value at the internal zone boundary. A modi-
fication of this method has been developed by Czernichowski [4]. The
value of ¢g(r) in each zone is assumed to be equal to its value in the center
of this zone. In the comparison given in the sequel, this method is not
considered; the set of data points necessary for the calculations differs
from the one used in all other methods. The second modification of the
Mach method is given by Pikalov and Preobrazhensky [13]: the func-
tion value in each zone is equal to the arithmetic mean of its values at
the two boundaries of the zone, but no formula is given. Pearce’s ap-
proach [11] is more sophisticated. His method is based on the assumption
that the value of f(y) in each lateral segment consists of partial sunis,
each of them being a product of constant values of g(r) in individual
zones multiplied by the common area of the lateral segment and the con-
centric zone considered. A linear variation of g(r) in zones of equal width
was previously proposed by van Voorhis (see [8] and [12]) and linear in 72
variation of the same function was employed by Frie [5].

The solution of the Abel inverse integral equation (2) based on the
polynomial interpolation of the function f(y) in segments of equal width
was also dealt with by many authors. Weyl [12] and Nestor and Olsen [10]
assumed the linear variation of the data function in y2. However, the
final formulae for the radial distribution function differed from each other.
Weyl’s results are smaller by a factor of two than those of Nestor and
Olsen. To check the results of both methods, appropriate calculations
have been performed in paper [15], proving the correctness of Nestor’s
and Olsen’s calculations. Bockasten [1] increased the degree of the ap-
proximation polynomial up to three.

Cremers and Birkebak [3] employed a method referred to as developed
by Ladenburg et al. [8] which, however, was neither published by the
authors nor mentioned elsewhere. In that method, equation (1) is solved
under the assumption of linear variation of the data function f(y) over
segments of equal width. This approach leads to a- very complicated
formula which, moreover, does not include the axis point. Then extra-
polation is necessary to evaluate the solution for » = 0. In the comparison
of different interpolation methods of solving the Abel integral equation
which is given in the sequel, this method is not considered, since it was
not possible to calculate the coefficients of the complete Abel matrix.
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Gorenflo ([6], p. 8) solved equation (2) under the same assumption.
as in [3]. As previousiy, extrapolation is necessary to evaluate the
solution at the near-axis region, and the value of f, is not employed.
The Gorenflo method is modified in Section 3 of this paper.

It is not easy to compare the properties of different interpolation
methods of solving the Abel integral equation found in the literature
because of various fields of application (e.g., spectroscopy or interferometry)
and different notation of zone numbers. In this paper a uniform notation
of zone numbers (r, = 0, 7y = R) is applied, and a uniform notation for
the data function f(y) and the radial distribution function ¢(r) is adopted.
This notation is applicable directly in spectroscopy; for interferometry,
the factor 2w/p,A, where o, = e%/m,c* is the classical electron radius,
and 7 is the wavelength of traversing light, must be taken into account.

2. ABEL MATRICES

The set of N experimental data and the corresponding set of radial
distribution funetion values to be determined can be expressed as the
components of two N-dimensional vectors f and g:

fi =f(yi)’ gi=g(ri) (’i=0,1,...,N—1).

For equidistant (w = R/N) data the integral equations (1) and (2)
can be approximated by the algebraic expressions

N-1

(3) fi= wkz_; 1Y)
1 N—-1
() 9: = ;g by
which can also be presented in the matrix forms
(5) f=wAg,
1

(6) 9 =_-Bf.

The coefficients a, ;, and b, ; are the elements of the Abel matrices A
and B, respectively. Expressions (3)-(6) seem to be more appropriate
than the formula given by Kock and Richter [7], since a variation in
the number of equidistant data changes the matrix range without influ-
encing the values of its elements. The components of the vector g are



TABLE 1. Solving the Abel integral equation

Meth- The numerical
od Ci.k
no. k i=0 i=1 i =2

2.000000
2.000000 3.464102
2.000000 2.192753 4.472136
2.000000 2.089112 2.456067
2.000000 2.051992 2.236948
2.000000 2.034201 2.148557
2.000000 2.024247 2.102699
2.000000 2.018101 2.075526
2.000000 2.014036 2.057995
2.000000 2.011205 2.045989

1.000000
2.000000 1.732051
2.000000 2.828427 2.236068
2.000000 2.140933 3.464102
2.000000 2.070552 2.346508
2.000000 2.043098 2.192753
2.000000 2.029224 2.125628
2.000000 2.021174 2.089112
2.000000 2.016069 2.0668760
2.000000 2.012620 2.051992

1.570796
2.2565660 2.456739
2.060513 2.695986 3.097482
2.028908 2.237191 3.102981
2.017060 2.130229 2.433992
2.011283 2.083482 2.255721
2.008023 2.058381 2.171890
2.006001 2.043227 2.124453
2.004659 2.033341 2.094645
2.003722 2.026518 2.074567

1.000000
2.000000 | 2.147144
2.000000 | 2.428247 | 2.858509
2.000000 | 2.130572 | 2.871556
2.000000 | 2.068007 | 2.327041
2.000000 | 2.042155 | 2.187349 |
2.000000 | 2.028793 | 2.123446 |
2.000000 | 2.020948 | 2.088045 |
2.000000 | 2.015939 | 2.066172
2.000000 | 2.012540 | 2.051640

1.333333
1.777778 2.309401
1.955556 2.338936 2.981424
1.980952 2.107345 2.806934
1.989418 2.056282 2.310141
1.993266 2.034980 2.178500
1.995338 | 2.023924 2.117856
1.996581 2.017420 2.084151
1.997386 2.013261 2.063288
1.997936 2.010437 2.049411

Al | Step interpolation I (Mach):
2((k 1) — 72

A2 | Step interpolation II
(Pikalov and Preobrazhensky):

[(k +1)2 — 4212 4 (K2 — 42)1/2

A3 | Step interpolation III (Pearce):

? 141
(k+1)2 aT0C08 - l—arccosk+1)—

—i[(k+1)2—42]12 4
+ @+ [(k+1)7— @+ 1)

A4 | Linear in r interpolation
(van Voorhis):

1 for i+k =0,
(k1) [(k+1)? = 212 — & (k2 — i%)2 —
k+1+ [(k+1)"—i*]'/

o+ (k2 —i2)I2
for t+k> 0

—i%l

A5 | Linear in 72 interpolation (F'rie):
4 [(k+1)2_i2]3/2_ (kz_iz)sm
3 2k +1




by means of A-type interpolation methods

values of a;

1 =3 P =4 i =25 i =26 =17 t =8 =9
|

5.291503

2.708497 6.000000

2.392305 2.944272 6.633250

2.256806 2.544853 3.164709 7.211103

2.183286 2.367281 2.692037 3.371903 7.7456967

2.138166 2.268109 2.476634 2.833403 3.667742 8.246211

2.108221 2.206787 2.353879 2.583592 2.969148 3.763789 8.717798
' 2.645751

4.000000 3.000000

2.550401 4.472136 3.3166256

2.324555 2.744563 4.898979 3.605651

2.220046 2.456067 2.928373 5.2916503 | 3.872983

2.160726 2.317696 2.584335 3.102653 5.656854 | 4.123106

2.123194 2.236948 2.415256 2.708497 3.268445 | 6.000000 | 4.358899

3.626494

3.468359 4.087528

2.625874 3.8008456 4.501556

2.385251 2.808785 4.107453 4.880569 .

2.267169 2.5613115 2.9825672 4.393218 5.232189

2.198125 2.363905 2.637501 3.147952 4.661793 | 5.561617

2.153578 2.274679 2.459882 2.767899 3.305791 | 4.915903 | 5.872591

3.424716

3.263057 3.909645 v
- 2.524031 3.614747 4.340686

2.316823 2.712543 3.936116 4.732607

2.216782 2.446391 2.891496 4.233650 5.094454

2.159070 2.313501 2.572981 3.061463 4.5611881 | 5.432244

2.122252 2.234771 2.410250 2.695654 3.223343 | 4.774093 |5.750219

3.527668

3.210071 4.000000

2,510275 3.568814 4.422166

2.309534 2.700708 3.895027 4.807402

2.212114 2.440094 2.880977 4.196146 5.163978

2.155776 | . 2.309442 2.567375 3.051912 4.477166 | 5.497474

2.119783 2.231886 2.406625 2.690564 3.214541 | 4.741628 | 5.811865
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TABLE 2. Solving the Abel inverse integral equation
Meth- d The numerical
ik
od no. k i=0 i =1 4 =2
B1 | Linear in y interpolation 0 .636620
(Gorenflo odified): 1 —.415984 419201
9 2 —.091572 —.277302 .306349
— for 1+ k=0, 3 —.037492 —.046187 —.193497
T 4 | —.020543 | —.022821 | —.033325
1. k14 [(k+1)2—42]2 15 —.012994 | —.013858 | —.017155
—1In
= k+ (kz—i)llz 6 | —.008967 —.009368 —.010774
! . 7 —.006563 —.006775 —.007484
for i+k>0 |g| _ 005013 | —.005135 | —.005533
9 | —.003954 —.004030 —.004271
B2 | Linear in 2 interpolation 0 .636620
(Weyl, and Nestor and Olsen): 11 —.424413 .367553
. . 2 —.084883 —.227958 .284705
9 Tk 2 g291/2 _ (72 _ 4241/2
2 [E+1)°— 97— (k" — &) 3| —.036378 | —.044597 | —.173021
T 2k +1 4| —.020210 | —.022423 | —.032568
5| —.012861 —.013710 —.016942
6 | —.008904 —.009300 —.010688
' 7 —.006529 —.006739 —.007441
8 —.004993 —.005114 —.005510
9 | —.003942 —.004017 —.004257
B3 | Third degree polynomial 0| .762597 1046342
interpolation (Bockasten): 1| —.580096 360630 .032395
L N-1 2| —.058470 | —.205128 | .265385
. G = — Nbi i fr 3 | —.033947 —.018240 —.205837
kR k=i—1 ’ 4 | —.019704 —.021489 —.913873
(Nb; 1, tabulated in paper [1]) 5 —.012688 —.013465 —.016250
! 6 —.008828 —.009204 —.010503
7 —.006491 —.006693 —.007368
8 | —.004825 —.004941 —.005318
9 | —.004488 —.004571 —.0048356

calculated from (4) directly or from (3) by the use of the recurrence for-
mula

(7)

(8)

N-1

T

a;; \w
bt k=i+1

Z ai,kgk) (1: =N—1’ N—z,...,O).

Each non-diagonal element of the matrix A or B can be presented
. a8 the difference between the neighbour elements of the matrix C or D,
respectively,

) Cik
Ay =

Cik— Ci k-1

for ¥ =1,

for k > 1,
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by means of B-type interpolation metho ds

values of b;

=3 =4 1 =5 1 =06 =1 t =8 1 =9
.253173
—.156646 .220636
—.027025 | —.134922 .198104
—.014103 | —.023202 | —.120229 .181315
—.008985 | —.012172 | —.020594 | —.109457 .168181
—.006325 | —.007808 | —.010826 | —.018681 —.101131 157542
—.004733 | —.005536 | —.006970 | —.009826 | —.017205 | —.094448 | .148697
-
240620
—.144826 .212207
—.026567 | —.127007 .191948
—.013968 | —.022887 | —.114459 176567
—.008928 | —.012076 | —.020362 | —.105013 164375
—.006296 | —.007767 —.010754 | —.018501 —.097572 .154403 | .
—.004716 | —.005514 | —.006938 | —.009770 | —.017060 | —.091515 | .146051
.026318
.219858 .022729
—.166607 .191842 .020293
—.011232 | —.143490 .172381 .018502
—.013382 | —.009563 | —.127859 .157851 017114
—.008769 | —.011555 | —.008415 | —.116401 .146469 .015998
—.006062 | —.007429 | —.010041 | —.007262 | —.107072 .138186 | .025141
—.005337 | —.006199 | —.007699 | —.010490 | —.008647 | —.103729 | .098416
(9) by, — d; & for £ =1,
’ diyp—dip—, for k>1,

where the values of elements ¢, and d; , depend on the type of interpo-
lation used.

The formulae for the elements of ¢;,, and d, ; are taken directly from the
van Voorhis method and the method presented in the next section of
this paper. The formulae of other authors have been simplified, and /or
the notation has been unified. In Pearce’s method, the elements c;; can
easily be derived from the elements ai; k- For the Mach method and the
Pikalov and Preobrazhensky method, the elements ¢; , have been calcu-
lated in paper [15]. The formulae for the elements ¢, and d, ; are confront-

7 — Zastosow. Matem. 16.1
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ed in Tables 1 and 2, respectively. The numerical values of a,, and b, ,
have been computed for N = 20, using (8) and (9), and the first parts
of the obtained matrices (for ¥ = 10) have been printed in the same
tables. The Bockasten method has been treated separately and has not
been incorporated in (9).

3. MODIFICATION OF THE SOLUTION
OF THE ABEL INVERSE INTEGRAL EQUATION
BASED ON LINEAR VARIATION OF THE DATA FUNCTION

The region of integration y € (0, R) in (2) is divided into N segments
t=0,1,...,N—1. In the ¢th segment ({ =1,2,..., N—1) a linear
variation of the data function is assumed. To avoid singularity in the
integral in equation (2), a linear in y2 variation of the data function in
the near axis segment (¢ = 0) is assumed. Moreover, this assumption re-
flects better the physical reality, since in that case the derivative of the data
function becomes continuous at the axis of symmetry. Calculations per-
formed for segments of equal width w = R/N in the Appendix allow
us to replace equation (2) by the system of algebraic equations (4), where
the coefficients b, ; are given by (9) and

for i1 +k =0,

10 di =
( ) k k+1+[(k+1)2_7:2]1/2

In
k + (k2 _,';2)1/2

for i+%k>0.

Am A

“4. COMPARISON OF THE QUALITY OF DIFFERENT METHODS

Various interpolation methods for solving the Abel integral equation
have been compared by many authors, but no unified procedure has been
established. The criteria applied in this paper seem to be simpler than in [13],
and the presentation of results appears to be clearer than in [3].

A. Comparison of data random error amplification. The resultant
function values g; are influenced by the statistical random errors super-
imposed on the data points f;. The standard deviation ¢ in the distri-
bution of errors is supposed. Applying the law of random error propaga-
tion (see [9], p. 138) to the linear combinations of variables in (4) and (3) we
obtain

s N-1
a; 52

i,k

ol =
(3 w- J
k=1
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and
1 N-1
o
2 E' 2 2
Gai - 2 ( 2 + a’i,kaak)’
a;; \W -
’ k=1t+1

respectively. The random error amplification defined as the standard
deviation ratio y; = o, /o can be calculated directly from the formula

N—-1

1O 1/2
@ =l o
k=1

for the elements of the Abel matrix B, and from the recurrence formula,

1 (1, \

yi = — + 2 @i Vi
@ \W ;
’ k=t+1

for the elements of the Abel matrix A. A formula a.nalogous to (11) has
been used by Bockasten [1].

The radial distribution of random error amplification in all the methods
listed in Tables 1 and 2 has been computed for the number of zones N =10,

N = 20, and is confronted in Table 3. The results are also presented in
% graphical form in Fig. 1.

B. Comparison of systematic error distribution. All interpolation

methods for solving the Abel integral equation introduce the systematic
error [13]

o 9i—9e (ri)
& ge (ri) ’
where g, (r,) is the exact analytic solution of the Abel integral equation
for the test curve, and g; is the approximative numerical solution at r = r;
given by the method examined. To compare the systematic error distri-
butions, three test curves useful in practical applications have been used [2],
[14] (Table 4 and Fig. 2). Two of them are similar to the functions applied
by van Trigt in an unpublished paper, announced in [16].

An example of the computation of the values of g, for one of the
test curves by different interpolation methods is presented in a graphical
form in Fig. 3. The systematic error distributions have been computed

for any of the test curves (N =10 and N = 20) and are compared in
Figs. 4A and 4B.
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Random error amplification

Radius

Fig. 1. Radial distribution of random error amplification for some interpolation methods
for solving the Abel integral equation
0O method Al, * method A2, A method A3, + method A4, ¢ method A5
X method Bl1, | method B2, O method B3
TABLE 4. Test functions used to examination of interpolation methods for solving
the Abel integral equation (?)

dg(r)
No. -
@) 9(r) ar |,
L .
. sin (—) C(1—r)12] 4+
1 T 2
cos — — oo
2 2
+ cos (T) S[(1—r2)1]
_f | %(1 — y2)312 1— 42 -2
(1= g4
3 . — wr?
+cos(ny?) O [(2 — 2y2)V/2] V2 — cos? — 0

—sin (ry?) S [(2 — 2y%)1/2] V2

. h o2 h o2
M Clh] = f cos > dv and S[h] = f sin—2—- dv (Fresnel integrals).
0 0
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1.0r

... GR)
LON DO D>

Fig. 2. Test function used to examine the interpolation methods for solving the
Abel integral equation

Resultant values

Radius

Fig. 3. An example of numerical solution of the Abel integral equation (test function
no. 1). Points correspond to values calculated by means of various interpolation methods.
Continuous lines correspond to the analytical solution

0 method Al, * method A2, A method A3, + method A4, ¢ method A5
X method Bl, | method B2, O method B3

C. Comparison of standard deviations. To facilitate the comparison
of the accuracy of different interpolation methods, a standard deviation [3]
has been calculated for each set of results

N—1
1 1/2
S = (TV-; W.lg;—9ge(r:)] ) .



Abel integral equation 103

20

50 N=10 N

Systematic eérror distribution (%)

Radius

Fig. 4A. Systematic error radial distribution of the Abel integral equation solution
by means of some A -type interpolation methods. Test functions from Table 4 (Fig. 2).
The upper part corresponds to the test function no. 1, the middle part to no. 2, and
the bottom part to no. 3
O method Al, * method A2, A method A3, + method A4, ¢ method A5

_ Equal weights W, = 1 are assumed. Other values of W, can be used
If a specific region of radial distances is to be stressed. The computed
Standard deviations for different methods, different test functions and
different numbers of zones are compared in Table 5. The systematic
error introduced by each of the methods has been compared by arranging

1.3he values of the standard deviations from Table 5. The results are given
m Table 6.
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Systematic error distribution (%)
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N=10

N=20

Radius

Fig. 4B. Systematic error radial distribution of the Abel integral equation solution
by means of some B-type interpolation methods. Test functions from Table 4 (Fig. 2).
The upper part corresponds to the test function no. 1, the middle part to no. 2, and

the bottom part to no. 3

X method Bl, | method B2, O method B3

TABLE 5. Standard deviations of the Abel integral equation solution by some

interpolation methods

Number Test s
of zones |functionno.] Al | A2 | A3 | A4 | A5 | Bl | B2 | B3
l
10 1 0347 | .2326 | .0326 | .0278 | .0260 | .0131 | .0075 |.0006
2 0510 | .0459 | .0642 | .0018 | .0000 | .0166 | .0118 |.0028
3 0577 | .0174 | .0631 | .0057 | .0056 | .0210 | .0164 |.0010
20 1 0217 | .1636 | .0166 | .0133 | .0129 | .0046 | .0027 |.0009
2 0264 | .0220 | .0340 | .0004 | .0000 | .0073 | .0047 |.0012
3 .0299 | .0060 | .0330 | .0013 | .0013 | .0082 | .0060 |.0009

TABLE 6. Interpolation methods of the Abel integral equation solution arranged
according to the increasing standard deviation values

Test Place

function

S N N N N A R R
1 B3 B2 Bl A5 A4 A3 Al A2
2 A5 A4 B3 B2 B1 A2 Al A3
3 B3 A5 A4 B2 A2 Bl Al A3
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5. DISCUSSION

1° The random error amplification grows fast with the decreasing
radius and also with the number of zones. It means that the conclusions
given by Bockasten for his method can be extended to cover all the methods
considered. A comparison of the random error amplification distributions
In various methods permits us to divide them into three groups. All the
methods of B-type (Gorenflo’s, Nestor’s and Olsen’s, Bockasten’s)
and Mach’s method belong to the first group having smallest random
error amplification. Other A-type methods (Pearce’s, van Voorhis’, Frie’s)
belong to the second group. In the Pikalov and Preobrazhensky method,
random error amplifications are considerably greater. The systematic
eIror decreases with an increase of the number of zones for all ¢+ < N —1.
In other words, if a larger N is chosen, a better accuracy can be achieved
at all points except the exterior one, but, as has been noted above, the
incertitude of the result increases for larger N.

2° The methods of A-type (except Mach’s) seem to affect the
character of the solution, since they introduce “oscillations” not existing
In an analytical solution. This phenomenon appears in the cases where
the variation of the function processed in the exterior zone does not
agree with the type of interpolation. For illustration, a part of Fig. 3 is
Presented in Fig. 5. It is obvious that in the exterior zone (r € (R —w, R))
the Mach method would best approximate the test function no. 1, the
van Voorhis or Frie method — the test function no. 2, and the Pikalov
and Preobrazhensky method — the test function mo. 3.

Test Test Test
function function function
no 1 no 2 no3

Radius

I:ig- .5. Different kinds of interpelation in the exterior zone of the test function used.
Continuous lines correspond to the analytical solution. Broken lines correspond to
the interpolation used
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Oscillations are generated, since a positive value of the systematic
error appearing during computing the first equation of (7) becomes negative
in the second step, positive in the third step, and so on.

“Qscillations” in the solution of the Abel inverse integral equation
(all the B-type methods) have not been observed, since the result of solv-
ing any of equations (4) does not depend on the preceding results. Thus,
the methods based on the interpolation of the data function f(y) are safer
for processing functions of unknown character.

6. CONCLUSIONS

The method presented in Section 3 belongs to the group of methods
less sensitive to random error propagation. For all the test functions
used, the systematic error introduced by this method appears to be
smaller than in the Mach method and in the Pearce method; for some
test functions it appears to be smaller than the error introduced by the
Pikalov and Preobrazhensky method, the van Voorhis method, and the
Frie method. The modified method is characterized by the Abel matrix B;
it does not introduce “oscillations” which can occur by using one of
methods characterized by the Abel matrix 4. Formula (10) defining the
elements of the matrix D is simple.

Taking into account all the above-mentioned properties, this method
is to be preferred to all the A-type techniques. Nevertheless, the
Bockasten method seems to be most worth-while among all techniques
considered; the Frie method or van Voorhis method could be recom-
mended only in the cases where the experimental curve is plotted with

a good accuracy, and the variation of its slope in the last exterior zone
is insignificant.

Acknowledgement. The author wishes to express his gratitude
to Dr. M. Sadowski for his valuable comments on the manuscript.

APPENDIX

Calculations for Section 3. The region of integration y e {0, R)
in (2) is divided into N segments. In the i-th segment (¥ € <{y;, ¥;11) ¢ =
0,1,..., N—1), the data function f(y) is interpolated by the analytical
expression f;(y). Then equation (2) takes the form

N—-1Tk41

1 afi(y) _ dy
(12) 9 = g(ry) = _;2 f ft’;y (F —r)E

k=1 rp
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The linear interpolation

fily) = fi+ Jen=h L2 (g —y,)

i+1 Y
is assumed. To avoid singularity of integral (12) for ¢+ = 0, the interpo-
lation given above is used only fors = 1, 2, ..., N —1. For such a function,
equation (2) takes the form

. fk+1 fk
g:i = — L,
T bt Yr+1— Yk
where
Tk+1 2 2\1/2
I,, = f dy e Te1 (Thp1—173) !
i,k -r (y2 _ 7,3)1/2 7'k + (,’,i _ 1.3')1/2
%

Thus, since y;, = r;, we have

N—-1 N-1
g; = i( fiIi,i + kai,k _ fk+11i,k )
T\T

i1 e Tpn =T =l T~k

In the second sum the index %41 is replaced by %, and the index
N —1, which becomes N, is replaced by N —1, since fy = 0. Then

-2t St -] S

k=1i+1 —T’” 1
where .
and U Dik—Digy  for k>i>0,
D.. — I, _ 1 Tir1+ (o — 79"
e = —
' (P —T%) (g1 — ") .+ (g — 73 e

For ¢ = 0, a linear in y? variation of the data function in the first
Segment is assumed:

foy) = fot 20y

For such a function, equation (12) takes the form
-1 Tk+1

go=_nfdfo —“Zf dfk dy

-1

2 fi—fi 1 X

Jesr—Fe I fk+1 —Jfx I
0,k - — 0,k
ot V1 — Tk T o=t Tri1 Tk
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Finally, for all ¢ = 0,1, ..., N—1 we get
N-1
) 9 = Z B; 1fxs
k=i
where
Dy for k =1,
o D;,—D;y_, for k>1,
and
[ 2 |
for :+k =0,
D o,
ik =
) 1 rbH‘FUﬁ+y—r3”2
for i+ %k > 0.
TL'(Tk+1—7'k) Tk+(r]i—7'3)1/2 or 1+ k >

For segments of equal width w = R/N, equation (13) becomes (4),

where b, ;, = wB;;, and d;;, = wD,, are given by (10).
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8. UGNIEWSKI (Warxszawa)

ROZWIAZYWANIE ROWNANIA CALKOWEGO ABELA
METODAMI INTERPOLACYJNYMI

STRESZCZENIE

) W pracy poréwnano metody rozwiazania réwnania catkowego Abela, oparte na
mterpolacji danych pomiarowych réwnomiernie rozmieszczonych. Okazalo sig, ze wzory
Podawane w réznych pracach s3 wariantami jednego z dwéch podstawowych réwnan
algebraicznych. Do znanych z literatury metod dodano zmodyfikowana metode, oparta
na liniowej interpolacji funkecji danych pomiarowych. Okreslono propagacje przypadko-
W’ych bledéw pomiarowych dla réwnania catkowego Abela w postaci algebraicznej. Po-
TOwnano wrazliwosé réznych metod na propagacje bledéw przypadkowych. Poréwnano
réwnies bledy systematyczne, wprowadzane przez kazds z metod, uzywajaec w tym
c.elu funkeji prébnyeh réznego rodzaju. Zbadano zaleznoéé obu tych whasnodei od
liczby punktéw pomiarowych. Wysunieto sugestie, dotyczagea wyboru wladciwe]
metody dla okreslonej funkeji danych eksperymentalnyech.



