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There are many types of computational complexity depending on the model being
studied. These include algebraic, combinatoric, analytic and parallel complexity.
Recent progress in algebraic complexity is summarized by Borodin and Munro [1]
and the state of the art in analytic complexity is covered in Traub [8]. Material on
parallel complexity may be found in Traub [7] and Heller [4].

Although we will focus here on analytic complexity, we begin by reporting
a recent algebraic result which was stimulated by a question in analytic complexity.

Given a power series for f we wish to calculate the first n terms of the reverse
power series. The classical algorithms for doing this are at least O(n®). Brent and
Kung [2] have shown that this problem can be solved with complexity O ((nlogn)*/2).
No non-trivial lower bound is known for this problem. They also show that the prob-
lem of reversion of power series is equivalent to the problem of calculating the first
n terms of the polynomial resulting from the composition of two polynomials of
degree n.

Finally they show (Brent and Kung [3]) that the polynomial consisting of the
first # terms of the reverse power series can be evaluated in O(nlogn). This result
gives us an upper bound on the combinatory cost of certain iterations.

We turn to recent results and open problems in analytic computational com-
plexity, or more specifically in iterative computational complexity.

Let f be a nonlinear operator, f: D = B, —» B, where B, and B, are two Ba-
nach spaces. Let o be a simple zero of f and let x; be a sequence of approximations
for « which are generated by an algorithm @. We shall consider here only implicit
problems, that is problems where only certain functionals of f are available.

Let e; represent some measure of the error of x;. For example ¢; might represent

|lx;—ajl, absolute error,

[269]


GUEST


270 J. F. TRAUB

floes— ]
[l
I£Gedll, the norm of the residual.
Assume that the e; satisfy the error equation

) o= Aely, i=1,2,..,

, the relative error,

k,p>1,

where we call the p the non-asymptotic order and A4 the error coefficient. The model
given by (1) is too simple to represent the sequence of errors of most iterations. We
should use this simple model to derive some conclusions and then indicate below
how the model should be modified so as to represent algorithms arising in practice.

Choose & > 0. Let k be the number of iterations required so that e, = se,.
Assume that the cost per step is a constant, ¢, and define the complexity, comp, by

comp = ke. Let wy = t =log(1/e), z = c/logp. Then e, < e, iff w,

1
> 1. (All logarithms are to base 2.)
Then it is easy to establish the following:

THEOREM. Let 2 < wp < t. Then

z(logt—loglog?) < comp < zlog(1+1).

Let 1 < w, <2, Then

z(logt—loglogw,) < comp < z(log(l +£)—loglogw,). W

Observe the following:

(1) These results are non-asymptotic.

(2) The lower and upper bounds are strict.

(3) We have decomposed the bounds on the complexity as the product of two
factors and that one of these factors, the cost index z, is independent of & and the
error coefficient .4,

(4) Provided only that w,
of 4.

(5) If 1 < w, < 2, then the bounds on the complexity do depend on the error
coefficient.

2 2 the bounds on the compleﬁty afe independent

The theorem may be used to compare any two algorlthms ina class of algorithms
@ but we shall not pursue that here.

We now examine the structure of the cost index z. Let ¢ = u(f, §)+d(®), where
S is the information set of the algorithm, u is the cost of new information, and d
is the combinatory cost.. An example may help to clarify these definitions.

ExampLE. Newton iteration; f: D = R — R. Let ¢(f), c(f") denote the number
of arithmetics to evaluate £, f7. Then'S = (f, "), u = ¢(f)+e(f’), d = 2. Then if

=1/(deo) > 2, comp < (e(f) +c(f)+2)log(l+7). m
‘We are interested in obtaining lower bounds on a class of iterations.
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ExaMpLE. f: D = RY — RY,® a one-point iteration with § = (f, ...
If w, < ¢, then

).

comp > 103;31 min cf‘i’) (logt—loglog?). m

We may obtain upper bounds on the complexity of a class of iterations.

. ——
ExAMPLE. f: D = R — R, @ a multipoint iteration with S = (£, ... )
30* such that p(®*) = 2", d(P*) = apn?+ayn+a, = q(n), ap > 0.

If w, > 2, then for the class of multipoint iterations

comp < Mr?—j{ﬂ)llog(l+t). u

Additional information on the material discussed above may be found in Traub
and WozZniakowski [9].

The model defined by (1) is a simplified one that does not describe the errors
of real algorithms. In order to model real algorithms we must modify (1) in various
ways. These include

.eg= Al _y,
— P
e, = Ajefry ... efmy,

. Inclusion of round-off error,

P

. Permit variable cost c;.

The theory resulting from these extensions will be reported in a later paper
by Traub and WoZniakowski.

In general, to obtain lower and upper bounds on z, one must know relation-
ships between the information set S, the cost per step ¢, the combinatory cost d,
and the order p. We limit ourselves here to mentioning two recent results.

-Letf: D = R - R. Then Kung and Traub [6] conjecture that if the information
set S has n elements and if the iteration has no memory, then p < 2n=1, Woznia~-
kowski [10] shows that the general conjecture is related to Birkhoff interpolation
which has been open for some 70 years. However, the conjecture has been settled
for many important special cases.

Now let /: D = RY — R", Classical iterations of order 3 require the evalu-
ation of f, f',f"". Thus if each component of the evaluation of a vector or matrix
costs unity, the complexity is O(N?). Kacewicz [5] has shown that one can also con-
struct iterations of order 3 using f, f”, S f. The complexity of Kacewicz’s algorithm
is O(N?). Kacewicz reports many other results of interest. Kacewicz’s work marks
an important beginning in the general study of what information is relevant to the
solution of a mathematical problem. .
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METOJ KOJUIOKAIIHA IIPY PEINEHHY HHTETPAJIBHBIX
VPABHEHHH U CHCTEM

B.B. BOPOHUH, B. A. IEIIOXO
Bumucaumensueiii Llenmp CO AH CCCP, Hosocubupcx, CCCP

Cchopmynmpyem HaWl METOJ HA IPUMEPE OJHOTO MHTETPALHONO yPABHEHUA Iep-
BOTO pofia: ’

() Ap={ K(x, p)p()dy = f(x), xel,

Ir
rae I'— riajxas 3aMKHyTas KpHBas HA IUTOCKOCTH, X, — Toukw Ha I
IIycrs smpo K(x,y) mmeer morapumuuecKyr0 OCOGEHHOCTB, TO €CTh IIpem-
crapumo B Bufe In|x—y|+ Ki(x,y), roe K, — rnagkaa ymxmuas. Ilpu stom
oreparop A JeHCTBYET HeNpephIBHO W3 mpocTparcTBa C™* B C"+1:* mua moboro
nesoro r; 0 <a<1. Torma X STOMY YpPaBHEHHIO IIPHMEHMM HE TOJBKO METOJT
PETYISIPUSAUH, HO M CJICAYIOMEA IIPAMOM METOH.
Tlapamerpusyem I x = x(t), tel0,1] u, coxparus ana Qymxmuid npexxuue
obosHaveHns1, nepenmmem ypaseenue (1) B Bupme
1
) Ag = {K(t, ) p(z)dv = f(r), te[0,1).
P4 .
Bce dbyHKIMM cuMTaeM NEPHOFMYECKU IIPOHOIDKEHHBIMH.
Tyets 7, =ixh (i=1,...,1); h=1[n; bj(7) = b(v—7,) — Gasucurie dyn-
KIU¥ MHTEPIOJIINH, TO ecTs b,(7;) = ;5. Pymxanmo b(7) cunraem uérmol. Ilpn-
GIDDKEHHOE pEelUeHHE HILEM B BHIE:

n
67(1) = Z @ by(7).
=
HensBecrarie BeTMUYKMHE] (; OTBICKUBAEM W3 YCIIOBHH KOJUTOKAITMH:
) Ap(e) = f(z)s = 1s .

Teorema. Ilycms yp (1) oo UHO PASPEULUMO, U CYUjECmBYem MaKoe
yenoe p =2, umo 0aa awbot gynkyuu geC?
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