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1

In the present paper we give a survey of the results concerning the subject mentioned
in the title and connected with the author’s own work.
Let f(x) be an integrable and 2n-periodic function and let

(1. Fx) ~ %"—+ Z (azcosnx+ b,sinnx)
=1

be its Fourier series. Denote by sx(x) = s.(f; x) and o7(x) = o%(f; %) the nth partial
sum and the (C, x)-mean of (1.1); furthermore, denote by f(x), 5.(x), and 6%(x)
the conjugate functions of f(x), s,(x), and o5(x), respectively.

First we mention some classical results.

Fejér (1904) proved that if f(x) is a continuous function, then

1.2) 0n(x) = 0a(x) > S ()

uniformly; more precisely, he proved that (1.2) holds at any point of continuity.
Lebesgue (1905) verified that if f(x) is an integrable function, then (1.2) holds
almost everywhere.
Privalov (1919) proved that if f(x) is integrable, then

(1.3) Fo()—flx,1/m) >0 as n—>o
almost everywhere, where

T

1 S Flx+t)—f(x—1) Q.

Jeo) = -7 2tg(t2)

Having the following result of Marcinkiewicz: if f(x) is integrable, then there
exists a lim 7(x, §) = f(x) almost everywhere, we can write (1.3)
=

(1.4 F(0)—F() =0 ae.

[143)
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In 1912 Bernstein proved that if f(x) € Lipe, then

(1.5 6()—f() = 0@™®) for O<a<l,
and
- (1.6) 6, (x)—~f(x) = O(n~'logn) for a=1.

M. Riesz (1923) generalized these results by proving that the means o,(x) can
be replaced by o%4(x) with any_ positive y.

Since f(x) € Lipa implies 7(x) e Lipa if a < 1 but does not imply f(x) eLipl
if @ = 1 by the results of Bernstein, we have

§,(0)—f() = 0(™)
Therefore, the theorem of Alexits [1] (see also Zygmund [28] and Zamansky [26])
stating that f(x) e Lip1 if and only if
L7 Gu(x)—F(x) = O(1/m),
seems to be a very surprising and interesting result.

In connection with strong summability we only recall the following results:
Marcinkiewicz [21] proved that for any integrable function f(x) we have means

for O<a<l.

1.8) -3—1«2 15, =P = 0 ace.

v=0
with p = 2; and (1.8) for any positive p was verified by Zygmund [27]. Zygmund
also proved that (1.8) holds at any point of continuity of f{(x).

2

In [12] we generalized (1.8) by proving that if f(x) is integrable, then we have

1

@ i

Z A=)~ @P = 0 ace.

(n+y)
n )

In connection with (2.1) we can mention the following open problem: Can we
replace the partial sums s(x) in (2.1) by (C, f)-means with negative §?

As regards strong approximation, Alexits and Kralik [4] proved that if fx)e
Lipa, 0 < o« < 1, then

for any positive p and y, where 4, =

@2 I = 1 > I @ ~FI = 06~
v=0

and consequently

() = n+1

D E@-7) = 06,
v=0
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This shows that strong approximation for the class Lipa, 0 < « < 1 has the
same approximation order as ordinary approximation. In connection with this it is
natural to ask: Do we have, for all f(x) e Lipl,

@.3) Bo) = o( 1"5 ")
and

- 1
@4 ) = 0(7) 2

The answer is affirmative with regard to (2.3) and negative with regard to (2.4).
(See Alexits and Leindler [6].) From this point of view the class Lip1 with respect
to strong approximation seems to have a certain extra property. But later we shall
see that this is not the case.

In connection with strong approximation we proved ([9], Satz I) a very general
theorem whose two special cases will be presented here.

TrEOREM L. If f(x) has a continuous r-th derivative andf(x) e Lipa, 0 < 2 < 1,

then for any p > 0
2n 1/p
{% > Isk(X)—f(x)l"} = 0@,

k=n+1
and if > (r+o)p, then

i/p
hn(f:P’ ﬁ; x) {( _}_11)5 Z (k+ 1)‘9—‘1 sk(x)_f(x)[p} = (n—r—c)

uniformly. The same estimations also hold for F (x).
THEOREM 2. If f®(x) eLipa, 0 < a <1, p>0 and (r+o)p <1, then for
arbitrary y > 0

1p
2.5) afip;xl = { Y ZA {18 (x)—f(x)["} = 0@").
This also holds with fi (x).

Comparing the results obtained with that of Jackson, we can see that the order
of strong approximation is equal to that of the best approximation obtained by
trigonometric polynomials of order at most zn.

Earlier it was proved by Alexits [2] that if f(x) € Lipa and o < y, then

“Hsk(e)—f ()] = O(~).

The following theorems show that the conditions § > (r+ a)pand (r+a)p < 1
are essential with respect to the order of approximation.

10 Banach Center t. IV
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THEOREM 3 ([9]). If f™(x) eLipo, 0 < ¢ < 1, p > 0 and f = (r+a)p, then we
have only

1/p
w0, 859 = o ©227)
and
- 1
WG 2,80 = o827},

Furthermore, there exist fi(x) and f5(x) such that f{?(x) e Lipa (i = 1,2), but

(logn)*/? )

2.6) bu(f15p, 85 0) = C(“,;;;T

and

nrte

b fasp, B50) = c(M)

with a positive ¢ = ¢(p, f).

THEOREM 4 ([10]). If fV(x) eLipa, 0 <« < 1, p, ¥ > 0 and (r+a)p = 1, then
we have only

o193 3 = 0 22"

and

ol fop; x| = 0((1_05"_)2)'

nr+a
Furthermore, there exist functions with f{(x) € Lipa (i = 1,2) such that
g logn)'’?

and s

fis ;0] > a0
n

T4

A fp 23 0] 2

with d = d(p,y) > 0.

These theorems show very clearly that with respect to strong approximation
the class Lipl has no extra property, namely any other class Lipa has the same
properties if § = (r+a)p or (r+a)p = 1.

The counterexamples f;(x) and f,(x) of the previous theorems are the follow-
ing functions:

If r is. an odd integer, then

¥

[} 2’
=1yt O cos(5-2'—Dx  cos(5-2'+10)x
f X)) = ~———( 2- ( _
1) 2 =y G- 7=yl G 2 +Iyl
\ | sinkx
fz(x) = "E,I_HW,
k=1
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and if r is even, then

©

cosk.
A=) e,
k=1
) 2 -
_ (—1y+t (sin(S -2-Dx  sin(3-2°+Dx
L) = : = l 22; G- 2=yl i G-r+b7 |
y= =211

To prove e.g. that the rth derivative of the first function with o = 1 belongs
to the class Lipl was a difficult task.

As we have mentioned, it is well known that if & < 1, then the condition f{x) €
Lipa implies that f(x) e Lip, but this is not the case if « = 1. Thus, in con-
nection with the estimation (2.6), it is natural to ask whether the conditions fOx) e
Lipl and F®O() eLipl imply that

Ba(f,p, 4+ 1Dp; x) = O(n™"Y),
or equivalently, that the partial sums of the series

0
D ket )~
k=1
are uniformly bounded. The answer is negative; namely we have

THEOREM 5 ([16]). There exists a function fo(x) such that f§(x) and Fox)
belong to the class, Lipl; moreover for any positive p

kD25 (f,, 0)=fo(0)F > K(r, p)logm,
k=1

where K(r, p) is a positive constant depending on r and p.

The special case p = 1, r =0 and 0 < a < 1 of Theorem 2 was generalized
by Sunouchi [22]; he replaced the partial sums in (2.5) by (C, B)-means, where f
can also be negative. We continued the generalization and proved

THEOREM 6 ([15]). Suppose that f(x) € Lipa for some 0 < o < 1, that B > —1/2
and that the positive number p satisfies the inequality pf > — 1. Suppose further that
y > max(0, —pp). Then we have

omn=%) if pa <1,

1 /e 1/,
{ LS gt -soor] = ofLoen™” ) itpa=,
k=0 On=1ry if pa > 1.

A similar theorem in the case f¢)(x) € Lipa is not yet proved. The case fx)e
Lip1 has not been investigated, either. )

In [17] we verified that these estimations are the best possible if g > 0. To
verify this for —1/2 < # < 0 is also an open problem. We proved ([15], [17D

10*
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similar estimations for the following strong means:

i/p
{( T 2 Y‘ (k+1)°—1|ak-1(x)—f(x)["} :

In [10] we investigated, among other things, the strong Riesz-means

1/p
—_ 14
Vi }: ()= 200) )70}
and gave conditions on {A(k)} which imply that these means have the order of
the best approximation obtained by trigonometric polynomials of order z.
We also defined generalized strong de la Vallée Poussin means

Pl i) = {1 $ sC—sCP)

y=n~2n

where 4 = {4,} is a nondecreasing sequence of integers such that 4, = 1 and
An+1_)'u <1

It is easy to see that these means include the strong (C, 1)-means (4, = n,
Vayrs = 0,) and the proper strong de la Vallée Poussin means (4, = [7/2], [x]
denotes the integral part of x), as special cases.

In [12] we proved, among other things, the following three theorems:

THEOREM 7. Suppose that n = O(A,). Then, for any continuous f(x) and p > 0,
we have

lp
{ V lsk(x)—f(x)l”} = 0(Es-s),

k=n An

where E, = E,(f) denotes the best approximation of f(x) by trigonometric polynomials
of order at most n.
See also Alexits-Krélik [5] (Satz 1). .,

THEOREM 8. Suppose that f(x) € Lipa, 0 < o < 1, and that n = O(A,). Then
for any p > 0

1
!0 m—n,w) for (+o)p<1,
Vn(f: Asp;x) = 1 1/p
n
lo(}—l”’—“ (1+10gm) ) for (r+a)p=1.
The same estimate is also valid for the conmjugate function f(x).

Furthermore, if r+a)p =1, 0 < o < 1, then there exist functions f1(x) and
Jf2(x) such that their r-th derivatives exist and belong to Lipa; moreover,

i/p
Iim V.(fi, 2,2:0) > (1+log—_;—+—l~)
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and

i/p
m V,(f, 4,25 0) > (1+1og—_7”¢1—) ,

where ¢ > 0 is independent of n.
THEOREM 9. If f(x) is integrable, then for any positive p and 6

V)l(.f: A:P; X) = Ox ((%)6) a.e.

Very recently we proved similar theorems without the restriction n = 0(4,).
For example, we have ([19])

TaeoreM 10. If f@(x) € Lipe (0 < ¢ < 1), then for any p > 0

[ n 1p 1
O((—}:) 71’—"‘7) if (+a)p <1,
Vulf, A, p3 %) = n 1/p
O(l,,‘“ (H-Iog-n—-m) ) if (+)p=1,
o117y if (r+wp>1.

The same estimate holds for Vulfs A, 0, X)-
These estimations, in general, are not the best possible. To give the best possible
estimations is also an open problem. .
We can also show that the partial sums in the means V,(f, 1, p; x) can be
replaced by (C, f)-means of negative order. The restrictions on B are §> —1/2
and pf > —1 (see [19], Theorem 4).

3

One other important problem of the theory of strong approximation by Fourier
series is to deduce structural properties of the function f(x) from the estimations
given for the strong means.

By Theorem 3, in the special case r =0, f =1 and &« = 1/p, p > 1; for the
whole class Lip(1/p) we have only the estimation

AUIRIE R Elsk(x)—f(xw} - 0(( l‘f”)m).

Freud [7] raised the following question: If we know that a function f(x) has
the property

h(fip, 1;x) = 0@™'?), p>1,
for all x, or equivalently

€R) Sis@-rr <k, p>1,
k=1
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what can we say about the function f(x)?
He proved that (3.1) implies

32 lim (fGet R~/ = 0

almost everywhere.

In his paper the following problem was raised: Is the assertion (3.2) true for
all x?

We answered this problem negatively ([13]); that is, we gave a function such
that the estimation (3.2) is not fulfilled in x = 0, but (3.1) holds. Our counter-
example is

o0

fd =

n=1

sinnx
PEESTN

The case p = 1 was investigated in the paper of Leindler and Nikisin [20].
THEOREM 11. If

s -/ < K
n=0
for all x, then
Se+h)—f(x) = O«(h)
Sfor almost all x, and °

[fx+R)~f(x)] < K, hlog(1/h)
for all x.
Furthermore, there exists a function fo(x) such that

Zo lsafo; D—fol)| < K
for all x, but

T 1 = 2"
Jo (?) —/fo(0) > —8‘2—,.]03";;: nz6.
This last result was generalized in [16] as follows:
THEOREM 12. If r is a nonnegative integer and

©

D rln () -f] < K,

n=1

(33

for all x, then we have

G4 TOC+B)—fO(x) = O4(h),

Jor almost all x; furthermore,

PG+ —fO(x)] < K, hlog(1/h),

icm
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for all x. Estimate (3.4) also holds with f ®)(x) instead of f(x).
If r is even, then (3.3) implies that
fo(x) e Lipt,
and if r is an odd integer, then it implies that
f(x) e Lipl.
Furthermore, there exists a function fy(x) having the following properties:

D W lsfo; D—fol)] < K

n=1

for all x, and if r is an even integer, then

6 7% (21) ~19 (0)\ > g olos 2,
. . 1
36 7ol 3) —f&"(o)i SR

for all m > 10; and if r is an odd integer, then f{(x) and ﬁ‘,"’(x) have to be inter-
changed in (3.5) and (3.6).

In [14] we generalized the result of Freud, namely we deduced structural pro-
perties from the condition

Y s @)=fOP <K, p>1, Ay >0.
n=0

Let 4, be positive numbers, let 4, = . 4, and let A(x) be an increasing
k=0

function between n and n+1, linear and such that A(m) = 4,.
We have the following theorem with respect to this problém.
THEOREM 13. Let p > 1. Suppose that nA;'? is increasing,

n
ZA:“" < Knd;'e,

(EN))
k=0
-]
S ktapie < KAy,
k=n
21
> W““‘”}F_l < KnPd7, if p>1,
k=n
and
A, < Knk,, if p=1.
Then, if

D hlsa()—f@)P < K
k=0
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for all x, then ;
(3.3 [fe+R)—f00) <
for all x; furthermore for almost all X we have

(3.9 hl_i.Tko(l/h) (fx+h)~fx)) = 0.

K, A~Y2(1/h)

We have proved the estimate (3.8) is the best ﬁossibl_e.
It is easy to verify that, for example, in the cases

=kﬁ~1: 0<I3<p:
logk
b= °,fﬂ, 0<p<l,

the conditions of Theorem 13 are satisfied. Thus Theorem 13 includes the result
of Freud, but it does not include Theorem 11. It would be an interesting task to
give a generalization which includes both results, A similar theorem with the rth
derivatives of f(x) has not been investigated.

Theorem 11 can be interpreted in such a way that the condition

D)~/ < K
n=0

does not imply that f(x) € Lip1. In connection with this X ([16], [18]) raised the
following problem: Does the condition

(3.10) Mis@—fOP <K with 0<p<1

n=0
imply f(x) e Lip1?

The answer has recently been given in an affirmative form by Oskolkov [22]
and by Szabados [24], independently. They have both proved a stronger statement.
‘To formulate their result we denote by £(8) an arbitrary modulus of continuity.
‘i.e. £(6) is positive., increasing, subaddative and lim £2(8) = 0. They have proved

540
that if

kzosz(lsk(x) —f@)< K
for all x and

dx

(3.11) ~ yoo

< o0,

Oy

then f(x) e Lip1.
Under a certain restriction on £2(x) they have also proved the necessity of
condition (3.11). As regards the additional conditions on Q(x), Oskolkov and
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Szabados differ. Oskolkov claims the following condition:
= 2(x/2)

xETO Q (x)

It seems to be a difficult task to prove the necessity of (3.11) without an addi-
tional condition.

Szabados has also proved thatif 0 < p < 1, I/p = r+a, where r = [1/p], then
condition (3.10) implies that f¢~(x) is continuous and

O(blog(1/®))e if
o(frD;6) = {0((5)og( %) !

where w(f; 8) denotes the modulus of continuity of f(x).

In connection with this result I have the following conjecture: Condition (3.10)
implies that
1) f®(x) eLipa, if a«a>0,
()] o(f ;9 = O(Blog(1/8)) if

In this direction we could prove ([19]) thatif 0 < p < 1 and 1/p—r = & > 0,
then condition (3.10) implies that f(x) is continuous and

o(f0; B = 0(h*(log(l 1)),

In a conversation Stetkin mentioned the following conjecture: The conditions

<1

o=0,
otherwise,

o=0.

(3.12) Z IsaG) =Sl < K
n=1
and
(3.13) ZEn(f) <
n=1

are equivalent. Using Theorem 11, we can show that this conjecture is not true.
Namely (3.12) does not imply that f(x) e Lip1, but (3.13) does, since

1) _ 1Y%
“’(f’;:) NS
k=1
But, by Theorem 7, it is easy to verify that (3.13) implies (3.12), namely -
oMl

D 1500 —f()] < K2"Egm,
k=2m

4

Finally we mention one more field of problems in connection with strong sum-
mability.
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We have mentioned the following result of Zygmund [27]: At any point of
continuity of f(x)

@1

n
. 1 7
Jim T 2 = = 0
holds for any p > 0.

In connection with the result Turdn [25] raised the following problem: Can
one replace the exponent p in (4.1) by a sequence {4,} increasing to infinity and
such that

. 1
lim
oo 1

D I~ = 0
k=0

holds ?
Turan gave a negative answer to this question, proving that for any sequence
Ay A +00 a continuous function can be given having the property

n
— 1
: - n o0
51_{1013 — kS_O Isx(x0) —f(x0)l +

at a suitable point Xo.
With respect to this negative result Alexists [3] raised the following problem:
For a given sequence {,}, what kind of function have the property

n 1n
@2) lim hy(f, 4; %) = lim {—I-Z I5¢) — f(x)w} G
n-o amco \ B+ 1 o
either at a fixed point x = x, or in an interval?

Kralik [8] gave sufficient conditions implying the property (4.2). To explain
his result we require the following definition: A positive differentiable function
F(x) (x > 0) increasing to infinity is said to belong to the class 4 if the functions
x!//F(x) are monotone increasing for x > n!/2» in case of sufficiently large n.

The theorem of Kralik states: If f(x) belongs to LM/Gs=D[—x_ ] for sufficiently
large n and if at x,

@3) Sl ) +f(—~1)=2f(xo) = O((F(1/D))™) (¢~ 0)

is fulfilled for some F(x) e, and furthermore A, = O(min(logn,F(n))), then
(4.2) holds. If (4.3) holds uniformly in [c, d], then (4.2) also holds uniformly in
any interval internal to (c, d).
) We I.Jroved ([11]), among other things that (4.2) also holds for integrable func-
tions satisfying (4.3) with a function F(x) belonging to a larger class A.

Ii?irst we define a new class A(o) of functions in the following way: A positive
unction ¢(x) (x > 0) increasing to infinity is said to belong to the class Afp) if

icm
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A, = (p(n)) and there exists a positive number ¢ < 1 such that the functions
x/* (p(x))~! are monotone nondecreasing for sufficiently large ».

We consider a regular summation method 7, determined by a triangular

n

e R
matrix ||—= (tpx 2 0 and 4, = Z o), 1. if s tends to s, then
" =0
n
1
T,, = A_,, Lpk Sk —* S

k=0
Now we are in a position to formulate our

THEOREM 14. If there exists a p > 1 such that”

n
1
{Z Olﬁk} s < Kn“"’/’A,,

“44

and if f(x) is integrable, and furthermore at x,
“.5) Seo+2)+f(xo—1)—2f(x0) = 0((¢(1/t))") - +0)
is satisfied for any @(x) € A(g), 0 < (p—1)/p, then we have

n

1/2n
lim {%Z an.,zsk(xo)—ﬂxo)lh} =o0.

n—00 ey

(4.6)

If (4.5) holds uniformly in [c, d], then (4.6) is also valid uniformly in any
interval internal to (c, d).
‘We mention that in the cases

g = A%E, 0<a<land 1 <p<1/(1—a),

oy = A}, a>1and 1 <p < o0,

e = Kk and pf > —1
condition (4.4) is satisfied, and thus Theorem 14 can be used for the most
frequent means.

5 !

Besides the problems mentioned in connection with our theorems we can also raise
the following ones:

1. Can the result given here be generalized to very strong approximation, that
is, can the partial sums s,(x) in our theorems be replaced by sy,(x) with any increas-
ing sequence {v;}?

2. What kind of additional conditions are needed for such a transition?
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