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1. Introduction

Let 4 = A(D) be the Banach space of analytic functions in the unit disc
D = {z: |z| < 1} and continuous in D with the norm

NfIl = ﬁi’f | f(2)].

Let A= {-nm=1ty<t <..<t,=mn} be a partition of the interval I
= [—=, =]. The function s, € C(I) is called a periodic spline of degree 1 with reSpect
to the partition A if it is piecewise linear with the knots at the points of the pairtition
4 and s4(—7) = s(r). A function S, defined with the aid of the Schwarz formula

™
) S (2 = 1 S 54(2) etz dt+iA here A = const, |z] < 1
_\Z) = 27 —nA eit'—Z' 4, W - ] ’
will be called an analytic spline of degree 1 with respect to the function s4. Since the

function s, satisfies the Lipschitz condition, we can define the function S; on the
unit circle I' = {z: |z] = 1} setting S4(e'¥) = lim S,(re*). The function S, defined
r—1-—

in this way belongs to the space 4 and
) t )
@ Sue®) = 5B)+ o S a6 —1) ctg-di-+1d,

where the above integral is interpreted as the Cauchy Principal Values [8], [15].
The sequence {f,}i>, of functions of the Banach space 4 is called a basis when-
ever each function fe 4 has a unique expansion

f= ianf;l

n=0
convergent in the norm.
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The modulus of continuity of the function f is defined as follows:

©) o(f, h) = sup {| ftz) =S|, 0 < |[t2—t,| < b, t;, 1, € Dy}.

The question of existence of a basis in the space 4 was raised by Banach in [3].
Bockarev [4], [5] exhibited an orthonormal basis {G,};Lo in 4. He also proved
that there exists a constant B >0 such that for fed, f(e") = u(t)+in(r),
1 f— 8, fll < Blw(u, 1/n)+w(v, 1/n)], where S,, s is the nth Founer sum of f with
respect to the system {Gy}rio-

We can consider the space 4 ‘as a space over R or €. The Bockarev system is
a basis in the complex space 4. The purpose of this paper is to give a construction
of a basis in the real space 4 and a construction of another basis in the complex
space A and to estimate the error of the approx1mat10n of analytlc functions by
analytic splines of degree 1.

2. The orthonormal Franklin systems

Let {4,}s, be a given sequence of partitions of [0,1, 4, = {0 = #,,0 < t,, < ...
. < tyn =1} with 4, = 4,,,,i.e. each point of 4, is a point of 4,,,. Let m,

= min (tn i, i— 1) and M, = max (tn 1= In, 1—1)-
1<<i<n ~1gign

Define the sequence of functions {¥,}7., as follows: ¥, =1, ¥, = ¢ and
forn>2¥,isa spline of degree 1 with respect to 4, equal to one on A N4, -
and equal to zero on A4,_;. Applying the Schmidt procedure of orthonormahzatlon
we obtain an orthonormal system in the space L, [0, 1] [7] In this space the follow-
ing scalar product is given:

1

(fg) = S‘ fB)g(t) dt.

- This system can also be obtamed with the aid of cubic splines. Let g, (n > 0)
bea cublc spline equal to one on 4,\4,_; and equal to zero on 4,_, with g,(0)
= g/(1) = 0. Then the system {1, g7, g%, ...} is orthogonal ([2], p 100) and each

function ¥, (n > 0) is a linear combination of the functions 1 gy, ..., g . Hence
1

the system {f,}2,, where f, = =, llgll2 = ((S) [g(t)]zdt) , is an orthonormal

Franklin system for this sequence of partitions.

If we reject the function ¥, from the system {¥,}2, and put !I’ =Y¥,, 7,
=%, forn> 2, then by applying the Schmidt procedure of orthonormahzatlon
we obtain the orthonormal system in the space C,[0, 1] of contmuous and perxodlc
functions. This system can also be obtained with the aid of cubic splines. Let g,
(n > 2) be a periodic cubic spline equal to one on 4,\4,_; and equal to zero on
A,-1. Then the system {1, 83, 85, ...} is orl:hogonal and each function ¥, =1
is a hnear combination of the functions 1, g5,..., .. Hence the system { f,.},,= 15
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Ary

where fn = —lgg’,:'m—z—, is an orthonormal periodic Franklin system for this sequence
of partitions.

Further we need the following theorems:

TueoreM 1. If fe C[0, 1] or fe C, [0 1] and s, 4 is the n-th Fourier sum of f
wn‘h respect to the system {f,}xoo or { f,. ® ., respectively, then
@ llsw, £Il < 3ILAI.

Proof. For fe C[0, 1] the proof is in [6] and for fe C,[0, 1] it is analogous. -

The next theorem is analogous to the theorems on interpolation by cubic splines
[2] and it will be given in detail considering its importance in the construction of
a basis in the space A.

THEOREM 2. Let {4,}7.1 be a given sequence of partitions of [0, 1]. If

(a) feCJ0,1], F(t) = SS SO)dydx, S, is the cubic spline of interpolation
to F(t) on 4, satisfying the condztzon.s' Sy, 7(0) = F'(0) and S, ;(1) = F’(_l) or
(b) f€ C,l0, 11, Sn,s is the cubic spline of interpolation to F(t) on A, satisfying
the conditions Sy, ;(1)— S, ;(0) = F'(1)—f'(0) and S, (0) = Sn (1),
then :
(1) Sa.; = 8.z, where s,y is the n-th Fourier sum of f with respect to the system
{fuko or {F}is. |
1 f=Sit Il < 60(f, My[2),
@ [|F'— Sy, fl| < 6M,0(f, M,/2),
[|1F— Szl < 3M7o(f, M,/2).
Proof. From the fundamental ldentlty for cubic sphnes [2] we can deduce that

S,I,’ = Sn,f
It follows from (1) and Theorem 1 that

183411 < 31171

Let ¢ be a spline of degree 1 of interpolation to f on 4,. Then we have the followmg
estimation [10], [14];

I1f-¢ll < w(f, W/2).
Hence _ , coL,
) =Sl < L F=ll+ 11— Sut | = [Lf=lI+lism, Zoll < 60(f, Maf2).

Let ¢ € [t,_4, t;]. In consequence of the interpolation property-of S, s, an applicati.on
of Rolle’s theorem yields the fact that there exists a point & € (f;—y, t;) for which
F'(§) = S, ;(&). Thus on this interval

lFM—&Am=@U®—%N%k<AMMwﬁI
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and a second integration yields the property

2
1 f=susl,

IF(t)—Sn,f(t)I <

which completes the proof.

3. Construction of a basis

Let {4,}7-1 be a given sequence of partitions of [—m,x], 4, = {-m=1t,
<ty1 <. <ly,=mn} with 4, = 4,,, and K, = M,/m,.

THEOREM 3. Let fe A, f(e”)A= u(t)+iv(t) and let s, , be the n-th Fourier sum
of u with respect to the system {f,}=., and S, ; the analytic spline of degree 1 with
respect to the function s, , such that ImS, ; (0) = Imf(0). Then

©) Hf~=Susll < -;%—(31r+ 14+ lZK,.)w(u, AZI") + %(ﬂ:-f-m,,)a)(f, ry,

where r, = Ie’"fnéll <m,.
Proof. Let z = €', Since the addition of a constant to the function f changes

neither modulus of continuity of f nor the difference S(2)— 8, 4(2), we can assume
that f(z) = 0. From (2) we obtain

™

| b -—s.(@-0cte Lt

-TC

M) 1D=S0./B] < )54, 1) + =

1t follows from Theorem 2 that
(8) lu(¢)_sn,u(¢)l < 6w(u, Mn/2)

To estimate the integral write it as follows

O 3 | -5~ Dlets - dr

=L S
T 2

[ = )=, u($ D)ot dt-+
ma<|t<me .

1 S t 1
+ PP - i N
> |,|<,,,nu(¢ fctg 5 dt b

= I]_+Iz+I3.

| s@-notgLa
2
| t|<mn

t x

Introduce the following notation: u, = § § u(y)dydsx, S(r) is a cubic spline

. . Tron
of 1’nterpolat10n to u,(f) on 4, satisfying the conditions S'(m)—S'(—n) = uj(n)—
—ui(=m) and §"(=m) = §"(x), r() = u(t)—s,, ,(t) and R(t) = u ()~ S'(F).
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From Theorem 2 we obtain
[r(t)] < 6w(u, M,[2),
[R() |< 6M,0(u, M,[2).

Hence
T . T R
t . ot . _ .
S r(qS—t)ctg—Z-dt = lR(d)—t) ctg?‘:u + S __Q__tt)_ dt
mn my in2 _C_
2sin 3
¢ d
My, ¢
< IIRfletg 2 +IRI
2 mn 2sin2—t—
2
m, _4||R -
= 2||R||ctg 5 < lln,,” < 24K,,co(u, ﬁ;{ )
Analogously,
S r(¢—t)ctg—-2t~dt < 24K,,w(u, 1\2{,.)
Then
24 M,
Write the second integral in the following form:
1 ¢ v ity 1
t i e+
| IZ = F_S" u(¢"’t)ctg'—2—dt = —E*S u(¢—-—t)~é;,—:_T-dt
¢+my ¢+mn - .
i et et 1 o €5
=_2";‘r“ S u(f)m‘d‘[:-i;;Re S l_f(el)wdf——-Re].
¢~ mp ¢_’,""

A
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Further we need the following notation: I'y, = {: & = ei<¢+r) —m, <m),
Tz = {5 [f ZJ ]El'""—l! = r,,}nD O<e<r, N = (1—8)2 Hence
1 CfE t+z 1 S ) 1 S 4 .. _
J=.2qn‘lS £ £ zd Tk ) E—z dé - 2 T4 =T+,

From Sochocki’s theorem and Cauchy’s theorem [9], [1 1] we obtain

e S 7O g i L1 LD g ims,,
I,

&0 &=0

| %S HG] ) ¢ = 21700~ S f(E) "
Hence
<+ O lg Z}ldél+2|f(n>|
I
< (=242 S0 »o(f,r) as e 0.
Since B
i ¢+mn m
Vol < 5= ) 1A —f@ldt < o/, ),
& —mn
we have -
() TARS (1+ ”T’;)w(f, .

To estimate the integral I; we shall estimate the derivative of the function s,, 4.
To do this it suffices to estimate the divided difference of the function s,,, taken at
the points #;_4, t,i=1,2,...,n

Su,u(t)—Sn, u(ti= 1) - Spu(t) —u(ty)
L—ty L—1_,

) —ultey)

u(ti—1)—8n, u(ti-1)
L=ty

L—1y

Hence from Theorem 2 and the property of the modulus of continuity [1], [13],

we obtain
, 14 M,
< 5§
[sn, u(2)] n w(u 3 )

and an application of Lagrange’s theorem yields

14w(u, M,/2)
m,

lSn,u(¢—t)—Sn,u(¢)[ < ltl'
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Hence
1 nn

: : 2.,

1< g § sl jrotear < 2 i,
Then

28 M,
I € — ~).

(12) IARS Ttco(u, 5 )

Hence from (7)-(12), together with an application of the principle of maximum
for analytic functions, we obtain the theorem.

Remark. Since there exists a constant C > 0 such that for fe 4, w(/f, 6)
< Ca(f, 8), where &(f, 6) = ma)lz [ f(z2)—f(z)|, [12], the inequality (6) can

Zy|=|z3| =1
|22—2,]<6

be written as follows:

I1f=Sn.sll < (448K )00 (u, M,/ + Bw(v, my),
where 4 and B are constants.(x)

Let { f,,};',‘; 1 be an orthonormal periodic Franklin system in the interval [, =]
and let

it ‘
3 &= gn(z)——an(t) Y a, =12,

From Theorem 3 we obtain

THEOREM 4. If for a given sequence of partitions {4, },,=1 hm K, < oo, then

n—»o0

the system {g,}2.0 is a basis in the real Banach space A.

Proof. Define a scalar progiuct in the real space 4 as follows:

T

figed, f=utiv, g=utiv, (f,8)= | u(@)u(@)dt+o(0)w.0).

-7

Now the system {g,}=, is orthonormal and from (6) we obtain the theorem.
t

Remark. Let fed, f(e") = u(®)+iv@), U{) = S §‘ [u(®)—2n Re f(0)]dydx

- —TC
and let H(z) be a periodic cubic spline of interpolation to the function U at the
points of the partition 4,. Reasoning as in the proof of Theorem 2, we can see that

(14) Sn, 1(2)

—ors ] S oy k2
mf(0)+—2?_"H O dt.

(*) The constant Cis equal to 3. This is proved by L. A. Rubel, A. L. Shields and B. A. Taylor
in J. Approximation Theory 15 (1975), p. 23. :
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4. Orthonormal systems

Let {4,}71 be a given sequence of partitions of [0, 2n], 4, = {0 = £, , < 1, , <.
. < by, = 2m}withd, < 4,,, and let {f,}2_, be an orthonormal Franklin system
for this sequence of partitions.
Define the following system of functions {F,,},,=0:

fx(28) for te]0, 7]
13 F"(‘)={f,,(—2t) for tef[-m0 "T0L.-
Let
1
(16) &@=;E? &ﬁ%—VfW®+W0E
where
an F,,(t) = —2—17—; _S,, F,,(t—x)ctg—g— dx.

Since the functions satisfy the Lipschitz condition, the functions

k13
1—r?

G = Gure) = - | &) ax

1—-2rcos(t—x)+r?

belong to the space A.
The functions G,(z) can also be written with the aid of the Schwarz formula [5]

Go(2) =

e
Vo
(18)
+z

1 k42
G,(2) = 1/21: S F (t) — ———dt, nx1.

This system will be called the Bockarev system.!
Let f, g € A. The scalar product is defined as follows:

(f.8) = S AW gt

The next theorem is a conclusxon from Parseval’s equality and it will be given
in detail considering the simplicity of the proof.

THEOREM 5. The system {G,}2., is orthonormal.,
Proof. From Cauchy’s formula we obtain

s e ﬁl(‘f’,fi"'(fld5=an(0)0m(0).

[§l=1
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On the other hand, forn 21, m > 0,

2 { G@Gn® 4 _

2 S G,(e")Gm(e™) dt

- 3
= | BO+EO B0+ a0l
= | BORO-E0O Ry
+i { B0 F0O+F,0) Fun)d
=0 because G,(0) = 0.
Then
{ R P = § BB,
(20) - -
§ R Eunydt = — | B Fu0)ar.
Hence

61 G = | GG = { RO FO+E O R+

+o | R O-ROF@

Since the functions F, are even and F, odd, we infer from (20) that (G,, Gm) = &, m:

THEOREM 6. Let S,  be the n-th Fourier sum of a given function f € A with respect
to the system {G,}_ . Then

QL |If=S,ll S—T%-(37t+14+12K,,)[w( ,J‘Z )+co( v, Af‘)]+

1
+ -;:- (Tt+mn)w(f, r,,),
where r, = |e™—1| < m,.
Proof. From (18),

ki

$0s@ =5 § 5000

-T%

ot
z
__+__ dt,
-z
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where s, ; is the nth Fourier sum of the function f(e”) with respect to the system
{F,}&6. On the circle I,

i t
Sn.s(6®) = 5u, /(@) + 5 S Sn.g (@ —t)ctg—-dt.

Let f(e") = u(t)+iv(z). Divide the functions # and v into the even and odd

t)+u(—t t)—u(—
parts, ¥ = 1y +uy, v = v, +0,, Where uy (t) = i()+—2u(~—), U, (1) = u()“;(*f)_,

and do the same with the functions v; and #,.
Since the functions F, are even and #; = v; and 9, = —u,+Ref(0), we have

J(@4) =Sy, 1(€%) = [uy($) = 5u,u, () +i[01 () — 50,0, ($)]+
e _g [ (8= 1) = 80,0,(& ~ Dt - dt —

T

~ g § 400 @ Olete 7.,

and reasoning as in the proof of Theorem 3 we obtain (21).
COROLLARY. There exists a constant A such that for f e A,

=S pll < (A+8K,) [, My/2)+e(v, My/2)].
This follows from Theorem 5 and Theorem 6.

THEOREM 7. If for a given sequence of partitions {4,}2., lim K, < oo, then

n-o0

the system {G,}.o is a baszs in the complex Banach space A. '
tx

Remark 1. Let F(t) = SS [u,(»/2)+ivy(¥/2)]dydx and let H(t) be a cubic
00

spline of interpolation to the function F at the points of the partition 4, satisfying
the conditions H'(0) = F'(0) and H'(2r) = F'(27). Reasoning as in the proof of
Theorem 2 and from (15) we can see that for 0 < ¢ < T, Sq,7(t) = H''(2t), and since
S»,5 s an odd function, we have for - < £ < 0, s, ;(t) = H"(—2¢) and

-t
z + e +z] .
-z e

22) S, s(2) = ”2},; S H"(2t)[ eeit
0

Remark 2. Let {4,}7., be a given sequence of partitions of [0,2x], 4

={0=ty0<ty1<..<ty,=2n} with 4, = 4,,, and let {£)2 be an ortho-
normal periodic system with respect to {A 2., with f,,(O) =0 (n=12,.)
obtained as the Franklin system.

Define the following system of functions {f",.};',‘; 2t
F( ) = {f}.(Zt) for te]0,n],
fH(=2t) for te[-m,0].
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Let
A 1
G,(2) =

G 1 S by Ltz ‘
G,(2) = — \ F,(t)———dt, n>2.
@ =75 ) PO |

For the system {G }o theorems 5-7 are true. The proofs are analogous.

Remark 3. Let {4,}2., be a given sequence of partitions of J=m. 7 4

={—Tm=tyo<ly1<..<ly,=7}with 4, c4,,; and let {f,.},, 1 be an
orthonormal periodic Frankhn system with respect to {4,}.

Instead of Schwarz’s formula use Cauchy’s formula and define the following

system {g,}1:

@) e LS A

ef—z
-7

As for the system {g,}2.,, we can see that if lim K, < oo, then each function
n—»00
o0

. - A N . -
f €A has a uniform convergent expansion f = Z a,8,. However, this expansion
=1

is not unique because each function g, (n > 2) has at least two different expansions.
Then the system {g,}2., is not a basis in the space 4.
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