

APPROXIMATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 4
PWN—POLISH SCIENTIFIC PUBLISHERS
WARSAW 1979

ON THE APPLICATION OF THE ORTHONORMAL FRANKLIN SYSTEM TO THE APPROXIMATION OF ANALYTIC FUNCTIONS

ZYGMUNT WRONICZ

Stanislaw Staszic Academy of Mining and Metalurgy, Institute of Mathematics, 30-059 Cracow, Poland

1. Introduction

Let A = A(D) be the Banach space of analytic functions in the unit disc $D = \{z: |z| < 1\}$ and continuous in \overline{D} with the norm

$$||f|| = \max_{|z|=1} |f(z)|.$$

Let $\Delta = \{-\pi = t_0 < t_1 < ... < t_n = \pi\}$ be a partition of the interval $I = [-\pi, \pi]$. The function $s_A \in C(I)$ is called a *periodic spline of degree* 1 with respect to the partition Δ if it is piecewise linear with the knots at the points of the partition Δ and $s_A(-\pi) = s(\pi)$. A function S_A defined with the aid of the Schwarz formula

(1)
$$S_{-}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} s_{d}(t) \frac{e^{it} + z}{e^{it} - z} dt + iA$$
, where $A = \text{const}, |z| < 1$,

will be called an analytic spline of degree 1 with respect to the function s_{Δ} . Since the function s_{Δ} satisfies the Lipschitz condition, we can define the function S_{Δ}^{r} on the unit circle $\Gamma = \{z : |z| = 1\}$ setting $S_{\Delta}(e^{i\phi}) = \lim_{r \to 1^{-}} S_{\Delta}(re^{i\phi})$. The function S_{Δ} defined

in this way belongs to the space A and

(2)
$$S_{\Delta}(e^{i\phi}) = s_{\Delta}(\phi) + \frac{i}{2\pi} \int_{-\pi}^{\pi} s_{\Delta}(\phi - t) \operatorname{ctg} \frac{t}{2} dt + iA,$$

where the above integral is interpreted as the Cauchy Principal Values [8], [15].

The sequence $\{f_n\}_{n=0}^{\infty}$ of functions of the Banach space A is called a *basis* whenever each function $f \in A$ has a unique expansion

$$f = \sum_{n=0}^{\infty} a_n f_n$$

convergent in the norm.

The modulus of continuity of the function f is defined as follows:

(3)
$$\omega(f,h) = \sup \{ |f(t_2) - f(t_1)|, \ 0 < |t_2 - t_1| \le h, \ t_1, t_2 \in D_f \}.$$

The question of existence of a basis in the space A was raised by Banach in [3]. Bockarev [4], [5] exhibited an orthonormal basis $\{G_n\}_{n=0}^{\infty}$ in A. He also proved that there exists a constant B > 0 such that for $f \in A$, $f(e^{it}) = u(t) + iv(t)$, $||f - S_{n,f}|| \leq B[\omega(u, 1/n) + \omega(v, 1/n)]$, where $S_{n,f}$ is the *n*th Fourier sum of f with respect to the system $\{G_n\}_{n=0}^{\infty}$.

We can consider the space A as a space over R or C. The Bočkarev system is a basis in the complex space A. The purpose of this paper is to give a construction of a basis in the real space A and a construction of another basis in the complex space A and to estimate the error of the approximation of analytic functions by analytic splines of degree 1.

2. The orthonormal Franklin systems

Let $\{\Delta_n\}_{n=1}^{\infty}$ be a given sequence of partitions of [0, 1], $\Delta_n = \{0 = t_{n,0} < t_{n,1} < \dots < t_{n,n} = 1\}$ with $\Delta_n \subset \Delta_{n+1}$, i.e. each point of Δ_n is a point of Δ_{n+1} . Let $m_n = \min_{1 \le i \le n} (t_{n,i} - t_{n,i-1})$ and $M_n = \max_{1 \le i \le n} (t_{n,i} - t_{n,i-1})$.

Define the sequence of functions $\{\Psi_n\}_{n=0}^{\infty}$ as follows: $\Psi_0 = 1$, $\Psi_1 = t$ and for $n \ge 2$ Ψ_n is a spline of degree 1 with respect to Δ_n equal to one on $\Delta_n \setminus \Delta_{n-1}$ and equal to zero on Δ_{n-1} . Applying the Schmidt procedure of orthonormalization, we obtain an orthonormal system in the space L_2 [0, 1] [7]. In this space the following scalar product is given:

$$(f,g)=\int_0^1 f(t)g(t)\,dt.$$

This system can also be obtained with the aid of cubic splines. Let g_n (n > 0) be a cubic spline equal to one on $\Delta_n \setminus \Delta_{n-1}$ and equal to zero on Δ_{n-1} with $g'_n(0) = g'_n(1) = 0$. Then the system $\{1, g''_1, g''_2, \ldots\}$ is orthogonal ([2], p. 100) and each function Ψ_n $(n \ge 0)$ is a linear combination of the functions $1, g''_1, \ldots, g''_n$. Hence

the system $\{f_n\}_{n=0}^{\infty}$, where $f_n = \frac{g_n}{||g_n||_2}$, $||g||_2 = (\int_0^1 [g(t)]^2 dt)^{1/2}$, is an orthonormal Franklin system for this sequence of partitions.

If we reject the function Ψ_1 from the system $\{\Psi_n\}_{n=0}^{\infty}$ and put $\hat{\Psi}_1 = \Psi_0$, $\hat{\Psi}_n = \Psi_n$ for $n \ge 2$, then by applying the Schmidt procedure of orthonormalization, we obtain the orthonormal system in the space $C_p[0, 1]$ of continuous and periodic functions. This system can also be obtained with the aid of cubic splines. Let \hat{g}_n $(n \ge 2)$ be a periodic cubic spline equal to one on $A_n \setminus A_{n-1}$ and equal to zero on A_{n-1} . Then the system $\{1, \hat{g}_2^{\prime\prime}, \hat{g}_3^{\prime\prime}, ...\}$ is orthogonal and each function $\hat{\Psi}_n$ $(n \ge 1)$ is a linear combination of the functions $1, \hat{g}_2^{\prime\prime}, ..., \hat{g}_n^{\prime\prime}$. Hence the system $\{\hat{f}_n\}_{n=1}^{\infty}$,

where $\hat{f}_n = \frac{\hat{g}_n^{"}}{||\hat{g}_n^{"}||_2}$, is an orthonormal periodic Franklin system for this sequence of partitions.

Further we need the following theorems:

THEOREM 1. If $f \in C[0, 1]$ or $f \in C_p[0, 1]$ and $s_{n,f}$ is the n-th Fourier sum of f with respect to the system $\{f_n\}_{n=0}^{\infty}$ or $\{\hat{f}_n\}_{n=1}^{\infty}$, respectively, then

Proof. For $f \in C[0, 1]$ the proof is in [6] and for $f \in C_p[0, 1]$ it is analogous. The next theorem is analogous to the theorems on interpolation by cubic splines [2] and it will be given in detail considering its importance in the construction of a basis in the space A.

THEOREM 2. Let $\{\Delta_n\}_{n=1}^{\infty}$ be a given sequence of partitions of [0, 1]. If

(a) $f \in C[0, 1]$, $F(t) = \int_0^t \int_0^x f(y) dy dx$, $S_{n,f}$ is the cubic spline of interpolation to F(t) on Δ_n satisfying the conditions $S'_{n,f}(0) = F'(0)$ and $S'_{n,f}(1) = F'(1)$ or

(b) $f \in C_p[0, 1]$, $S_{n,f}$ is the cubic spline of interpolation to F(t) on Δ_n satisfying the conditions $S'_{n,f}(1) - S'_{n,f}(0) = F'(1) - f'(0)$ and $S''_{n,f}(0) = S''_{n,f}(1)$, then

(1) $S''_{n,f} = s_{n,f}$, where $s_{n,f}$ is the n-th Fourier sum of f with respect to the system $\{f_n\}_{n=0}^{\infty}$ or $\{\hat{f}_n\}_{n=1}^{\infty}$.

(2)
$$||f - S''_{n,f}|| \leq 6\omega(f, M_n/2),$$

$$||F' - S'_{n,f}|| \leq 6M_n\omega(f, M_n/2),$$

$$||F - S_{n,f}|| \leq 3M_n^2\omega(f, M_n/2).$$

Proof. From the fundamental identity for cubic splines [2] we can deduce that $S''_{n,f} = s_{n,f}$.

It follows from (1) and Theorem 1 that

$$||S_{n,f}''|| \leq 3||f||.$$

Let ϕ be a spline of degree 1 of interpolation to f on Δ_n . Then we have the following estimation [10], [14];

$$||f-\phi|| \leq \frac{3}{2}\omega(f, M_n/2).$$

Hence

icm

$$(5) ||f-S_{n,f}''|| \leq ||f-\phi|| + ||\phi-S_{n,f}''|| = ||f-\phi|| + ||s_{n,f-\phi}|| \leq 6\omega(f, M_n/2).$$

Let $t \in [t_{i-1}, t_i]$. In consequence of the interpolation property of $S_{n,f}$, an application of Rolle's theorem yields the fact that there exists a point $\xi \in (t_{i-1}, t_i)$ for which $F'(\xi) = S'_{n,f}(\xi)$. Thus on this interval

$$|F'(t) - S'_{n,f}(t)| = \left| \int_{x}^{t} [f(x) - s_{n,f}(x)] dx \right| \le M_n ||f - s_{n,f}||$$

and a second integration yields the property

$$|F(t) - S_{n,f}(t)| \leq \frac{M_n^2}{2} ||f - s_{n,f}||,$$

which completes the proof.

3. Construction of a basis

Let $\{\Delta_n\}_{n=1}^{\infty}$ be a given sequence of partitions of $[-\pi, \pi]$, $\Delta_n = \{-\pi = t_{n,0} < t_{n,1} < ... < t_{n,n} = \pi\}$ with $\Delta_n \subset \Delta_{n+1}$ and $K_n = M_n/m_n$.

THEOREM 3. Let $f \in A$, $f(e^{it}) = u(t) + iv(t)$ and let $s_{n,u}$ be the n-th Fourier sum of u with respect to the system $\{\hat{f}_n\}_{n=1}^{\infty}$ and $S_{n,f}$ the analytic spline of degree 1 with respect to the function $s_{n,u}$ such that $\operatorname{Im} S_{n,f}(0) = \operatorname{Im} f(0)$. Then

(6)
$$||f-S_{n,f}|| \leq \frac{2}{\pi} (3\pi + 14 + 12K_n) \omega \left(u, \frac{M_n}{2}\right) + \frac{1}{\pi} (\pi + m_n) \omega(f, r_n),$$

where $r_n = |e^{im_n} - 1| < m_n$.

Proof. Let $z = e^{i\phi}$. Since the addition of a constant to the function f changes neither modulus of continuity of f nor the difference $f(z) - S_{n,f}(z)$, we can assume that f(z) = 0. From (2) we obtain

(7)
$$|f(z)-S_{n,f}(z)| \leq |u(\phi)-s_{n,u}(\phi)| + \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} [u(\phi-t)-s_{n,u}(\phi-t)] \operatorname{ctg} \frac{t}{2} dt \right|.$$

It follows from Theorem 2 that

$$|u(\phi)-s_{n,u}(\phi)| \leq 6\omega(u, M_n/2).$$

To estimate the integral write it as follows

(9)
$$\frac{1}{2\pi} \int_{\pi_{-}}^{\pi} [u(\phi - t) - s_{n,u}(\phi - t)] \operatorname{ctg} \frac{t}{2} dt$$

$$= \frac{1}{2\pi} \int_{m_{n} \leq |t| \leq \pi} [u(\phi - t) - s_{n,u}(\phi - t)] \operatorname{ctg} \frac{t}{2} dt +$$

$$+ \frac{1}{2\pi} \int_{|t| \leq m_{n}} u(\phi - t) \operatorname{ctg} \frac{t}{2} dt - \frac{1}{2\pi} \int_{|t| \leq m_{n}} s_{n,u}(\phi - t) \operatorname{ctg} \frac{t}{2} dt$$

$$= I_{1} + I_{2} + I_{3}.$$

Introduce the following notation: $u_1(t) = \int_{-\pi}^{t} \int_{-\pi}^{x} u(y) dy dx$, S(t) is a cubic spline of interpolation to $u_1(t)$ on Δ_n satisfying the conditions $S'(\pi) - S'(-\pi) = u_1'(\pi) - u_1'(-\pi)$ and $S''(-\pi) = S''(\pi)$, $r(t) = u(t) - s_{n,u}(t)$ and $R(t) = u_1'(t) - S'(t)$.

From Theorem 2 we obtain

$$|r(t)| \leq 6\omega(u, M_n/2),$$

$$|R(t)| \leq 6M_n\omega(u, M_n/2).$$

Hence

icm

$$\left| \int_{m_n}^{\pi} r(\phi - t) \operatorname{ctg} \frac{t}{2} dt \right| = \left| R(\phi - t) \operatorname{ctg} \frac{t}{2} \Big|_{m_n}^{\pi} + \int_{m_n}^{\pi} \frac{R(\phi - t)}{2 \sin^2 \frac{t}{2}} dt \right|$$

$$\leq ||R|| \operatorname{ctg} \frac{m_m}{2} + ||R|| \int_{m_n}^{\pi} \frac{dt}{2 \sin^2 \frac{t}{2}}$$

$$= 2||R|| \operatorname{ctg} \frac{m_n}{2} \leq \frac{4||R||}{m_n} \leq 24K_n \omega \left(u, \frac{M_n}{2} \right).$$

Analogously,

$$\left|\int_{-\pi}^{m_n} r(\phi - t) \operatorname{ctg} \frac{t}{2} dt\right| \leq 24K_n \omega \left(u, \frac{M_n}{2}\right).$$

Then

$$|I_1| \leqslant \frac{24}{\pi} K_n \left(u, \frac{M_n}{2} \right)$$

Write the second integral in the following form:

$$I_{2} = \frac{1}{2\pi} \int_{-m_{n}}^{m_{n}} u(\phi - t) \operatorname{ctg} \frac{t}{2} dt = -\frac{i}{2\pi} \int_{-m_{n}}^{m_{n}} u(\phi - t) \frac{e^{it} + 1}{e^{it} - 1} dt$$

$$= \frac{i}{2\pi} \int_{\phi - m_{n}}^{\phi + m_{n}} u(\tau) \frac{e^{i\tau} + e^{i\phi}}{e^{i\tau} - e^{i\phi}} d\tau = \frac{1}{2\pi} \operatorname{Re} \int_{\phi - m_{n}}^{\phi + m_{n}} if(e^{i\tau}) \frac{e^{i\tau} + e^{i\phi}}{e^{i\tau} - e^{i\phi}} d\tau = \operatorname{Re} J.$$

Further we need the following notation: $\Gamma_1 = \{\xi : \xi = e^{i(\phi + t)}, -m_n \leq t \leq m_n\},\$ $\Gamma_2 = \{\xi : |\xi - z| = |e^{im_n} - 1| = r_n\} \cap \overline{D}, \ 0 < \varepsilon < r_n, \ \eta = (1 - \varepsilon)z.$ Hence

$$J = \frac{1}{2\pi} \int_{\Gamma_1} \frac{f(\xi)}{\xi} \cdot \frac{\xi + z}{\xi - z} d\xi = \frac{1}{\pi} \int_{\Gamma_1} \frac{f(\xi)}{\xi - z} d\xi - \frac{1}{2\pi} \int_{\Gamma_1} \frac{f(\xi)}{\xi} d\xi = J_1 + J_2.$$

From Sochocki's theorem and Cauchy's theorem [9], [11] we obtain

$$J_{1} = \frac{1}{\pi} \int_{\Gamma_{1}} \frac{f(\xi)}{\xi - z} d\xi = \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{\Gamma_{1}} \frac{f(\xi)}{\xi - \eta} d\xi = \lim_{\varepsilon \to 0} J_{1,\varepsilon},$$
$$\frac{1}{\pi} \int_{\Gamma_{1}} \frac{f(\xi)}{\xi - \eta} d\xi = 2if(\eta) - \frac{1}{\pi} \int_{\Gamma_{2}} \frac{f(\xi)}{\xi - \eta} d\xi.$$

Hence

$$|J_{1,\varepsilon}| \leq \frac{1}{\pi} \int_{\Gamma_2} \frac{|f(\xi) - f(z)|}{|\xi - z|} \cdot \left| \frac{\xi - z}{\xi - \eta} \right| |d\xi| + 2|f(\eta)|$$

$$\leq (f, r_n) \frac{r_n}{r_n - \varepsilon} + 2|f(\eta)| \to \omega(f, r_n) \quad \text{as} \quad \varepsilon \to 0.$$

Since

$$|J_2| \leqslant \frac{1}{2\pi} \int_{\phi-m_n}^{\phi+m_n} |f(e^{it}) - f(z)| dt \leqslant \frac{m_n}{\pi} \omega(f, r_n),$$

we have

$$|I_2| \leqslant \left(1 + \frac{m_n}{\pi}\right) \omega(f, r_n).$$

To estimate the integral I_3 we shall estimate the derivative of the function $s_{n,u}$. To do this it suffices to estimate the divided difference of the function $s_{n,u}$ taken at the points t_{l-1} , t_l , i = 1, 2, ..., n.

$$\frac{s_{n,u}(t_i)-s_{n,u}(t_{i-1})}{t_i-t_{i-1}}=\frac{s_{n,u}(t_i)-u(t_i)}{t_i-t_{i-1}}+\frac{u(t_i)-u(t_{i-1})}{t_i-t_{i-1}}+\frac{u(t_{i-1})-s_{n,u}(t_{i-1})}{t_i-t_{i-1}}.$$

Hence from Theorem 2 and the property of the modulus of continuity [1], [13], we obtain

$$|s'_{n,u}(t)| \leqslant \frac{14}{m_n} \omega \left(u, \frac{M_n}{2}\right)$$

and an application of Lagrange's theorem yields

$$|s_{n,u}(\phi-t)-s_{n,u}(\phi)| \leq \frac{14\omega(u, M_n/2)}{m_n}|t|.$$

Hence

icm

$$|I_3| \leqslant \frac{1}{2\pi} \int_{-m_n}^{m_n} ||s'_{n,u}|| \cdot \left| t \operatorname{ctg} \frac{t}{2} \right| dt \leqslant \frac{2}{\pi} ||s'_{n,u}|| m_n.$$

Then

$$|I_3| \leqslant \frac{28}{\pi} \omega \left(u, \frac{M_n}{2} \right).$$

Hence from (7)-(12), together with an application of the principle of maximum for analytic functions, we obtain the theorem.

Remark. Since there exists a constant C > 0 such that for $f \in A$, $\omega(f, \delta) \le C\tilde{\omega}(f, \delta)$, where $\tilde{\omega}(f, \delta) = \max_{\substack{|z_1|=|z_2|=1\\|z_2-z_1| \le \delta}} |f(z_2)-f(z_1)|$, [12], the inequality (6) can

be written as follows:

$$||f-S_{n,f}|| \leq (A+8K_n)\omega(u, M_n/2) + B\omega(v, m_n),$$

where A and B are constants.(*)

Let $\{\hat{f}_n\}_{n=1}^{\infty}$ be an orthonormal periodic Franklin system in the interval $[-\pi, \pi]$ and let

(13)
$$g_0 = i, \quad g_n(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{f}_n(t) \frac{e^{it} + z}{e^{it} - z} dt, \quad n = 1, 2, ...$$

From Theorem 3 we obtain

THEOREM 4. If for a given sequence of partitions $\{\Delta_n\}_{n=1}^{\infty} \overline{\lim}_{n\to\infty} K_n < \infty$, then the system $\{g_n\}_{n=0}^{\infty}$ is a basis in the real Banach space A.

Proof. Define a scalar product in the real space A as follows:

$$f, g \in A$$
, $f = u + iv$, $g = u_1 + iv_1$, $(f, g) = \int_{-\pi}^{\pi} u(e^{it})u_1(e^{it})dt + v(0)v_1(0)$.

Now the system $\{g_n\}_{n=0}^{\infty}$ is orthonormal and from (6) we obtain the theorem.

Remark. Let $f \in A$, $f(e^{it}) = u(t) + iv(t)$, $U(t) = \int_{-\pi}^{t} \int_{-\pi}^{x} [u(t) - 2\pi \operatorname{Re} f(0)] dy dx$ and let H(t) be a periodic cubic spline of interpolation to the function U at the points of the partition Δ_n . Reasoning as in the proof of Theorem 2, we can see that

(14)
$$S_{n,f}(z) = f(0) + \frac{1}{2\pi} \int_{-\pi}^{\pi} H''(t) \frac{e^{it} + z}{e^{it} - z} dt.$$

^(*) The constant C is equal to 3. This is proved by L. A. Rubel, A. L. Shields and B. A. Taylor in J. Approximation Theory 15 (1975), p. 23.

4. Orthonormal systems

Let $\{\Delta_n\}_{n=1}^{\infty}$ be a given sequence of partitions of $[0, 2\pi]$, $\Delta_n = \{0 = t_{n,0} < t_{n,1} < ... < ... < t_{n,n} = 2\pi\}$ with $\Delta_n \subset \Delta_{n+1}$ and let $\{f_n\}_{n=0}^{\infty}$ be an orthonormal Franklin system for this sequence of partitions.

Define the following system of functions $\{F_n\}_{n=0}^{\infty}$:

(15)
$$F_n(t) = \begin{cases} f_n(2t) & \text{for } t \in [0, \pi] \\ f_n(-2t) & \text{for } t \in [-\pi, 0] \end{cases} \quad n = 0, 1, \dots$$

Let

(16)
$$g_0(t) = \frac{1}{\sqrt{2\pi}}, \quad g_n(t) = \frac{1}{\sqrt{2}} \left[F_n(t) + i \tilde{F}_n(t) \right],$$

where

(17)
$$\tilde{F}_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_n(t-x) \operatorname{ctg} \frac{x}{2} dx.$$

Since the functions satisfy the Lipschitz condition, the functions

$$G_n(z) = G_n(re^{it}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g_n(x) \frac{1 - r^2}{1 - 2r\cos(t - x) + r^2} dx$$

belong to the space A.

The functions $G_n(z)$ can also be written with the aid of the Schwarz formula [5]

(18)
$$G_{0}(z) = \frac{1}{\sqrt{2\pi}},$$

$$G_{n}(z) = \frac{1}{2\sqrt{2\pi}} \int_{-\pi}^{\pi} F_{n}(t) \frac{e^{it} + z}{e^{it} - z} dt, \quad n \geqslant 1.$$

This system will be called the Bockarev system.

Let $f, g \in A$. The scalar product is defined as follows:

$$(f,g) = \int_{-\pi}^{\pi} f(e^{it}) \overline{g(e^{it})} dt.$$

The next theorem is a conclusion from Parseval's equality and it will be given in detail considering the simplicity of the proof.

THEOREM 5. The system $\{G_n\}_{n=0}^{\infty}$ is orthonormal.

Proof. From Cauchy's formula we obtain

(19)
$$\frac{1}{2\pi i} \int_{|\xi|=1}^{\infty} \frac{G_n(\xi) G_m(\xi)}{\xi} d\xi = G_n(0) G_m(0).$$

On the other hand, for $n \ge 1$, $m \ge 0$.

$$\frac{2}{i} \int_{|\xi|=1}^{\infty} \frac{G_n(\xi) G_m(\xi)}{\xi} d\xi = 2 \int_{-\pi}^{\pi} G_n(e^{it}) G_m(e^{it}) dt
= \int_{-\pi}^{\pi} [F_n(t) + i\tilde{F}_n(t)] [F_m(t) + i\tilde{F}_m(t)] dt
= \int_{-\pi}^{\pi} [F_n(t) F_m(t) - \tilde{F}_n(t) \tilde{F}_m(t)] dt +
+ i \int_{-\pi}^{\pi} [F_n(t) \tilde{F}_m(t) + \tilde{F}_n(t) F_m(t)] dt
= 0 \quad \text{because} \quad G_n(0) = 0.$$

Then

icm

(20)
$$\int_{-\pi}^{\pi} F_{n}(t) F_{m}(t) dt = \int_{-\pi}^{\pi} \tilde{F}_{n}(t) \tilde{F}_{m}(t) dt, \\ \int_{-\pi}^{\pi} F_{n}(t) \tilde{F}_{m}(t) dt = -\int_{-\pi}^{\pi} \tilde{F}_{n}(t) F_{m}(t) dt.$$

Hence

$$(G_n, G_m) = \int_{-\pi}^{\pi} G_n(e^{it}) \overline{G_m(e^{it})} dt = \frac{1}{2} \int_{-\pi}^{\pi} [F_n(t) F_m(t) + \tilde{F}_n(t) \tilde{F}_m(t)] dt + \frac{i}{2} \int_{-\pi}^{\pi} [F_m(t) \tilde{F}_n(t) - F_n(t) \tilde{F}_m(t)] dt.$$

Since the functions F_n are even and F_n odd, we infer from (20) that $(G_n, G_m) = \delta_{n,m}$.

THEOREM 6. Let S_n be the n-th Fourier sum of a given function $f \in A$ with respect

THEOREM 6. Let $S_{n,f}$ be the n-th Fourier sum of a given function $f \in A$ with respect to the system $\{G_n\}_{n=0}^{\infty}$. Then

(21)
$$||f - S_{n,f}|| \leq \frac{2}{\pi} (3\pi + 14 + 12K_n) \left[\omega \left(u, \frac{M_n}{4} \right) + \omega \left(v, \frac{M_n}{4} \right) \right] + \frac{1}{\pi} (\pi + m_n) \omega(f, r_n),$$

where $r_n = |e^{im} - 1| < m_n$

Proof. From (18),

$$S_{n,f}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} s_{n,f}(t) \frac{e^{it} + z}{e^{it} - z} dt,$$

where $s_{n,f}$ is the *n*th Fourier sum of the function $f(e^{it})$ with respect to the system $\{F_n\}_{n=0}^{\infty}$. On the circle Γ ,

$$S_{n,f}(e^{i\phi}) = s_{n,f}(\phi) + \frac{i}{2\pi} \int_{-\pi}^{\pi} s_{n,f}(\phi - t) \operatorname{ctg} \frac{t}{2} dt.$$

Let $f(e^{it}) = u(t) + iv(t)$. Divide the functions u and v into the even and odd parts, $u = u_1 + u_2$, $v = v_1 + v_2$, where $u_1(t) = \frac{u(t) + u(-t)}{2}$, $u_2(t) = \frac{u(t) - u(-t)}{2}$, and do the same with the functions v_1 and v_2 .

Since the functions F_n are even and $\tilde{u}_1 = v_2$ and $\tilde{v}_1 = -u_2 + \text{Re} f(0)$, we have $f(e^{i\phi}) - S_{n,f}(e^{i\phi}) = [u_1(\phi) - s_{n,u}(\phi)] + i[v_1(\phi) - s_{n,v}(\phi)] +$

$$+\frac{i}{2\pi} \int_{-\pi}^{\pi} \left[u_1(\phi - t) - s_{n,u_1}(\phi - t) \right] \operatorname{ctg} \frac{t}{2} dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[v_1(\phi - t) - s_{n,v_1}(\phi - t) \right] \operatorname{ctg} \frac{t}{2} dt,$$

and reasoning as in the proof of Theorem 3 we obtain (21).

COROLLARY. There exists a constant A such that for $f \in A$.

$$||f-S_{n,f}|| \leq (A+8K_n) [\omega(u, M_n/2) + \omega(v, M_n/2)].$$

This follows from Theorem 5 and Theorem 6.

THEOREM 7. If for a given sequence of partitions $\{\Delta_n\}_{n=1}^{\infty} \overline{\lim}_{n \to \infty} K_n < \infty$, then the system $\{G_n\}_{n=0}^{\infty}$ is a basis in the complex Banach space A.

Remark 1. Let $F(t) = \int_0^t \int_0^x [u_1(y/2) + iv_1(y/2)] dy dx$ and let H(t) be a cubic spline of interpolation to the function F at the points of the partition Δ_n satisfying the conditions H'(0) = F'(0) and $H'(2\pi) = F'(2\pi)$. Reasoning as in the proof of Theorem 2 and from (15) we can see that for $0 \le t \le \pi$, $s_{n,f}(t) = H''(2t)$, and since $s_{n,f}$ is an odd function, we have for $-\pi \le t \le 0$, $s_{n,f}(t) = H''(-2t)$ and

(22)
$$S_{n,f}(z) = \frac{1}{2\pi} \int_{0}^{\pi} H''(2t) \left[\frac{e^{it} + z}{e^{it} - z} + \frac{e^{-it} + z}{e^{-it} - z} \right] dt.$$

Remark 2. Let $\{\Delta_n\}_{n=1}^{\infty}$ be a given sequence of partitions of $[0, 2\pi]$, $\Delta_n = \{0 = t_{n,0} < t_{n,1} < ... < t_{n,n} = 2\pi\}$ with $\Delta_n \subset \Delta_{n+1}$ and let $\{\hat{f}_n\}_{n=1}^{\infty}$ be an orthonormal periodic system with respect to $\{\Delta_n\}_{n=1}^{\infty}$ with $\hat{f}_n(0) = 0$ (n = 1, 2, ...) obtained as the Franklin system.

Define the following system of functions $\{\hat{F}_n\}_{n=2}^{\infty}$:

$$\hat{F}_n(t) = \begin{cases} \hat{f}_n(2t) & \text{for } t \in [0, \pi], \\ -\hat{f}_n(-2t) & \text{for } t \in [-\pi, 0]. \end{cases}$$

Let

icm

$$\hat{G}_1(z)=\frac{1}{\sqrt{2\pi}},$$

$$\hat{G}_n(z) = \frac{1}{2\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{F}_n(t) \frac{e^{it} + z}{e^{it} - z} dt, \quad n \geq 2.$$

For the system $\{\hat{G}_n\}_{n=1}^{\infty}$ theorems 5-7 are true. The proofs are analogous.

Remark 3. Let $\{\Delta_n\}_{n=1}^{\infty}$ be a given sequence of partitions of $[-\pi, \pi]$, $\Delta_n = \{-\pi = t_{n,0} < t_{n,1} < \dots < t_{n,n} = \pi\}$ with $\Delta_n \subset \Delta_{n+1}$ and let $\{\hat{f}_n\}_{n=1}^{\infty}$ be an orthonormal periodic Franklin system with respect to $\{\Delta_n\}_{n=1}^{\infty}$.

Instead of Schwarz's formula use Cauchy's formula and define the following system $\{\hat{g}_n\}_{n=1}^{\infty}$:

(23)
$$\hat{g}_n(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\hat{f}_n(t) e^{it} dt}{e^{it} - z}, \quad n = 1, 2, ...$$

As for the system $\{g_n\}_{n=1}^{\infty}$, we can see that if $\overline{\lim_{n\to\infty}} K_n < \infty$, then each function $f \in A$ has a uniform convergent expansion $f = \sum_{n=1}^{\infty} a_n \hat{g}_n$. However, this expansion is not unique because each function \hat{g}_n $(n \ge 2)$ has at least two different expansions. Then the system $\{\hat{g}_n\}_{n=1}^{\infty}$ is not a basis in the space A.

References

- [1] N. I. Achiezer, Teoria aproksymacji, Warszawa 1957 (in Polish).
- [2] J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The theory of splines and their application, Academic Press, 1967.
- [3] S. Banach, Teoria operacyi, Warszawa 1931 (in Polish).
- [4] [S. V. Bočkarev] С. В. Бочкарев, О базисе в пространстве функций, непрерывных в замкнутом круге и аналитических в нутри него, Докл. АН СССР 217 (1974), pp. 1245-1247.
- [5] Существование базиса в пространстве функций аналитических в круге, и некоторые свойства системы Франклина, Матем. сб. 95 (137) (1974), pp. 3-18.
- [6] Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963), pp. 141-157.
- [7] Ph. Franklin, A set of continuous orthogonal functions, Math. Ann. 100 (1928), pp. 522-529.
- [8] K. Hoffman, Banach spaces of analytic functions, Englewood Cliffs, 1962.
- [9] F. Leja, Teoria funkcji analitycznych, Warszawa 1957 (in Polish).
- [10] [A. S. Loginov] А. С. Логинов, Приближение непрерывных функций ломаными, Матем. заметки 6 (1969)], pp. 149-160.
- [11] [I. I. Privalov] И.И. Привалов, Граничные свойства аналитических функций, Гостехиздат 1950.

316 z. wronicz

icm

- [12] L. A. Rubel, A. L. Shields, and B. A. Taylor, Mergelyan sets and the modulus of continuity, Proc. of a Conference on Approximation Theory in Austin, Texas 1973. Ed. by G. G. Lorentz.
- [13] [M. F. Timan] М. Ф. Тиман, Теория приближения функций действительного переменного, Москва 1960.
- [14] [V. A. Velikin] В. А. Великин, О найлучшем приближении сплайн-функциями на классах непрерывных функций, Матем. заметки 8 (1970), pp. 41-46.
- [15] A. Zygmund, Trigonometric series, I, Cambridge 1959.

Presented to the Semester Approximation Theory September 17-December 17, 1975

