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1. Introduction

It is well known that, under certain regularity conditions, a diffusion process on
a manifold with boundary is determined by a second order differential operator of
elliptic type (possibly degenerate) plus a Wentzell’s boundary condition (cf. Wen-
tzell [11]). The problem of constructing the diffusion from a given pair of such
analytic data has been discussed so far by many authors. K. Sato and T. Ueno [7]
laid a fundamental route of construction in an analytical way and following it,
J. M. Bony, Ph. Courrege and P. Priouret [1] succeeded in constructing diffusions
in very general cases. In a probabilistic way, N. Ikeda [4] applied It&’s stochastic
differential equations to this problem and S. Watanabe [8] extended his idea so as
to cover more general cases.

In this paper, we will propose still another approach to this problem by con-
structing directly the excursions of the diffusion. Our plan is as follows: we prepare
two kinds of Poisson point processes on function spaces which we call Poisson
point processes of the Brownian excursions of the first and second kinds. Each point
of these point processes represents a Brownian excursion and by solving a stochastic
differential equation based on this excursion (which is an absorbing barrier Brownian
motion with an infinite entrance law) we can associate an excursion of the diffusion
to be constructed to each of Brownian excursions. Here, we make use of the space-
time relation of the Brownian excursion to produce the frequency of excursions
in proportion to the coefficient of the corresponding terms in the given boundary
condition.

The path. functions of the diffusion to be constructed will be defined by gluing
the excursion thus constructed and, in doing this, we need the so-called process
on the boundary. This is constructed by solving a stochastic differential equation
of jump type based on the Poisson point processes of Brownian excursions. Usually
stochastic differential equations of jump type, as discussed in e.g. K. Itd [5] and
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I.1. Gihman and A. V. Skorohod [2], are based on Poisson point processes ou
Euclidean spaces but we need here essentially an equation based on Poisson point
processes on function spaces.

The Markovian property and the structure of the diffusion thus constructed
will be studied in another publication. In comparing our method with above men-
tioned former results, it has several advantages. In particular, it can cover the case
that coefficient of reflection may degenerate on some part of the boundary and the
case that jumps take place from the boundary to the interior.

2. Point processes and Poisson point processes

Here, we will summarize the theory of point processes as will be necessary below.
For details, we refer to, e.g., Grigelionis [3], Itd [6] and Watanabe [9].

Let (X, #(X)) be a measurable space. By a point function p on X, we mean
amap p: D, < (0, c0) — X, where the domain D, is a countable subset of (0, c0).
p defines a counting measure N, (dt, dx) on (0, c0) XX by

Q1) N(QO,t]xU) = #{seD,; s< t,p(s) e U}, t>0, UeBX).

A point process is obtained by randomizing the notion of point functions.
Let ITy be the set of all point functions on X and #(I1x) be the smallest ¢o-field on
ITy with respect to which all p — N,((0,¢]xXU), t > 0, U e #(X), are measurable.
A point process p on X is, by definition, a (ITy, #(I1. x))-valued random variable, i.e.
a measurable map p: Q — ITy defined on a probability space (2, &, P).

Let (2, %, P;#,) be a probability space with right-continuous increasing
family (F )i of sub o-fields of #. From now on, we consider all point processes
to be defined on the quadruplet (2, #, P; #.). A point process p on X is called
(F )-adapted, if {N,((0, t1xU)}uexy is Fymeasurable for all ¢ > 0.

DerFNITION 2.1. A point process p on X is called of the clasy (QL) if

(i) it is (#)-adapted,

(i) it has a continuous compensating measure ¢,(dt, dx).

We refer to [9] for the precise meaning of (ii). Let n(dx) be a o-finite measure
on (X, B(X)).

DerFINITION 2.2. A point process p on X is called an (&F,)-stationary Poisson
point process on X with the characteristic measure n(dx) if it is of the class (QL)
with .

2.2) ¢p(dt, dx) = dtn(dx).

By 1t5°s formula (cf. [3], [9]), we can prove easily that such p satisfies, for every
t>520,4>0,Ue®(X),i=1,2,..,nsuch that n(U)) < co and are digjoint,

n
3 MNp((s, 11X Us)
2.3) E(e '=!

|F ) = exp {(t—s) }": n(U,) (e~ — 1‘)}
=1

and this justifies to call p as a Poisson point process.
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THEOREM 2.1. Given a o-finite measure n(dx) on (X, #(X)), we can always con-
struct an (F)-stationary Poisson point process on X with the characteristic measure
n on some space (2, F , P; F).

A way of construction is as follows: let U, e #(X), n= 1,2, ..., be such that
they are disjoint, 7(U,) < c0o and X = {_J U,. Let {t{?}, 11,,,.. be non-mega-

n
tive random variables such that P(z{" > t) = e~™@» and {§M}.,, »,.. be, for
n(dx)
nU,)*
Furthermore, {t{", &}, 1—1,2,... are all independent. Preparing such random
variables on a probability space (2, #, P), we set

each n= 1,2, ..., U,-valued random variables such that P(£ edx) =

o0
Dy = U {of, 4o, s P4 1
ne=
and
pEP+P+ L+ =P, nk=1,2,..
Thus we have defined a point process p on X and we set

Fr = QU{ND((O,S]XU): s < t+e, Ue B(X)}.

Then, this p is an (&,)-stationary Poisson point process with the characteristic
measure z.
Given a point process p of the class (QL) and an (%,)-predictable process
S, x, w), we can define the stochastic integrals
1 t
§§f(s, X, - )N,(ds,dx) and §)§f(s, x, )N, (ds, dx)— ¢,(ds, dx)]
if f satisfies suitable integrability condition (cf. [9] for details). Note that the for-
mer is just an absolutely convergént sum ZD S(s, p(s), -) whereas the latter is a li-
seDp
s<t
mit of a compensated sum defined as a martingale stochastic integral.

Finally, we discuss on stochastic differential equations involving a Poisson
point process. Suppose we are given, on a space (2, #, P; #,), an r-dimensional
F ~Wiener process (B!(2), B®(t), ..., B"()) and an & -stationary Poisson point
process on (E,#(E)) with the characteristic measure n(du). Let f(z,x,u)
= (f'(t, x,w): [0, ) xR"XE — R* be Borel measurable such that there exists
E, € #(E) such that, for a constant X > 0,

@4 e x, 0—£t, x, 0 Pn@d) < Kix—yP2,  x,yeR, t>0,

Eqy .
(2.5) {1720, x, wnd) < KA+1x%), >0, xek,
@2.6) "  n(ENE) < 0.
Let

o(t, x) = (ok(t, x)): [0, 0)XR" - R'QR"

17 Banach Center t. V
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and .
b(t, x) = (bi(t, x)): [0, c0) XR" — R"

be Borel measurable such that, for a constant X > 0,

@7 llo(t, D)1*+1b(, )|* < K(1+[x]?), >0, xeR",
2.8) |lo(t, X)—o(t, M2 +1b(t, )—bt, N> < Klx—y>, >0, x,yeR"
Then the following stochastic differential equation
r ot t

2.9) Xty = X0+ Y | oi(s, X)) dB*(s) + [ B (5, X(s)) ds+

k=10 0

¢

+§ §.71 (s, X5, ) [N, (d, ) dsn(d)] +
0 Ep

+§ § £, Xs=), w) 2, (s, du)
0 E

o8

has the unique strong solution (cf. [2], [5])-

3. Conditions on analytic data

Let D = R} = {x = (X3, X3, .., X); X, >0} be the upper half space of R", b
= {xeD; x, > 0} be its interior and 8D = {x€.D; x, = 0} be its boundary.
Suppose we are given the following analytic data:

() a second order differential operator A on D of elliptic type (possibly degen-
erate)

n

4f(x) = 32~ Z a"(x)D, D, f(x)+ Z B D f(x)—e(x)f(x) (D = _.‘3,)
i=1

ij=1 9%

(3.1)

where a(x) = (a¥(x)) is symmetric and non-negative definite and ¢(x) = 0,

(i) a@ Wentzell’s boundary condition L, which is a map from a smooth function
on D to a function on oD given as

n~-1 fr—1
GD L@ = Y HEDD S+ Y D)~
ihj=1 i=1

—=y (X)f(x) + () Dy f(X) =0 (x) Af() +
ueR\{0} fuf??

n-1
v § [t )09 tue Y s, 0011 | -
i=1

where a(x) = («¥(x)) is symmetric and non-negative definite y(x) > 0, u(x) > 0,
o(x) > 0 (x € dD) and g(x, u) = {g'(x, W)}, x €D, u e R, satishes g(x,0) = 0,

icm°®
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g"(x,u) » 0 and

n-1
—
{g"(x, u)+2g‘(x, u)z} l—jrz— < 0.
0<u]<1 =1
We assume a™(x) > 0 everywhere, Then, by a time change (or by a transformation
of coordinates) we may, without loss of generality, assume that a"™(x) = 1. We
may also assume that "(x) = 0, ¢(x) = 0 and y(x) = O since, if a diffusion is con-
structed in such a case, then by a well-known probabilistic method of transforma-

tions of drift and killing, a general case is easily constructed. Thus, we assume
(A.I) We have

a"(x) =1,

(3.3)

Next, we assume the following regularity conditions on coefficients.

(A.II), There exists o(x) = (0}(x))1,k=1,2. ..., n» X € D, such that ¢(x) is bounded
and Lipschitz continuous, of(x) =1, o}(x) =0, k=1,2,..,n—1, and a¥(x)
. -

= Y ak(x)ok().
k=1

b(x)=0, e(x)=0 and 9(x)=0.

N.B. If a(x) is of the class C? on some neighborhood of D, then such a(x)
exists.

(AIL), b(x) = (b'(x)): x€ D — R" is bounded and Lipschitz continuous.

(A.ID); There exists 7(x) = (vk(¥) )i, k=1, 2,...,n—1, X €D such that it is bounded
and Lipschitz continuous and .

n=1
W) = Y HE ).

k=i
N.B. If a(x) is of the class C? on éD, then such 7(x) exists.
(AID), B(x) = (B'(x): x€dD — R"* is bounded and Lipschitz continuous.
(AJD)s u(x): x € D — [0, o) is bounded and Lipschitz continuous.
(A.ID)s o(x): x € @D — [0, o) is bounded and Borel measurable.
(AID), g(x,w) = (g'(x,w): (x,t) € 3D xR — D satisfies the following;

(i) it is Borel measurable,

(i) g(x,0) =0
(iii) there exists bounded function h(x) defined on [—1, 1] such that h(0) = 0,

d
(3.4) h(u)—ﬁ;l‘—z— <o

Juj<1
and, for every x, ye 8D and u € [~ 1,1],
3.5
(3.6)

0< g"(x, ) < h(w),

Ig"(x’ u)—gn(y: u){ < h(u)!x—yh

17*
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n—1
%) Sigtea w17 < A,
i=1

n=1
(3.8) > 1806, 1) =g s )P < hw) lx— .
n=1

Finally, we assume the following transversality condition.
(A.III)l' For every x € aD, one of the following occurs;
1
du
u(x)>0 or S 1(8"(’=»“)>0)”|;I|T =0 or e)>0.

(A.LIX), There exists a constant X > O such that, for every x € 2D,

(3.9

du
(3.10) B0+ [ 0 A e > K.
R
4, Construction of excursions of the first kind
Let '
(4.1) W = C([0, ) - D):= the set of all continuous paths w: [0, c0) — D.

We intljodupe the following subspaces of W;
4.2) W = |weW; w0)edD, w(t) = w(tA o))},

4.3) W, = {weW; ow) > 0},

“4.4) Wo={we#; o(w) > 0, w(0) = 0e D},
where

4.5) o(w) = inf{r > 0; w(t)e dD}.

Clearly, W > W, > Wo. Let BW), B(#), ... be the o-fields on W, ¥, ... gen-
erated by Borel cylinder sets.

Let
4.6) K@,x) = jlj((zm)—m eXP(—"Jz%i))'(n—%;)—l/zx,,exp(——;%)
and
@n e x» = ::ij ((27")—,1/2 exp ( __(f.‘."zifﬁ)z_)) @ty x
x (CXP ("%%Q)“GXP(*“@%—;!@)), t>0, x,yeD.

p°(t, x, y) is the transition density of Brownian motion on D with absorbing bound-
ary D and K(t, x) is the density of an entrance law:

(4.8) SK(t, x)p°(s, x, y)dx = K(t+s,y), t,s>0, yeD.

D

icm
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As is well known, there exists a o-finite measure Q on ('1// 0, B(H" o)) such that
@9  Of{w; wty) e E;, w(ty) € E;, ..., W(ty) € Ep, o(W) > ta}

m-1

= S dx, dez S dxy K(t;, x;) Hpn(ti+1'—tis Xiy Xi41)s

E; E> Ep i=1
0<t; <ty < ..<ty, E e%D).

@ is constructed, for example, in the following way. Considér a stochastic differen-
tial equation on R":

det = dBf, i=1,2,..,n—1,
@
“10) de = dB?+~g—_—tdt,
eh =0, i=1,2,..,n,

where (B}, BZ, ..., Bf) is an n-dimensional Wiener process. Then, there exists
a unique solution e, for ¢ e [0, T) such that ef > 0, te(0,T) and limef = 0. In
fact, the uniqueness of the solution in [0, T) of nr

afy = 2(frv 0y /2dB! + [3———?: t]dt, fa=0
is well known and &/ = (")!/2. By setting e! = e} = B}, i=1,2,..,n~1 and
el =0fort> T, t— e is a #y-valued random variable such that o(e) = T and
we denote the probability law as Pr. Then

0

Q(B) = S Pr(Ba{w; o(w) = T})_dT_

@.11) ——
P VorT?

By Theorem 2.1, there exists a stationary Poisson point process p; on #', with
the characteristic measure Q.

DeriNITION 4.1. p, is called a Poisson point process of Brownian excursions of
the first kind.

Let (%, B(W o), Q) be the above o-finite measure space and &,(# ) be the
sub-g-field of B(#,) generated by cylinder sets up to time ¢ Let us denote by E?
the integration by the measure Q. It is easy to see, for 0 < t; < t,andi,j=1,2,...
ey 1,

4.12)  E°(wi(tz)~wi(t,)|Be,(W o)) = O as.,

(4.13)  EC¢([wi(t)—wit )Wy (t2)~ w; 1))/ B, (#o))
' = 8, E%([to A o(W)—1; A 6(W)]/B:,(#'0)) a.s.
For a #,(# )-adapted measurable process f(¢, w) such that for every ¢,

tAo(W)

(4.14) Ee[ § f2(s,wds] < oo,
S0
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(hence, in particular, for any bounded f(t, w)) we can define the stochastic integral

t

L @) = [fls, wawls),  i=1,2,.m

[1]
in exactly the same way as ordinary It8’s integral and, for almost all w(Q), te
(0, ) - L)) is continuous, L()(0+) = 0 and L(){®) = L) (e A ow)).

Let 6(x): xe D - o(x) e R"®R" and b(x): xe D — b(x)e R" be given as

in § 3, and let ¢ 3> O be given. Consider the following stochastic differential equa-
tion for the process X(z) on D:

nt XAC.V(W)
X,(t) = xi+¢ Z S oh(X(5)) dwi(s) +¢* (S) b(X(s))ds,
£=1b

(4.15) i=1,2,..,n~1,
X,(t) = ewa(2)-

THEOREM 4.1. For given x = (X1, Xz, +..s Xn-1,0) € 0D and ¢ = 0, there exists
a unique solution X*(t) of (4.15). This solution defines a map (x,c,w)edDX
C X0, )XW o> XCeW which is measurable B(ID)x A0, ®) XBWo)}|

1BH). ()

Furthermore, for every T > 0 and C > 0, there exists a constant K = K(T, C)

such that

4.16)  Eol|(X™°(t)~%)— @< (0)-y)*} < K{le=c'l* +1x~yI*},
c,c'e[0,Cl, x,yedD, te[0,T].
Proof. Let 0,(x) = co(x) and b(x) = ¢®b(x). Then, for a fixed C > 0, there
exists a constant K > 0 such that for all ¢, ¢’ € [0, C] and x, y € D,
Hoe()?+1b.()* < K,
[16e(x) = G (¥) |12+ b () — ber(x) > < Kle—e'[?,
lloe(¥) = o112+ [be(x) = b() * < Klx—yf

1(0):= (X*(t)= %) — (X (£)-)
= S [oa(X®2 () — 0o (X € (5)) ] dw(s) +

Ao

+ § [Bo(X= () —bo (X7 (5))] s
= § [o(X7 () — oo(X7 ¢ ()] dwls) +

+ § [ox7¢ ()~ 00 (X7 ()] dw(s) +

0

() B#4)? is the completion of H(#g) by Q.

icm
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tho

+ § b= () b (x> ()] ds+

0

tAG
+ § [ () = bo(xre ()] ds.
0
Hence, noting E%(t A 6) < E4(TA0), te[0, T], we see, by a standard argument,
that there exists a constant K = K(T, C) such that, if te [0, T] and ¢, ¢’ € [0, C],

t

EA(I1(1)) < K(x—y)*+lo—c'*+{ EAI(s)P1ds.
0

The conclusion follows at once from this estimate.
DerINITION 4.2. Let, for given x e aD and ¢ > 0, (™ °(t) )e»o be defined by

o) = {X"'°(t/c2), if

X, if

c>0,
(4.17) e 0.
Let u(x) be given as in § 3.
DerINITION 4.3. Let a map D: (x, w)e dDXW# o - P(x,w) e # be defined
by

@.18) B(x, w(t) = Y= ().

@(x, w) is called the excursion of the first kind (of the diffusion to be constructed)
corresponding to a Brownian excursion w.

Clearly,
(4.19) D(x,w)(0) = x
and
(4.20) a[P(x, w)] = p*(x)o(w).

DEFINITION 4.4. Let a map @: (x, w) € 0D XW# o — @(x,w) € dD be defined
by
(4.21) @(x, w) = B(x, w)(al(x, W) —x

= X O (o(w)) —xX.

From (4.16) and the Lipschitz continuity of u, we have at once the following
THEOREM 4.2, There exists a constant K > 0 such that

(4.22) E{|p@x, w)—o, w)*: ow) < 1} < Klx—y?, x,yedD,
(4.23) o{w; ow) > 1} = [ @m®)12du < w.

1
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Let
(W),
(4.29) B (x) = /,az(x)EQH B0 1(s)) ds: a(w) < 1]~

—u()E® [S a,,(X" "(")(s)) dwa(): o) > 1],

‘ i=1,2,...,n—1, xedD.
Then, using (4.16), we see easily the following

TreEoREM 4.3, B,(x) = (Bi(x))izi is bounded and Lipschitz continuous on aD.

5. Construction of excursions of the second kind

We introduce the following subspaces of W = C([0, ) — D):

G.1) W = {weW; wt) = wt Ac*(W)},
(.2 Wi = {weW™*; w) eb)

and

(5.3) W= {weW™*; w0 = (0,0,..,0,1)},
where

6.4 o*(W) = inf{z > 0; w(t) e 8D}.

Clearly, #™* > %% > #%. Let P, be the probability measure on (%%, Z(#1))
which is the probability law of the Brownian motion on D with the absorbing bound-
ary 8D starting at (0,0, ..., 0, 1). On the product space #% x (R\{0}), we define

the following o-finite measure P, (dw) 3 as a product measure.
DerFINITION 5.1. A stationary Pmsson point process p, on ¥ X (R\ {0}

with the characteristic measure P, (dw)

» iz is called a Poisson point process of Brow-
nian excursions of the second kind.

Let x = (x;, X5, ..., X,) €D. we #¥ is a sample of a Wiener process with
absorbing boundary starting at (0,0, ..., 0, 1) with respect to the probability P,

and hence, we can consider the following stochastic differential equation for o(x)
and b(x) given in § 3:

not tAa*(w)

Xi(t)=x1+x,.ZSa},(X(s))dwk(s)+x,% § sx@)ds, i=1,2,..,n-1,
k=10 0

(5.5)
Xa(1) = x,w,(2).

Clearly, the solution exists uniquely which we denote as X*(t). Note that X*(t) = .

X*(t A o*(w)).

icm
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TueoreM 5.1. The solution X*(t) defines a map (x,w) eDXWT = X e #™*
which is measurable B(D) X B(W" T)P‘ [B(W™). (®) Let y be the projection R* — R*~':
YX = (X5 Xz ooy Xuo ) JOr X = (X1, Xay oees X5 X)-

Then, there exists a constant K such that, for every t > 0, x, ye D,

(5.6)  En[p(X ) —x)—y(X>")-)7]
= Kllyx—yyI* (xIE"(t A o*)(1+ 20} } +
(% =Pl 2EFs(t A 0%) {1+ (62 + y2) t+ x4t Y exp K(ex + ;zx;})
Proof. Let&,(t) = XF(t)—Xi, ni(t) = X3(€)—y1,i = 1,2, ...,n~1. Then,

I(t):= E()—n(®)
= | mo@=@)~ro(@@)awis)+ § [2b0=(5) - y3b(X*(s)]ds
0 0
tAa* tAo*

It

x, | @)~ o @ )] dw(s)+ Gaya) § o ())dw(s)+
0 [

tAg* tAa¥

+x2 S [b(X=(s)) — B ()] ds+ (2 =37 § B ())ds.
o . .
Therefore, for some constants X and X”,

ER(I(DP) < (lxn YalPEP1(t A 0*)+ |x,— ynl2(x..+y,.)2E"‘((t Ac*)) +
tha*

e IR e A Pl Ol yao] +

tAo*

#xt87[(§ =t b P+ \1(s)2)ds) £ 1 o*}
<K flyr= BN o) (DI = PIET A ) (1
(e XD+ (1) S EP«(I(s) ) ds.
(5.6) follows easily from this estimate. Here we used the following inequality:
tAa* H

EF: [ S ]w,,(s)l’ds] < SE’l[w,,(S/\ o*)*]ds = SEP‘(sA o*)ds < tEFH(E A %),
4 ’ 0 [

DEFINITION 5.2. Let, for a given x € D, (¥*(t)):»o0 be defined by

X"(-;—Z), x, >0

(5.7 Ye() =

X, x, = 0.

Let g(x, u) = (g'(x, u)) be given as in § 3.

* #W T\t is the completion of #(#°1) with respect to P,.
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DEFINITION 5.3. Let a map ¥: (x,w, ) € DXWIXR - ¥P(x,w,u) e y*
be defined by
(5.8) P(x, w,u) (2) = Y*H&0(@),

Y(x, w,u) is called the excursion of the second kind (of the diffusion to be con-
structed) corresponding to a Brownian excursion (w, ) of the second kind.

Clearly,

(5.9 W(x, w, w)(0) = x+g(x, w),
(5.10) [P (x, w,w)] = ga(x, w2e*(w).

DEFINITION 5.4. Let a map w: (x, w, u) € DXW} XR - p(x, w, u) € 4D be
defined by
(5.11) (x, w, 1) = Px, w, 8) (*[Px, w, ) —x

= X*+acc "’(o*(w))—x.
THEOREM 5.2. There exists a constant K > 0 such that

d
(5.12) By, wa )=y, w, s o*00) < B2}
O0<lul<1
< Kjx—y|*, x,yedD,
g , du
(5.13) I{,*(w)sh—z(u),|u|<1}0P1(dW)W < 0.

W RN\{0}
Proof. By (5.6),

. n—1
EP(lp(x, w, —yp(, w, )| o*(w) < h7?W) < Z lg' (e, )~ g' (v, >+
i=1

n—1
Kf{lx—y2+ Y [80x, ) =g (v, 1) ) EPs(0* () A H2(a) 8" (x, 1) X
i=1

x (1+g"(x, u)* - h=2(w)) + lg"(lx, w)—g"(y, W)*E"(c* (W) A b2 (W) X
X (L4+h2) - g"(x, > +h72() - g"(y, ) +h~*(u) - g"(x, 1’)4)} X
x exp{K(h=2(u)- g"(x, v +h~*(u) - g"(x, ¥)*)}.

If [u] < 1, we note the assumptions (3.5), (3.6), (3.7) and (3.8). Also, noting P (o* > t)

= | @ms3)=12e=112%s, we see that E™+ (o*(w) A h™2()) = O (h~*(1)). Hence,
) )
du 1 du
W EPv(lyx, w, ) —p(y, u, w22 o*(W) < B2 (W) < K’|x—y|ZS h() T
0

Ot e

and by (3.4)
1

S”(“) T <
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As for (5.13), we have

' d
S Tiorony <t 2(u).|u1<1)0P1(dW)—— S ﬁ+ S Pl{d*(W)>h“(u)}|4:lu,~
jul>1 u| <1

#1 R0} ] <
< @
since P, {o*(w) > h~2(1)} = 0(/z(u)).
Let,forxedDandi=1,2,...,n~1,
(5.14)  Bi(x) = —\g'(x, P [o*W) > B2 (W]

|24 lz
o*

1

)

1

+Sgn(x u)th[S bi(Xx+a(x,u)(S)) ds: o'*(w) h(u) ] | 12 -

0

1 -2
~{erenen] § ey an: o > ho] 2
0 0

Then, by the same estimate as in the proof of (5.6), we can easily prove the fol-

lowing

THEOREM 5.3. B,(x) = (B5(x))i=? is bounded and Lipschitz continuous on 3D.

6. Construction of path functions

Now, we are going to construct our diffusion process corresponding to the analytic
data (4, L) given in § 3. We prepare, on a suitable quadruplet (@2, %, P; &),
the following:

(i) % = F,: an increasing. family of sub-o-fields of %, and an n-dimension-
al ,-Wiener process B = (Bi(t))i=1»

(i) an (n—1)-dimensional &,-Wiener process B* = (B¥(f))i=1,

(iii) an #-stationary Poisson point process p; on #°, with the characteristic
measure Q and & -stationary Poisson point process p, on #7%u (R\{0}) with

- d; . R
the characteristic measure Py xﬁ such that they are mutually independent, i.e.

mutually independent &,-Poisson point processes of Brownian excursions of the
first and second kinds.

N.B. We have automatically that {B(¢)}, {B*(*)}, p, and p, are mutually
independent. This is well known and an easy consequence of It8’s formula.

Let x e D be given as the starting point of the diffusion process to be con-
structed. Let 7% = (7*(2)) be the solution of the stochastic differential equation

dn'(t) = E ok(n())dBu() +b'(n(0) dt,
=1
7(0) = x.

(6.1) =1,2,...m,
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Clearly, there exists the unique solution which is #-adapted and let

6.2) ofp = inf{r > 0; #*(z) € 2D}
and
(6.3) £ = n*(o¥p) € 8D.
Note that &, is & ,-measurable.
Let
6.4 Bl(x) = BO)+Bi+F5x), i=1,2,..,n—1, xedD,

where f(x) is given in § 3, 8,(x) in (4.24) and §,(x) in (5.14). By Theorems 4.3
and 5.3, A(x) is bounded and Lipschitz continuous on &D. We consider the fol-
lowing stochastic differential equation of jump-type for the process £(t) on 2D:
n—=11t
65) &) =& +Z { ri(es))aB: (s)+S/3(§(s))ds+
1+
4§ Tomengi(EG=), w)IN, (s, dw)—dsdQ]+
.0 %
I

+ S S Taom<nicpi(E(s—), )N, (ds, dw)+
0 #o

1+
du
+ S S Ifat(w)sh(u)—=,|u\su1lli(§(s~), w, u)[ (ds dwdu)~ds P (dw) I [zl
0 #Ex(R\{0}
14 . .
+ S S I[a“(w)ﬁh(u)", i:4[sl]C1/11(£(S" ), w, ”)Np,(ds:» dw{lu):
0 WX (R\{0)
i=1,2,...,n—1,
L) =0. '
By Theorems 4.2 and 5.2, the coefficients of (6.5) satisfy the conditions like (2.4)-
(2.8) of § 2 and hence, there exists the unique #-adapted solution &(t) on .dD.
{£(2)} is called the process on the boundary of the diffusion to be constructed.
Next, we set, for ¢ > 0,
1+

©66) A() = okpt | § o[ ®(a(s—), W)IN,, (ds, dw)+
. 0 %o

i+

+§ 0 -y, w, W) N, (s, dwdu)+§ o(&(s)) ds
0 #rR(R\(0) 0

= “3q+§ ﬁSﬁ p(E(s=))o(W)N, (ds, dw)+

14 ¢

+ S S g"(E(s—), w, u)2a* (W) N, (ds, dwdu) +S o(&(s))ds.
0 WrexRN(O)

A(¢) is called the inverse local time on oD of the diffusion to be constructed.
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THEOREM 6.1, With probability one, t — A(%) is right' continuous, strictly inéreasing
and lim A(t) = 0.

1t
Proof. By assumption (3.9), it is easy to see that t —» A(t) is - strictly increas-
ing a.s. By It&’s formula and (3.10),
E(e~4®)— E(e~*0D)
t

- S E(e~*®o(&(s))ds— S S E(e= (1 — e~ (&atn)) O (dw) —
0

0 W

I

!
g S E(e"A(’) {] — e—9"E), H)QU"(W)} Pl (dw)

Sy o
X (B\{0)

N

—K(SE(G_M){9(5(5))“’(5@% [ .9 el)

R\{0} |

1.
< -K S E(e~4®)ds.
0
1
Hence, 1 > K’SE(e“""’) implying lim E(e=4®) = 0, i.e. limA(t) = o as.
0 ttoo 1100
For every t > 0, there exists unique s:= @(t) such that A(s—) << A(9).

DerFmNITION 6.1. (@(2)) is called the local time on the boundary of the. diffusion
to be constructed.

Ifs:= @) = 0,1i.e. 0 < 1< ofp, We set
&7 X*(t) = ().
If s:= @(z) > 0 and A(s—) < A(s), then this implies that just one of the following
cases occurs:
(i) s € Dy, and u(£(s—)) > 0,
(ii) s € Dy, and, if we set p,(s) = (W*, u), g"(E(s-), u') > 0.
We set in the case of (i) (by setting p,(s) = w*)

(6.8) X5(t) = O(&(s—), w*) (t— A(s—)
and in the case of (ii)
(6.9 X*(t) = W(E(s—), W', w) (t—A4(s—))-

If s> 0and A(s—) = A(s) (= 1), thén just one of the following cases occurs:
(i) s € Dy, and, if we set pa(s) = (W, ), then g(&(s—), v*) # 0 and g(E@s—),
u')e dD,
(ii) otherwise, i.e. s¢ D, U Dp,, Or seD,,, and u(5(s—)) =0, or se Dy,
and g(&(s—), ') = 0.
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In the case (i), we have £(s) = &(s—)+g(£(s—), «*) and we set
(6.10) X5(t) = £(5).
In the case (ii), £(s—) = &(s) and we set
6.11) X*(t) = £(s).

Thus, we have defined, for almost all elements in £2, a map ¢ € [0, 00) — X*(z)
which is clearly right continuous with left-hand limits and X*(¢) s X*(¢—) occurs
only when X*(t—) € dD.

7. Concluding remarks
The stochastic process X* = (X*(¢)) constructed in § 6 is a diffusion process on D
described by the given analytic data (4, L) in the sense that, for every fe CZ(D),
t t
(1) fX®)—A(X(©) = a martingale+{ (4) (X(5)) ds+ | @) (X()) dp(s),
‘ 0 0
t t

{ roo(x())ds = § o(X(5))dp(s),

0 0

(72)

where @(¢) is the local time (cf. Definition 6.1). Furthermore, we can prove, under
the assumption of § 3, the uniqueness of the above martingale problem.

The proof of these facts requires formulas like excursion formulas or the last
exit formula as in [9], [10] (which are obtained immediately by the way of our con-
struction) and some formulas on stochastic sum over excursions (such a formula
was discussed in [10]). Details will be given in a future publication.
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