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We give a method for obtaining inequalities of the form
) iu}g DA)P(f > A) < csupP (D) P(g > A)
> A>0

and then use it to obtain some results about exit times of Brownian motion and
analytic functions supplementing those of [3].

Let @ be a continuous nondecreasing function from [0, ] into [0, oo] with
@(0) = 0 and
2 PRA) < c®()), Ai>0,

In particular, & could be any positive power: $(1) = 4? (0 < p < ). Throughout
the paper ¢ and C denote positive real numbers not necessarily the same from one
use to the next.

LEMMA 1. Suppose that f and g are nonnegative measurable functions on a prob-
ability space and B > 1, 8 > 0, ¢ > 0 are real numbers such that

3 P(f>BA,g< N eP(f>12), Ai>0.
Let y and 7 be real numbers satisfying
@ DB < yP(A), SO N < PW), 1>0.
Also suppose that ye < 1. Then (1) holds with
©) ¢ = yn/(1—ys).
Under the same conditions and with the same choice of ¢, the “strong” inequality
© EP(f) < cED(g)

also holds; see [2] and, for an earlier version, [4]. Inequality (1) is, of course, of
particular interest in those cases for which E(f) is infinite but the right-hand side
of (1) is finite. If, instead of being a probability measure, P is an arbitrary positive
measure, the conclusion of the lemma still holds provided the left-hand side of (1)
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is finite. Note that the existence of ¥ and # satisfying (4) is assured by the growth
condition (2).

Proof of Lemma 1. We can and do assume in the proof that the left-hand side
of (1) is finite. For, if f satisfies (3), then so does fAn; if (1) holds for fAan, nz 1,
then it holds for f.

Condition (3) implies that

P(f> BN < eP(f > A)+P(g > 04).
Multiplying both sides by ®(84) = P(Bd~*42) and using (4), we obtain
DBAP(f > pAY < peD(DP(f > N+ynd(d4) P(g > 84).

Taking the least upper bound of each term with respect to 4 and using the finite-
ness of the left-hand side of (1), we obtain (1) with ¢ given by (5).

We shall need the following application of Lemma 1.

LemMvA 2. Let X = {X,,0 < t < oo} be a Brownian motion in R" (n = 1) start-
ing at x. Let v be a stopping time of X and

XF = sup|X;ai.
t

Then

) esupB(A) Pu([r+ 371 > 7) < supB(A)Po(XZ > 7)

< ngp¢(ﬂ)1’x([ﬂr+1x|’]"’ > 2)

with the choice of ¢ and C depending only on @ and n.

Proof. Let f= X* and g = [n7+|x|?]"/% Then by (2.8) and (2.9) of [3], con-
dition (3) of Lemma 1 is satisfied with ¢ < y~ provided § is chosen small enough.
So (1) bolds. The reverse inequality also holds in view of (2.11) and (2.12) of [3).
This completes the proof. ‘

Exit times of Brownian motion in R"

Let R be an open, connected subset of R" (n > 2), X a Brownian motion starting
at a point x in R, and 7 the first time X leaves R:

T(w) = inf{t > 0: X,(w) ¢ R}.
If0 < p < o0 and u is a function harmonic in R such that

IxP < u(x), xeR,

‘then
®
with the choice of ¢ depending only on p and ». If  is the least harmonic majorant

of |x|” in R, the reverse inequality also holds (with a different constant). These and
related results are proved in [3].

cE(nr+|x?P* < u(x), xeR,
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Consider the following example. Fix o € (0, n] and let
R={xeR:x#0,0<0 <a},
where 0 is the angle between the vectors x and (1,0, ..., 0). Let
h(0) = F(—p, p+n—2; (n—1)/2; (1—cos6)/2),
where F(a, b; c;t) is the hypergeometric function. (If n = 2, h(f) = cospf.) Then
the inequality (8) holds with u(x) = |x|"h(8)/h(«), the least harmonic majorant of
|x|? in R, provided o is less than the first positive zero of h: 2(6) >0, 0 <0 < .
(That u majorizes |x|” implies a fact that we shall need later: 4 is nonincreasing, so
h < h(0) = 1, up to the first positive zero.) On the other hand, if 4 has at least one
zero in (0, o], then the left-hand side of (8) is infinite. (If n > 3, & has at least one
zero in (0, w); if n = 2, h has at least one zero in (0, n] provided p > 1/2.) See [3]
for further details.
Robert Kaufiman has asked me whether a weak inequality holds in the border-
line case. We shall show here that, indeed, a weak inequality does hold. Specif-
ically, if A(8) > 0, 0 < 0 < «, but k() = 0, then

9) csup PP ([nr+|x2Y2 > ) < [x!, x€eR,
A

with the choice of ¢ depending only on p and n.

We can describe this result in another way. The region R has a positive real
number e(R) associated with it such that, for all x € R,

E;v* < 00«0 <p<e(R).

For example, if n = 2, then e(R) = m/(20). Here is an equivalent form of our re-
sult: If p = e(R), then (9) holds.

By Lemma 2, the proof of (9) can be reduced to proving a similar inequality
for the maximal function X7*:

(10) csup PP, (X* > 1) < xI’, =xeR.
P R

To prove (10), we here let
h(0),
() = {le ©
0,

w¥ = supu(Xeas),
i

xeR,
x'€ dR,

Yo = [x/Pufu(x)}”?, xeR.

Then  is continuous on RU &R, harmonic in R, and u(x) < |x[*. Also, assuming
as usual that the Brownian motion X starts at x, we have
(11) [xl < Y,
Let x € R. Since
Exu(Xons) € Ex|Xend? < Ex|XP < 0,

uf < Y5, xeR.
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the stochastic process {|x|Pu(X;as)/u(x), ¢ > 0}, which starts at |x|?, is a nonnega-
tive martingale (see [7]). By definition, Y7 is its maximal function. Therefore,
12 PPY, > 2) = 2PPLYE > W) < [
The main step in the proof of (10) is to show that, for 0 < §d <1 < §,
13) P(X} > pA, Yo < OM) S 8P (X > 2), A>0,
where ¢ depends only on R, 8, 6 and ¢ — 0 as d - 0.
By Lemma 1, the two inequalities (12) and (13) imply (10).
_ To prove (13), we can assume that x| < 4 since otherwise, by (11), the left-
hand side of (13) is zero. Let
p = inf{t > 0 [X;p( > A}.
Then
{u <o} ={Xf>1} = {|X,|=2,X,eR}.
Therefore, by (11),
Pu(XF > B2, Y < 80) < Pu(u < 00, sup |X;| > B4, sup u(X) < 6%4)
p<tsr peigT

< ;SJIIEAP"(X: > BA, ut < PAN) Py (u < ©)
yeR
= eP (X} > 7).
We now show that ¢ as defined has the desired properties. By homogeneity,
&= Lvs|1%5 P,(X}¥ > B,uf < 69,
ye

that is, & does not depend on 2. Consider the open, connected set

G= {yeR: |y| <B,u0) <20}
and

A= {yeR: |y = B,u¥) <28
Then 4 < 9G and, fory € G,
Py(XF¥ > B, uf <26%) < P,(X hits A before 3G\ 4) = w(y),

where w(y) is the harmonic measure of 4 with respect to G at the point y. Let w()
= 0 for all y outside of G. Then, since the boundary of G is sufficiently smooth,
w is continuous on the compact set |y = 1. Furthermore, w(y) is monotone in 9.
In fact, w(y) | 0 as 6 | 0, |y} = 1, since

w() < Py(uf,y <2870 as  48l0, yeR,

}vhere v = inf{t > 0: |X;| = §}. Therefore, by Dini’s theorem, the convergence
is uniform on the set |y| = 1 so

£ ,slugi w()0 as 4]0,
]

This completes the proof of (13), hence (9).
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Analytic functions and exit times

Here let R be an open, connected subset of the complex plane, B a complex Brown-
ian motion starting at a point b in R, and r the first time B leaves R: 7 = inf{r >
0: B ¢ R}. If F is a function analytic in the open unit disc D, let N(F) denote
its nontangential maximal function: N(F) () = sup|F(z)|, where the supremum
is taken with respect to all z in the interior of the smallest convex set containing the
disc |z| < 1/2 and the point €. (The number 1/2 has no special significance; any
other number in (0, 1) would do as well.) Let m be Lebesgue measure on [0, 2%)
and @ any function as in (2). o
TaeorEM 1, If F is analytic in D with F(D) < R and F(0) = b, then

(14) SIip(p(A)m(N(F) > 1)< csw;np@(z)l’,,([zw[b]z]l/z > 1)

with the choice of ¢ depending only on ®.

THEOREM 2. If F is analytic in D with F(O) = b and, for almost all 0, the nontan-
gential limit of F at " exists and belongs to the complement of R, then
15 Suzp(15(/1)1’»([2"f-i~lbl"’]l’z > < csulp(b(l)M(N(F) > 1)

with the choice of ¢ depending only on @.

The corresponding strong inequalities also hold. For connections with H”,
see [3].

COROLLARY 1. If F is analytic and univalent in D with F(D) = R and F(0) = b,
then both (14) and (15) hold.

Proof. By the univalence, the condition of Theorem 2 is satisfied.

These two theorems have another immediate consequence: If F and G are ana-
Iytic in D with F(0) = G(0) and, for almost all §, the nontangential limit of G at
" exists and belongs to the complement of F(D), then

sulpd)(z)m‘(N(F) > 1)< csxipdi(l)m(N(G) > /1}.

However, much more is true:

Turorem 3. If F and G are analytic in D with F(0) = G(0) and, for almost all 0,
the nontangential limit of G at €® exists and belongs to the complement of F(D), then
(16) Im(N(F) > 2) < em(N(G) > 1), 1> 0.

The choice of ¢ is independent of F, G, and A.

Proof of Theorem 1. We can assume that F is nonconstant. Then there exist
two complex Brownian motions Z and W defined on the same probability space,
Z starting at 0 and W starting at b = F(0), such that
an F(Z) = Wy, O0Ks<p;
where = inf{s > 0: [Z;| = 1} and

5

B =S IF@)ra, 0<s<p.
0 .
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This follows from Lévy’s principle of the conformal invariance of Brownian mo-
tion; see McKean [9]. With probability one, § is a strictly increasing continuous
function on [0, u]. Let ¥ = B(u) and ¢ = inf{r > 0: W, séR} Then B} and w*
have the same distribution. A]so, with probability one » € ¢: Let ¢ = f(s); then,
by (17),

t<v=s<u=>FZ)eR=W,eR.

So, under the conditions of Theorem 1,

(18) P(F* > )< Py(B} > 2, 4>0,
where F* = sup |F(Z,)|, since, by (17),
s<p
P(F* > 1) = P(W} > 1) < P(W} > 1) = Py(B¥ > A).

By the results of [5],

(19) cP(F* > ) < m(N(F)> A) < CP(F* > 1), 1>0.

Applying Lemma 2 to B and = and using (18) and (19), we obtain (14). This com-
pletes the proof of Theorem 1.

Proof of Theorem 2. Keeping the notation of the above proof and recalling that
nontangential limits imply Brownian limits (Doob [8]), we see that, with probability
one, the limits

limF(Z,) = lim W,

st ftn

exist and belong to the complement of R. So here ¢ < ». Therefore,
P(Wy>2D<PWr>2, 1>0,

which is equivalent to the inequality

(20) Py(B*> 1) < P(F*> 1), A>0.

Using (19) and (20) and again applying Lemma 2 to B and 7, we obtain (15). This
completes the proof of Theorem 2.

Proof of Theorem 3. Let R = F(D); if F is nonconstant, as 'we can assume, R

is an open, connected set. We now apply (18) and (20) to Fand G. If G* denotes
the Brownian maximal function of G:

G* = sup |G(Z)],
s<p
then, by (20),

@ C Py(BY> )< PG* > 1), 1>0. ’
So, by (18), under the conditions of Theorem 3,
(22) P(F*> )< P(G* > 1), 1>0.

The theorem now follows from (19).

Symmetrization can be used with the above methods to obtain further results.
For example, here is the symmetrized version of Theorem 3.
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TrREOREM 4. If F and G are analytic in D, F(D) < R, F(0)= G(0) = 0, and,
Jor almost all 6, the nontangential limit of G at €, exists and belongs to the com-
plement of Ry, the region obtained from the regzon R by circular symmetrization,
then (16) holds. .

Recall that if R contains the origin, as it does here, then R, is also a region con-
taining the origin with the following properties. If r > 0 and {|z] = r} = R, then
{lz] = r} = R,. I r > 0 and {|z] = r} ¢ R, then

Ryn{lzl = r} = {re”:|0] < o},
where « is chosen so that Ry {|z] = r} and R~ {|z| = r} have the same circular
Lebesgue measure. ,
Proof of Theorem 4. Let 7, be the first time the Brownian motion B-leaves Ry
starting at the origin. Then ’
(23) Po(BE, Po(B%, > 1),

This is a translation into the language of Brownian motion of an inequality for
harmonic measure due to Baernstein [1]. Here (21) takes the form

1

x> D < A>0.

24 Po(BX > )< P(G* > 7), 2> 0.

Inequality (22) follows from (18), (23), (24) and gives (16) as before. This completes
the proof of Theorem 4.

These theorems have many straightforward applications. For example, suppose
that F is analytic and univalent in .D with F(0) = 0 and F'(0) = 1. Then

(25) m(N(F) > 1)< eA™2, 2> 0,

where the choice of ¢ is independent of F and A. To see this, let R = F(D) and G(z)
= 4z(1—z)—2. Then the conditions of Theorem 4 are satisfied and (16) becomes (25).

Here is another simple application. Let R be a simply connected region with
a nondegenerate boundary dR. Let ¢ denote the distance from b € R to dR. Then
the first exit time 7 of R satisfies

26) Py(eil2 > 1) < c(B/)V2, A >0,

where the choice of ¢ is independent of 1, R, and b. To prove this, we can assume
that b = 0. Let G be an analytic and univalent function with G(0) = 0 mapping D
onto R. Then & < |G'(0)] < 46. This is classical; for example, see [6]. Let F =
G/G'(0). Applying Corollary 1 to G and using (25), we obtain

sup AM2P([27]12 > 2) < esup APm(N(G) > 1)
|G’ (0)[V2sup AV2m (N(F) > A)

< cd'?,

1

which implies (26).
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PROBABILISTIC AND ANALYTIC FORMULAS FOR THE
PERIODIC SPLINES INTERPOLATING WITH MULTIPLE NODES

Z. CIESIELSKI

Institute of Math ics, Polish Academy of Sci

, Branch in Gdarsk, Sopot, Poland

Let on the one-dimensional torus T a fixed partition {$1s ..., 5.} be given. Formulas
for periodic splines of degree 2p+1 interpolating at the nodes s; of multiplicity
a5, 1 < o5 < p+1, are derived. The results are obtained with the help of suitably
constructed on T Markovian Gaussian random field. The natural interplay between
this random field and splines on T is explored.

1. Introduction

The idea contained in this paper is very simple and it can be explained already in
the case of interpolation by splines of degree 1, i.e. in the case of p = 0. Letz: 0
= 85 < ... <3, = 1 be a given partition of the torus T = {0, 1). Then the spline
of degree 1 interpolating given function # on T at the nodes s; with multip]iéities 1
is simply the piecewise linear in each (s;_;,s;) and continuous on T function u,
such that u(s;) = uo(s;),j = 1, ..., n. With this interpolation problem in a natural
way is connected the Brownian motion {X(¢), ¢ € T} or, more precisely, the Brownian
bridge, i.e. a continuous Gaussian process on T with mean zero and the covariance
given by formula (4.5). Now, the relation between Brownian bridge and the inter-
polatioh is given by the formula

uo(t) = E{X(t)|X(s;) = u(sy), ..., X(s,) = u(sn)}-
However, the Brownian bridge is Markovian and therefore for e {s;_,, 5> we
have
uo(t) = E{X(1)1X(s5;-1) = u(sy-1), X () = (s)}-
The aim of this paper is to extend this approach in order to obtain formulas
for splines of degree 2p+1 interpolating at nodes s; with multiplicities o, 1 < o
<p+lj=1,..,n
The proper Markovian Gaussian random field one obtaines by path-wise p-fold
periodic integration of the Brownian bridge.
The considerations were inspired mainly by the works of L. D. Pitt [7], H. B.
Curry and L J. Schoenberg [4], and the author’s investigations (see [2]).
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