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PROBABILISTIC AND ANALYTIC FORMULAS FOR THE
PERIODIC SPLINES INTERPOLATING WITH MULTIPLE NODES

Z. CIESIELSKI

Institute of Math ics, Polish Academy of Sci

, Branch in Gdarsk, Sopot, Poland

Let on the one-dimensional torus T a fixed partition {$1s ..., 5.} be given. Formulas
for periodic splines of degree 2p+1 interpolating at the nodes s; of multiplicity
a5, 1 < o5 < p+1, are derived. The results are obtained with the help of suitably
constructed on T Markovian Gaussian random field. The natural interplay between
this random field and splines on T is explored.

1. Introduction

The idea contained in this paper is very simple and it can be explained already in
the case of interpolation by splines of degree 1, i.e. in the case of p = 0. Letz: 0
= 85 < ... <3, = 1 be a given partition of the torus T = {0, 1). Then the spline
of degree 1 interpolating given function # on T at the nodes s; with multip]iéities 1
is simply the piecewise linear in each (s;_;,s;) and continuous on T function u,
such that u(s;) = uo(s;),j = 1, ..., n. With this interpolation problem in a natural
way is connected the Brownian motion {X(¢), ¢ € T} or, more precisely, the Brownian
bridge, i.e. a continuous Gaussian process on T with mean zero and the covariance
given by formula (4.5). Now, the relation between Brownian bridge and the inter-
polatioh is given by the formula

uo(t) = E{X(t)|X(s;) = u(sy), ..., X(s,) = u(sn)}-
However, the Brownian bridge is Markovian and therefore for e {s;_,, 5> we
have
uo(t) = E{X(1)1X(s5;-1) = u(sy-1), X () = (s)}-
The aim of this paper is to extend this approach in order to obtain formulas
for splines of degree 2p+1 interpolating at nodes s; with multiplicities o, 1 < o
<p+lj=1,..,n
The proper Markovian Gaussian random field one obtaines by path-wise p-fold
periodic integration of the Brownian bridge.
The considerations were inspired mainly by the works of L. D. Pitt [7], H. B.
Curry and L J. Schoenberg [4], and the author’s investigations (see [2]).
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2. Preliminaries

The unit interval and the one-dimensional torus are denoted by I and T, respect-
ively, i.e. I =0, 1y, T = <0, 1). In, the real space L*>(T) the scalar product is given
as follows

@) fr0) = "ng

For a given mteger p=1, the Sobolew space H(T) is defined as the set of alt
functions u from CP~(T) with absolutely continuous D ~'u and D"u & L*(T'); here
and later on D stands for the differentiation operator. The space H?(T') equipped
with the scalar product

2.2 {u, o) = u(O)'u(O)'+ (D"u, DPv)

becomes a Hilbert space.
The Bernoulli periodic polynomials play in this paper a special réle They are
defined asin [8], i.e.

o0
S-j/ ezniw!
Lt [

@3 Bl ~ )

k=0,1,..,

where the prime means that the summation is taken over all » % 0. In the case of
k = 0 series (2.3) is understood in the generalized sense and therefore By = do—1,
where 85 is the 8-Dirac concentrated at 0. For later use we list some of the basic
properties of periodic Bernoulli polynomials:

1. Bbe C**(T) for k21,
2. DBy =B, for k>1,
3. Bu)=0 for k30,
4. By = BxB, for k> 0,r30,

5. B(—1t) = (= 1)*B(0).
"There is a natural unitary isomorphism U,: L2(T) — H'(T),p >
follows:

> 1, given as

t
N = (f, D+ (f+B,-)(s)ds,  fe LXT),
(2.4) g ,
Uy (t) = u(0)+ (D)), ueH? (T).

3. Splines with multiple knots

The results contained in this section are in principle known (cf [1],
are included for the sake of completeness.

First let us recall the main properties of the B-splines with simple knots. Let
w={s, =0, +1,..} be a given partition of the real line such that 0 = s,

[4]) and they
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<..<Sp=1, Sjorm=5+k, j=0,..,n-1; k= +1, +2, ...
7t -there corresponds a sequence of B-splines of degree p > 0
3.0 Ni@®) = (S5ep=8-1[57-15 s Siups =141
Note that we have imposed on z the periodicity for later use only and it is not
required in definition (3.1).
It is well known (cf. [4]) that the B-splines Nj are non-negative, and those not

identically equal to zero in a given interval are in that interval linearly independent.
They are normalized in such a way that for all #,

DIN@® =1
J

The space of splines of degree p corresponding to m and restricted to I is de-
noted by SZ(). It follows from the properties of the B-splines that dimSZ(I) = p+n
and '

To each such

SID) = V(N j = —p+1, o},

where V stands here and later on for linear span.
Since the partition s is periodic, the periodic B-splines, of period 1 and degree
p on T, are now defined by the formula

(3.2) T =y NE+R).
k=0,%1,...
These functions have similar properties, they are linearly independent and
non-negative. If the space of all periodic splines of degree p on T is denoted by Si(T),
then dimSE(T) = n and

3.3) SHT)=V{T;,j=1,..,n}
For the periodic B-splines one would expect a formula analogous to (3.1). In-
deed, it can be seen with the help of (3.2) and the properties of the N;’s that

GO T = FET b GAD 15 o 510 Brra 0= D= Bpaa (=)

It now follows from (3-3) and (3.4) that

(3.5 SHTY = V{l+Byy1(—1)—Byys(=1), j= 1, ...,n}.

We are now ready to pass to the case of splines with multiple knots. To each
points §; € o there is assigned a multiplicity oy, i.e. an integer suchthat 1 < oy < p+1,
p > 0. The sequence of multiplicities is denoted by a; ie. a = {a;, j= 0, +1,...}.
Following H. B. Curry and I. J. Schoenberg we say that a function on (— co; c©)
is a spline of degree p with multiplicities d if in each interval (s_;, 5;) it is a poly-
nomial of degree at most p and at each point s; it is of the class CP—*/.

Since now we impose on o the periodicity condition: o; = o4y, for k = £1,
+2, ...
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The space of splines of degree p corresponding to the pair (, ) and restricted
to I is denoted by SZ.(I). The B-splines corresponding to (=, ot) are obtained
as follows. Consider the partition n’ = {sk} of period N = oy + ... +a, such that

O=s/<..<sy=1landforl<j<n
se=8 if o+ .. +atj_.1 <k< o+ .. +u,
where o; + ... +oj_; = 0, by definition for j = 1. Now, the notion of divided

difference can be extended naturally to the partition 5 (cf. [5]), whence formula (3.1)
can be used to define the B-splines corresponding to x'. This procedure, in combi-
nation with (3.1), allows to find that

SPa()= V{1, ..., 7, (t—sp%, ...
whence we infer

1 (t"'s] '4"’”'”: j = 1! ey l}’
dim SZ o(1) = p+140y+ oo +0yoy.
The subspace of SE «(J) of periodic splines corresponding to (r, «) is
S2o(T) = {ueSLa(I): Dtu(se) = D*u(s,), k=0, ...,p—ao}.
Moreover, it follows from the definition of the corresponding to =’ the T B-
splines and from (3.4) that
(3.6) SEa(T)= V{l+B,y1(55—)—Bpy1(—1), Bpis- k(s,-—t),

].Sk\ dj'—'l,j-—-"‘ 1,...,"}.

Consequently,
3.7 dimS2,,(T) = oty + .. +0ty.

Let us construct now a sequence of partitions #;,j = 1,2, ..., of T with the
following properties:

@D = {550, k=0, +1, £2,..};

() 55,0 = 0, 85,0 = 1, 85,1 < 805

(i) Sjxemn = Sju+hh=+£1,22, ..;k=1,...,n

Gv) = my, and m,,\my is one-point set;

V) 7, = m.

The space of splines of degree p on T corresponding to z; with multiplicities

equal to 1 at all partition points is denoted by S3(T). Clearly, dims§(T) = j. Now,
if |y is dense in T, then
7

(3.8) LX) = V{Si(T), j=1,2,..}.
It is useful to notice that for p > 0,
Upryt SEa(T)82 STEH(T).
This is a consequence of (2.4) and (3.6). Let now P denote the orthogonal projec-

tion of L(T) onto S% «(T)and @ = U, PU;, the orthogonal projcction of HP*1(T)
onto S?2+Y(T),

THEOREM 3.1. Let (7, o) and p > 0 be given as above and let u e H?*\(T). Then
v = Qu if and only if it satisfies the following properties:
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' () ve SU(D), )
(ii) D*o(s)) = Dru(s), 0< k< -1, j=1,..,n

Proof. Suppose thatv = Quandlet f= Uy}yuand g = Ugliv.Then g € SEo(T)
and h £ f—ge 20 Sk .(T). Moreover,
oo
w(t) = u—o)(t) = Upy1h(r)

= (R 4By 1 (=)= By (—ds,
T
and

s b Drw(t) = Sh(s)B,“_k(t-s)dy, k> 0.

Since h € SE4(T), we find, using (3.6), that D*w(s;) = 0 for 0< k< -1,
j=1,...,n On the other hand, v = v+w and therefore (ii) follows. Condition (i)
is satlsﬁed by the very definition of v.

Conversely, let us assume that for given u e HP+1(T) the function v satisfies
@) and (ii). If we show that w Lu—v for w e S22}1(T), then by the uniqueness of
orthogonal decompositions it will follow that v = Qu. The orthogonality is proved
as follows:

Cu, wy = u(@)w(0)+ (DP*1u, D**1w)

I

n s
'U(O)W(O)+2 S DP+1yDPHly

J=1s;_,

= v(O)w(0)+Z Z. (— D¥[DP~*u(s) DX+ 1+ *w(s) —

— DPRu(sy_ ) DY (s )]

= o(0)w(0)+ Z (— VP (u(sp)—u(s- ) )D>"*w (—iﬂzii’—) +
j=1 .

n  p—-ay
+ }: [Z (- 1D*<DP- "u(.i'j)D’“"*w(sj)—
=1 k=0
P-ﬁ_,_l‘n
- D DD 0]+
k=0
r—~1

N (= 1)DPHu(sy) D2+ () —
J=1 k=p—oaj+1
r—1

D MR- O )
k=p—aj-1+1
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In the first sum and in the third one u can be replaced by v and the middle sum
cancels out, Thus, (u, w) = (v, w) and the proof is complete.

COROLLARY 3.1. Let Vi S2FY(T)— RY, N = oy+ ... +ot,, be the mapping
defined by the formula

Vo= (Do@), 0k y=1,j=1, s ).

Then V is an isomorphism.

To prove this it is sufficient to show that ¥ maps onto RY. Let {a,;, 0 < k < p,
Jj=1,...,n} be a given table of real numbers. In each interval (s, 5;) we solve
the following two-point Hermite interpolation problem: D¥wy(sy) = ay,;, D*w;(s;. )
= Gy j-1, k =0, ..., p. There is a unique polynomial w; of dégree not exceeding
2p+1 with these properties. Let w be the piecewise Hermite solution, i.e. w(t) .
wy(t) for te {8y, 8), j=1, ...,n It is clear that we H"“(T) Put v = Qw.
According to Theorem 3.1 we have D"v(s,) =0, 0k oy~1, j=1,..,n
and this completes the proof.

We denote the fundamental B-splines corresponding to (7, &) by vy, 0 < k
< aj~1, 7= 1,...,n According to Corollary 3.1, they are characterized by the
following conditions: ‘

(3.9) Doy y(s) = Ouc by, Vi, e STR(T). )

COROLLARY 3.2. The set of splines {vy,;, 0 < k< y—1,j=1,...,n} z';s' a basis
in SERFY(T) and for every v € SERF'(T) we have

o0igoy—=1t, h=1,..,n,

n ay-1

o= ; Z; (D"v(sj))‘vkéj‘.‘

Notice that (3.10) is implied by (3.9) and Corollary 3.1.
CoroLLARY 3.3. Let u € H?**(T) be given. Then
{Qu, Qu§ = inf {(v, v): DFo(s)) = D*u(s), 0 < k< oy—1,
R j=1,..,n ve H*(T),

1 i
and Qu is the unique solution of this variational problem.

(3.10)

4. The reproducing kernel for the Hilbert space H"+'(T)

For every integer p > 0 the following kernel is defined

(1) Ry(t,8) = § (14 Byus(t—) = By y (=] [L4+-Byy 1 (5=1) = By (=)l
T

= L4 (=1 [Bypia(s—=1)+Byp 42(0) = By (£) — Bayia(8)].
The kernel R, has the following properties
R,(-,8)e H"*Y(T), seT;
s (R,,(',S),.R,,(',-t)>=R,,(S,t), s,tel;
HYY(T) = V{R,(", ), seT}.

#2)
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The first property follows from the properties of Bernoulli polynomials. To
check the remaining two properties we notice that

(4.3) Ry(t,9) = (Upss)),  £i) = 14+ Byys(t—1) =B, 41 (—u).

Since U,44: L*(T) —» H?**(T) is unitary, the middle property in (4.2) is a con-
sequence of (4.3) and (4.1).

The third property, according to (4.3), is equivalent to the equality

LX) = V{f,, te T},

but this is implied by (3.5) and (3.8).

The properties (4.2) mean exactly that R, reproduces H?*(T) or else that
HP*1(T) is the reproducing kernel Hilbert space (RKHS) corresponding to R,,.

The evaluation functional at a fixed point ¢ is continuous on H?*1(T) and there-
fore the middle equality in (4.2) extends to

4.4) u(t) = <u, R(*, 1)y, wueH!Y(T), teT.
It is a good place to mention that for p = 0 we obtain
“Ro(t,5) = 1+min(t, s)—25, 0<s,t <1

This is the covariance of periodic Brownian motion (Brownian bridge) starting at
independent random point distributed on the real line according to N(0, 1).

5. The Gausian random field and its relation
to spline interpolation

Suppose that we are given over a probability space (2, F, P) a separable real
valued Gaussian random field (GRF) {X(¢), t e T} such that (p > 0)

5.1) EX®)X()) = R,(t,5), EXE®))=0, tseT.

One can check that

EIBZ+X(©)2 = 145418, ., () Pdu < 620 {43 B, () |2du
T T
= O(0%*1), 40,
It can be applied now a criterion, [3], for regularity of trajectories for GRF to get
(5.2 P{D’X(-)elip(e; N} =1 for O<e<i.
In L*(Q, F, P) the Gaussian subspace generated by {X(#), te T} is denoted
by o, ie. o = V{X(t), te T} According to (4.2),
CR(", 9), R(-, 1)) = E(X()X(1)),
whence we infer that to each u € H?*1(T) there is exactly one Ju € 3# such that
Cu, R(+, 1)) = E(JuX(1))
and )
{u,v) = E(Julv).
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Thus J: HP*1(T)— o is a unitary isomorphism. Moreover, according to (4.4),
we obtain

(5.3) u(t) = E(JuX(t)), teT, ueH"*\T).
THEOREM 5.1. For given (m, o) and t € T we have
noay-1
(54) E{X(1)IDX(s), 0< k< ay—1,j=1,...,n} = Z DX (8o, (1),
=T k=0

where the vy ;s are the fundamental B~s[}lines defined as in Section 3.

Proof. Let us define a subspace of # related to (%, ) as follows:

Hogn=V{DX(s), 0 k< y—1, /= 1,...,n}.
According to (5.2) this subspace is well defined.

It will be shown that
(5.5) Koy = ISTRF(T).

Notice that u 1 S25+(T) is equivalent to Qu = 0 which, in view of Section 3,
is equivalent to D*u(s)) = 0, 0 < k< oy—1, j = 1, ..., n. However, according to
(5.3), this is equivalent to Ju | #, » and this gives (5.5).

Let now, for fixed ¢ € T, QX(¢) be an element of #, , defined as follows:

n a1

OX()) = Y ) DAX(5)2e(0).

J=1 k=0

'

(5.6)

Our aim is to show that QX(¢) is the orthogonal projection of X(t) on #x 4,
and this, by the uniqueness of orthogonal decompositions, will imply (5.4).
In L*(T) we choose on orthonormal basis {f;, j = 1,2, ...} such that

(57) S;’:’_a(T) = V{f,‘, J= 19 ---9N}s

where N = a;+ ... +a,. Moreover, in # we choose an orthonormal basis {Y;,
Jj = 1}, and then define a GRF {¥(t), t € T} as follows:

o0
Y(t) = D YUy YO,
J=1
where the series converges in . This process has the same characteristics as
{X(), teT}, ie. E(Y()Y(s)) = Ry(t,5), E(Y(t)) = 0. It is not hard to see that
H = V{Y(t), teT}

and an elementary argument shows the existence of unique orthonormal basis
{X, j=1,2,..}, in 2 such that (cf. [2])

(5.8) X(t) = ;x,wmf,)m.

Th.e‘ general theorems of K. Ito and M. Nisio (cf. [6]) on convergence with
probability one of random series in Banach spaces can be used to prove that (5.8)
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is p-times continuously differentiable, i.e.

) D)) = > X DU, fi(t), teT,0< k<p,
Jj=1

and the series converges uniformly with probability one.

According to (5.7), f; L SZ o(T)for j > N, whence U, f; L Sz&"(T) for j > N
or, equivalently, D*U,, fi(s) =0 for 0< k< oy—1, i=1,..,n and j > N.
This and (5.9) imply that, with probability one,

N
D* ZXJ U1 fi(s) = D*X(s)),
J=1

and therefore, by (5.6) and Corollary 3.1,

N
oxX() = EXJ Ups1/5(®).
j=1

Since X; = QX(-), Upy1f5(+ ) for 1 < j< N and QX(f) € #r,, it follows
from (5.6) that Xj € # x« for 1 < j < N. Thus,

”"v“ = V{Xi:]‘= 1, '~-:N}-

XO-0XO) = > Xy Upyifit) € HOH

J=aN+1
and this completes the proof.
COROLLARY 5.1. The spline of degree 2p+1 corresponding to (m, o) and interp-
olating given u € H?*(T) at the multiple nodes is given by the formula
(5.10)  Qu(?) = E{X(t)|D*X(sy) = D*u(sp), 0< k< oy—1,j=1,..., n}.
THEOREM 5.2. Ler p and (, &) be given as above and let u € H***(T). Then

n oj—1

.11) Quty = Z s DER (1, 5,
Jj=1 k=0

where {y;} is the solution of the system of equations

nooy—1

Z Z yde;‘D;cRP(shy sj) = D‘M(Sh),
J=1 k=0

To obtain. (5.11) and (5.12), it is sufficient to work out the left-hand side of
(5.4) simply by finding in 3, the best approximating element to X{ (), and then
to compare the solution with the right-hand side of (5.4).

Remark. Since R,(t,s) is explicitely given in (4.1) and the Bernoulli poly-
nomials are easy for computing, formulas (5.11) and (5.12) may prove to be useful
in numerical approximation.

(5.12) 0<i< -1, h=1,..,n
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COROLLARY 5.2. The interpolation formulas without multiplicities become now
very simple. Since oy = 1 for all j, we have

ou(t) = Y 3Ry (1, 5),
J=1

where the y; are to be determined from the equations

Zy_,R,,(s,,,s,) =uls), h=1,..,n
J=T

In particular, for the fundamental splines in this case we have
n
7(t) = ZA,IIARp(ta ),
=]
where (4;) is the inverse matrix to (R,(sy, s1)).

6. The Markov property of the GRF and piecewise
Hermite interpolation

The main task of this section is to show that the GRF {X(¢); t € T} is p-Markovian.
It is assumed that T'is split into two closed intervals with common boundary,
ie. T=1Iul,0l, =I.nl. =1T.

THEOREM 6.1. The GRF {X(t), t e T'} is p-Markovian, i.c.
E{X(®)|D*X(s), k=0, ..., p;se I}
= E{X()|D*X(s), k= 0, ..., p; sel'} for tel,.

Proof. We need to distinguish -between the following two cases: (a) 0 eI” and
(b) 0¢I

(a) The RKHS is beiﬁg decomposed orthogonally as follows:
©2 H™\T) = H, ®HOH.,
where w = I, a0 = (p+1,p+1) and
Hp = STN(T),
H, = {ue H™*1(T): suppu < I,}.
Now, let #p = JHp and #, = JH, ; then clearly (6.2) implies
Ho=H QA DA .

) It rgmains to identify #p and #, by means of the GRF {X(n), teT}, but
this can be done with the help of formula (5.3). Indeed,

Ul Hr<D'u@s)=0,selk=0,..,p
< Ju L V{D*X(s), sel k= 0, ..., p},

I3))

(6.3)

whence we infer

6.4 Hp = V{DX(), sel', k=0,...,p},

icm
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Moreover,
ue H, < Jul V{DX(s), sel;},
whence
(6.5) H@Hr = V{DX(s), sel;}.

(b) Inthis case wetakew = {0} Ul 50 = 0, {sy,8,} = o= (1,p+1,p+1).
The spaces H, are defined exactly in the same way as in the case (a), and

Hy = {veS(T): v(0) = 0}.
It is clear that H, | H_, and if Q denotes as before the orthogonal projection
on S22+1(T), then
Hyp = {Qu—0u(0): ue H**}(T)},
H. @H_ = {u—Qu+u(0): ue H**1(T)}.

Direct computation implies that Hr | H, ®H_ and for each u e HP*1(T") we
haveu = (Qu—Qu(0))+ (u—Qu+Qu(0)). Thus, (6.2) holds in the case (b) as well.
Since now, we argue in exactly the same way as in the case (a), and check formulas
(6.4) and (6.5).

To complete the proof it is sufficient to notice that X(¢) € # ., @+ for te I,
and then to use formulas (6.5) and (6.4).

COROLLARY 6.1, The piecewise Hermite interpolation problem corresponds to
(m, &) with ay = ... = a, = p+1, and the p-Markov property is equivalent to the
uniqueness of the solution of the two-point Hermite interpolation problem.
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