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DISCOUNTED DYNAMIC PROGRAMMING
ON EUCLIDEAN SPACES

The aim of this paper is to give sufficient conditions for the existence
of stationary optimal and e-optimal policies in a discounted dynamic
Programming problem. We assume that the set of actions 4 is a subset
of an n-dimensional Euclidean space R". Our model is the same as that
One studied by Furukawa [5] and Hinderer (stationary case in [6]). It is
% generalization of the model of Blackwell [3]. A more general model,
With the discount factor depending on states and actions, was investigated
by Schal [7], [9]. The proof of existence of an optimal policy is based on
% selection theorem, which is established in Section 2 of this paper. Similar
Tesults were obtained by Freedman [4], Furukawa [5], and Schal [7]-[9].

1. Notation and definitions. A standard Borel space (abbreviated to
an §B-space) is a Borel subset of a Polish space, endowed with the induced
t70I>010g'y and the Borel o-field. Throughout this section, X and Y are
Bon-empty SB-spaces. By XY we denote the Cartesian product of X
and y. we always consider XY with the product topology and with the
Product o-field.

By P(X) we mean the set of all probability measures on X, and by
Q(Y|X) — the set of all transition probabilities from X to ¥. For p e P(X)
a0d ¢ € Q(Y|X), pg denotes the product probability measure on XY.

I8 notation extends to a finite or infinite sequence of SB-spaces X;, X, ...
PeP(X,) and ¢,€Q(X,,,1 X, X,... X,) for n>1, then

pgy...q,_,eP(X,X,...X,), ¢.195...€Q(X,;X;...| X)),

By 4, we denote a measure from P(X) such that é,({x}) = 1.

. By N, R, and R" we mean the set of all positive integers, the real
ll.ne, and the n-dimensional Euclidean space, respectively. The set of
all bounded, real-valued, Borel measurable functions on X is denoted
by i (X). The set M (X) is a Banach space with the norm

lu| : = sup |u(®)|, »e M(X).
zeX
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For u, v € M(X), v < v means u(x) < v(x) for all # € X.

A multifunction ¢ from X to Y is a function defined on X, the values
of which are non-empty subsets of ¥. A multifunction ¢ is called closed
(compact) valued if, for each z € X, ¢(x) is closed (compact). A function
f: X — Y is a measurable selection of ¢ if it is measurable and f(x) € ¢(®)
for all # e X.

2. Selection theorem. In this section we prove a selection theorem
which is useful for many optimization problems.

Throughout this section, X is a non-empty SB-space, ¢ is a multi-
function from X to R" such that its graph

G:= {(x,y) e XE":y ep()}

is a Borel subset of XR", and « is a real-valued, bounded from above,
Borel measurable function on @. We are interested in the measurability
of the function

(2.1) v(@) 1= sup uw(z,y), xelkX,
yeop(z)

and in the existence of a measurable selection f of ¢ such that
(2.2) w(z, f(x) >v(@)—e, wzeX,

for given £ > 0.

THEOREM 2.1. If ¢ is closed valued and, for each z € X, u(», -) is upper
semi-continuous on o(x), then v is Borel measurable and for any e > 0 there
exists a measurable selection f of ¢ satisfying (2.2). The second assertion i
also true for ¢ = 0 if we assume that ¢ i3 compact valued.

Proof. The proof of the measurability of v is based on the NovikoV
theorem (see [1], Theorem 1.5):
If B is a Borel subset of XR" such that all its z-sections

B,:={yeR": (a,y) e B}
are closed, then the projection of B on X,
Projx(B):= {x € X : (», y) € B for some y € R"},

is a Borel subset of X.
It is sufficient to show that

Zy,:={weX:v(@)>c}
is a Borel subset of X for all ¢ € R. By (2.1),

1
Z, = n {w eX:u(x,y)> 0—-77 for some ¥y Eq)(w)} = ﬂpron(Bm)y

meN meN
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Where
f 1
Bm:——l(m,y)eG:u(w,y)>c—— y, MEeN.

B,, is a Borel subset of XR" and, by the upper semi-continuity of
u(x, -), all z-sections of B,, are closed. In virtue of Novikov’s theorem,
Projx (B,,) is a Borel subset of X for all m € N. Thus Z, is Borel.

The second part of the proof is based on the following selection the-
Orem (see [1], Theorem 1.6):

If y is a closed-valued multifunction from X to R"™ with the graph
beillg a Borel subset of XR", then there exists a measurable selection of 4.

For ¢ > 0 we define a new multifunction from X to R" as follows:

Ve(#) : = {y e p(@) : u(w, y) > v(v) —¢}.

) In order to complete the proof it suffices to find a measurable selec-
tion of y,. Since u(w,-) i8 upper semi-continuous, y, is closed valued.
It @ is compact valued, then u(z, -) attains its supremum on ¢(z), and
the multifunction ¥ i8 well defined. By the measurability of @, « and v,
the graph of vy,,

{(@,9) e XBR" : y € p,(0)} = {(w,9) € G : u(@, y) = v(2)—¢},
8 a Borel subset of XR". Thus there exists a measurable selection f of v,,

_ The problem of finding a measurable selection of ¢ satisfying (2.2)
With ¢ > 0 is treated by Schal ([8], Theorem 1) and Freedman [4]. They
Consider a multifunction ¢ whose values are subsets (not necessarily closed)
of & metric space Y. Schal assumes that ¢ is separable, i.e. ¥ contains
% denumerable dense subset ¥’ such that ¥’ Nne(x) is dense in ¢(z) for
TeX,and wis a Carathéodory map. Freedman gives a version of Theo-
rel_n 2.1 with X and Y compact, graph of pand {(z,y) e XY : (2, y)> ¢}
being 7, in XY for ¢ e R.

The existence of a measurable selection f of ¢ such that u(z, f(w))
= V(»), x € X, is studied, e.g., by Furukawa [5], and Schil [8], [9]. The
Seconq part of Theorem 2.1 is a generalization of a result of Furukawa ([5],

heorem 4.1). A similar result is obtained by Schal ([9], Theorem 12.1)
Under assumptions that ¢ is measurable, and « is the limit of a decreasing
Sequence of Carathéodory maps.

3. Dynamic programming model. A discounted dynamic programming
Model ig given by a 6-tuple (S, 4, ¢, q,7, ) of the following meaning:

(i) 8 is a non-empty SB-space, the set of states of a system.

(ii) 4 is a Borel subset of R, the set of actions.

(iii) @ is a multifunction from § to 4, ¢(s) is the set of actions feasible
8 at the state s. We assume that the graph of ¢,

Q:={(8,a)c 84 :acqp(s)},

tOu
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is a Borel subset of 84, and there exists a measurable selection of ¢.

(iv) ¢ is a transition probability from G to 8, the law of motion of
the system.

(v) r is a measurable real-valued function on @, the reward funetion.
We assume that r is bounded from above.

(vi) 0 < <1 — the discount factor.

When the system is at the state s and we take the action ae ¢(3),
we Teceive a reward r (s, a), and the system moves to a new state s’, accord-
ing to the probability distribution g(-|s, @). The process is then repeated
from the state s’. Future rewards are discounted with the constant factor .
We intend to maximize the expectation of the total discounted reward
over the infinite future.

We define sets of histories recursively: H,:= 8, H,, ,:= GH,,
neN. A policy = is a sequence {w,, 7%,,...}, where =, c@Q(4|H,) and
%, (p(s,)|B) =1 for h = (sy,a,,S8s,...,8,) from H,, neN. If we use
a policy =, then we choose the n-th action according to the probability
distribution x,(-|k), where kb is a history of the system up to time n. Any
measurable selection f of ¢ defines a policy {=,}:

T ( 181y Bryeeey 8p) 1= 6](.9")’ (81y @1y ...y 8,)€H,, neN.

Such a policy is called stationary and is denoted by fi*. If we use
a policy f and the system is at the state s, then we take the action f(8)
independently both of the time and the history.
Any policy » = {»,} determines the transition probability
€,:= 7 qn3q... € Q(ASAS ...|8)

(first we must extend g to a transition probability from S4 to 8, and each
n, — to a transition probability from SASA ... 8 (2n—1 factors) to A)
An expected reward corresponding to a policy = is given by

oa(s) = [ (D677 (50, 00))0x(d(01, 80, gy ...)[8), &€ 8

ASAS... neN

(put r(s, a):= 0 for (s, a) e SANG).
The optimal reward function v is defined by

v(8) := supwv,(8), s8€8.

b4

The function v is universally measurable and satisfies the opt;imallity
equation

(3.1) v(8) = sup (r(s, a)+p f'v(s')q(ds'ls, a)), sel
aep(8s) S

(see [10], Theorems 7.1 and 8.2).
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. Apolicy =" is optimal if v, > v, for all policies . For ¢ > 0, a policy =*
18 called ¢-optimal if v,,. > v, — ¢ for all z. Our problem is to find an optimal
(or e-optimal) stationary policy.

4. Criteria of optimality and c-optimality. With a dynamic program-
ling problem we associate some operators defined on the set of all
Ineasurable, bounded from above functions « : § -~ R. We put

Lu(s, 0):=1(s,0)+p [u(s)g(ds'[s,a), (s, ) G,
S
L,u(8) : = Lu(s, f(s)),

Lou(s):=p [u(s)q(ds'|s,f(s), se&,
S

Where f ig a measurable selection of ¢. Denote by Ly the n-th iteration of L,.

We state as a lemma some properties of L; and L,. They follow imme-
diately from well-known properties of the integral.

LevmA 4.1 (cf. [10], Theorem 5.1). Let 4, and uy be measurable, real-
Yalued and bounded from above functions on 8. Then

(1) Ly(wy+us) = Louy + Lpug;
(ii) forc e R, 13,0 = fe;
_ (i) L; and i, are monotone: Uy < Uy implies Lou, < Leuy, and .i,ul <

S Lyuy;

(iv) im L0 = vp);

m
(V) Lf‘l?f(oo) == PVf(e0)
We have the following criterion of optimality of a stationary policy:

THEOREM 4.1 (cf. [9], Theorem 5.3). Assume that the optimal reward
Junction v is measurable. Then a policy f™ is optimal if and only if

(4.1) Lv(s, f(s)) = sup Lv(s,a), s€8.
aecp(8)
Proof. In virtue of the optimality equation, condition (4.1) is equi-
Valent; to
(4'2) Lf’U = 9.

If f* js an optimal policy, then vyw) = v and, by Lemma 4.1 (v),
®ondition (4.2) is satistied.

Now assume that a measurable selection f of ¢ satisfies (4.2). By
Lemms, 4.1 we obtain inductively

v=1IL" =Lr0+LPo <LP0O+p"K, meN,
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where K is the upper bound of ». If we pass to the limit, then v < vyc0)-
Since v > v, for all policies =, f* is optimal.

Let ¢ > 0. The following theorem gives a criterion of s-optimality
of a stationary policy:

THEOREM 4.2. Assume that v is measurable. If a measurable selection f
of o satisfies

(4.3) Lo(s, f(s)) = sup Lv(s,a)—e(1l—p), s€8,
acg(s)
then ) is e-optimal.
Proof. By the optimality equation, we can rewrite condition (4.3)
in the equivalent form

(4.4) Lo>v—e(l—p).

In order to prove c-optimality of f©), we have to show that
Vy0) > ©— . Proceeding inductively, by (4.4) and Lemma 4.1 we obtain

fo=o—e(l-B)(A4+B+... +f")>v—e, mel.
On the other hand,
Iro = LPO+Lro<LPO+p"K, melN
(see the proof of Theorem 4.1). Consequently,
L?04+-p"K >v—e, mEelN.

Passing to the limit we obtain vyw)>v—e, which completes the
proof.

5. Existence of optimal and c-optimal policies. In this section W°
give sufficient conditions for the existence of stationary optimal and
¢-optimal policies. We assume:

Al. For every u € M(8), 8 € 8, the function
(5.1) w(s,):= [u(s)g(ds']s, )
S

is continuous on ¢(s).

A2. The reward function r is bounded and, for each s e 8, 7(8) )
is upper semi-continuous on ¢(s).

THEOREM 5.1 (cf. [7], Theorem 8.2). If a discounted dynamic progré™.
ming problem satisfies assumptions Al and A2, the set of actions A i3 @ clos®
subset of R, and ¢ is closed valued, then for any ¢ > 0 there exists a stationo”y
g-optimal policy.
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Proof. First we prove that the optimal reward v is a measurable
function. Let T be the operator defined on M (S) by

Tu(s) := sup Lu(s,a), s€e8.
aey(8)

. With the help of T we can rewrite the optimality equation (3.1)
I the form T» = v. Under assumptions Al and A2, Lu is a bounded
easurable function and, for each s € 8, Lu(s, -) is upper semi-continuous
On ¢(s). In virtue of Theorem 2.1, Tu € M(8). For any u,, 4, € M(8),

| Tuy (8) — Tuy(s)] < SuP) |Luy (s, @) — Luy(s, a)| < Bllu,—uql, se€8.
aey(s

Thus T is a contraction. By the Banach fixed-point theorem, there
xists w, € M (8) such that Twu, = u,. Since for bounded # the function v
8 3 unique bounded solution of the optimality equation, we have u, = v
(8ee [10], Theorem 8.2).

Now ¢ and Lv satisfy the assumptions of Theorem 2.1. Hence there
®Xists a measurable selection fof ¢ such that (4.3) is satisfied. By Theo-
Tem 4.2, 7 jg a stationary e-optimal policy.

THEOREM 5.2 (cf. [5], Theorem 4.2, and [9], Theorem 15.2). If a dynamic
brogramming problem satisfies assumptions Al and A2, and ¢ 8 compact
Yalued, then there ewists a stationary optimal policy.

Proof. We have already proved that the optimal reward v is a measur-

able function (see the proof of Theorem 5.1). Note that ¢ and Lv satisfy

€ assumptions of Theorem 2.1. Thus there exists a measurable selection f
% 9 which satisfies (4.1). In virtue of Theorem 4.1, f is a stationary
%Ptimal policy.
Schil ([7], Theorem 8.2) gave a version of Theorem 5.1 with 4 an
S’]')""Spfsl:(‘,e, @ separable, and r a Carathéodory map. Furukawa ([6], Theo-
Tem 4.2) has obtained Theorem 5.2 under the stronger assumption that 4
’a Compact subset of R™, and (s, - ) is continuous. Schél ([9], Theorem 15.2)
38 proved a similar result, assuming that A is an SB-space, ¢ is separable
(or ¢ i8 measurable and q satisfies a stronger continuity condition than Al),
04 7 j§ the limit of a decreasing sequence of Carathéodory maps.

Our results can easily be generalized to a non-stationary Markovian
8ion model with finite or infinite horizon. Under similar assumptions
€re exists a Markovian optimal (c-optimal) policy.

decj

&bﬂjﬁ. Appendix. We give sufficient conditions for the transition prob-

N %y ¢ to satisfy assumption Al. They are based on the following
Cheff§ theorem:

Let (X » &, u) be a measurable space with a o-finite measure u, and
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let p and p,, be measurable real-valued non-negative functions on X
such that

[p@p(ds) = [pu@pds) =1, meX.
X X

If limp,, (#) = p(») u-a.e., then
Hm [ |p(@)— P (@)l p(dz) = 0
m X

(see [2], p. 223).

Assume that the transition probability ¢ satisfies the following con®
dition:

There exist a o-finite measure x on § and a measurable non-negative
function p: G8 - R such that

4(Bls,a) = [p(s,0,8)u(ds)
B

for all Borel subsets B < 8.

If p(s,-,8') is continuous on ¢(s) for 8’ e, then the functio?
w(s, -) defined by (5.1) is also continuous on ¢(8).

For the proof, let a, a, €¢(s) for m € N, and

lima,, = a.
m

By the Scheffé theorem,

Lim [w(s, a) — (8, 6,)| < lim ull [ |p(s, a,8)—p(8, am, &) u(ds’) = 0-
m S

m

Hence w(s, -) i8 continuous on ¢(s).
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PROGRAMOWANIE DYNAMICZNE Z DYSKONTEM
W PRZESTRZENIACH EUKLIDESOWYCH

STRESZCZENIE

W pracy rozpatrywane jest programowanie dynamiczne z dyskontem, z prze-
Strzenia decyzji bedaca podzbiorem n-wymiarowej przestrzeni euklidesowej. Podane
l‘:t ;':-runki wystarczajgce dla istnienia stacjonarnych polityk optymalnych i s-opty-

alnych.



