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1. INTRODUCTION

Stochastic processes composed in a natural manner of so-called
a8es or cycles often appear in applications, especially in queueing and
I~eh""bili17y theory. The regenerative processes with mutually independent
and identically distributed phases are typical examples for this class of
Proceggeg.

of In generalization of the recent paper [7] by Nawrotzki, in Section 3
the present paper the construction of stationary processes of the above-
Dentioned kind is given. For this purpose we consider a strictly stationary
Quence of phases of the process to be constructed and associate it with
€ 80-called Palm version of a stationary random marked point process.
of :;m the stationary distribution of the process can be obtained by means
1}‘3 well-known “inversion formula” from the theory of point processes.
Ction 2 contains the necessary basic definitions and notation from the
w}fory of random marked point processes; it is based on the paper [5],
€re the reader can find a more detailed treatment of this subject.
o ¢ Section 4 the above-mentioned sequence of phases is supposed
agg O'm g time-homogeneous Markov chain (MC). Making use of this
UMption, we offer a new approach to stationary semi-Markov processes
(see Semi-Markov processes with auxiliary paths and a general state space
Seg [3], [8], and [9]) and, in particular, to stationary regenerative proces-
ing} S¢e [10] and [2]). The class of processes considered in that section
an d‘ldes also the piecewise Markov processes introduced by Kuczura [6]
o 8eneralized by Jankiewicz and Rolski [4]. In case of a piecewise
OV process the phases (or auxiliary paths) form a time-homogeneous
OV process and one can obtain deeper results.

theg Section 5 contains two examples of the application in reliability
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2. RANDOM MARKED POINT PROCESSES

Let [K,R] be a measurable space, the so-called mark space. We
denote by My the set of all sequences ¢ = {[%,, k,]}>_, of marked pOlﬂts
[t., k,]e R*x K, where R' = (—o00, +00), ... <l_; <, <0<? <-
and f, > 4+ o0 a8 n— Joco. For every Borel set B < B and LeR We
use the notation

¢(B x L) = card(pn(B x L)).

Let M be the o-field of subsets of My generated by the sets {p € Mk’
p(BxL) =34}, j=0,1,..., where B is a Borel set of R!, and Le$

Definition 1. A mndom marked point process (rmpp) on R' with
the mark space K is a random variable (rv) @ taking values in Mg ..
a probability space of the form @ ~ [My, Mg, Pl. .

The elements ¢ € M are realizations of @, and P is the probil:billty
distribution of &.

We will use also the representation @ = {[¢,, k,]} of an rmpp, where
t, = t,(®P) is the random position, and k, = k,(P) is the random matk
of the n-th point of @.

Definition 2. An rmpp @ — {[t,, k,]} With the distribution P ¥
called stationary if for every t € R' the translated rmpp

® = {[tn—ti k,1}

has the same distribution P. The distribution P of a stationary rmpPP 18
called also stationary.
The expression

ip = Ep{p([0, 11X K)} = D' iP(p([0,1]1x K) = i)

i=1

defines the intensity of a stationary rmpp & with the distributiol - P.
The distribution P of a stationary rmpp @ with 1p < oo corresponds

a uniquely determined and inversible manner to its Palm distribution =° -
on M. The rmpp &, with the distribution P, is called the Palm versio
of &. The following properties are characteristic of P, and @,:

Po(to(¢o) = 0) = 17
Ty (o, @, has the same distribution P, as d,,

1
(2.1) A = Bp {t,(D)} = s

Furthermore,

(2.2) Pylko(By) € 4) = , AckK,
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§ valid, where Ap(4) = Ep{p([0,1]1x A)}, A € K. The stationary distri-

ution P can be obtained from P, by means of the following inversion
f01'111111.‘:1,:

B3)  P(0) = Ao [ Pofts(@0) > t, By € O)dt, O e M.
0

If ¢, = {[t., k,1} is the Palm version of a stationary rmpp &, then
8equence {[v,, ¥,1}, 7, = t,y1—1,, is strictly stationary. Conversely,
;;fry stationary sequence {[z,,k,]} of random elements on R* x K,
i, = [0, 4 o0), satisfying the properties E {r,} < oo and P(z, > 0) =1,
TTesponds to the following Palm version of a stationary rmpp @:

the

2.(” - n—1 n
( = ¢0 = {[tn’ kn]};{;-oo’ to = 07 tn = Z Tis t—n = 27"—1” n>1‘
i=0

fe=1

3. CONSTRUCTION OF STATIONARY PROCESSES

St Let [L, 8] and [X, ] be measurable spaces. We denote by X, the

b of all functions on [0, ¢) taking values in X, and by § a o-field of
Sets of X,, for example the o-field generated by cylindrical sets. Fur-

beermore, let D be the space of all couples [, 2], t € R*, 2 € X,, and let D
the minimal o-field of subsets of D generated by sets 4,, = {[t, 2]:

[0 T,e,2€0}, x> 0,C e€,, where ¢,z denotes the restriction of z on

Bt;t”?)- We set K = Lx D and & = 28D. Let {[z,, k,1};} . be a strictly

[0 l0nary gsequence of random elements on a basic probability space
» A, P] taking values in R* x K and satisfying the properties

(8.1) P(r,>0) =1, Efr}=4< +oo.

g Every %, is of the form [#,, (t,, {,)], Where 7, takes values in I,

Stat (%hy £,) in D. Hence ¢, i8 a stochastic process on [0, z,) with the

on lglspajce X. The Palm version @, = {[t,, k,1};>_, of a stationary rmpp &

the a With the mark space K is defined by (2.4). We denote by P, and P
I8tributions of @, and @, respectively.

Proce‘;e are interested in the behaviour of the two-dimensional stationary

3
82) z2(t, D) = [, D), L(t, D)] = [1.(D), L/(E—1.(D))],

t & [t,(D), tpya (D)),

Which -
a;l &eh 18 composed of phases. The n-th phase begins at the moment %, (D)
has the random sojourn time 7,(®). The first component %(¢, P)
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is constant in the n-th phase; the behaviour of the second component
t(t, @) on [t,,t,+7,) equals the behaviour of £, on [0, 7,).
Furthermore, we consider the three-dimensional stationary processes
(3-3) 'D(tr (D) = [z(ty ¢)7 a’(ty ¢)]1
(3.4) w(t, P) = [2(t, D), r(t, D)],
where a(t, @) =t—1,(®) and r(t, B) =1,,,(P)—¢ denote the “age’
and the “remaining life time” of the present phase of z(t, ) at every
moment & € [t,(P),%,,,(P)). In a manner analogous to (3.2)-(3-4} the
processes z(t, D), v(t, D,) and w(t, D,) corresponding to &, can be 111131"_"
duced. In general, these latter processes are not stationary, butb thell
distributions are invariant according to the random translation Ty
The inversion formula (2.3) provides the following relation betweel
the finite-dimensional distributions of { (¢, ) and {(t, D,):

(3.8)  P((L(t, D)y ...y L(tm, ) € B)

1 [o ]
= 'Zf Po((t1(¢o) > &, LG+ Do)y ..oy S+, d)o)) EB)dw’
0
—eo <l <ty < s < by < O

In the case of regenerative processes (L contains a single element and
the 7, are mutually independent) formula (3.5) is well known (see [10(]”'
It is possible to derive similar formulas for the processes z(¢, @), ?(¢s !
and w(¢, ). In particular, the one-dimensional distributions of o (b
and w(t, D) are of the form
(3.6) P(v(0, ®) e A xC x[0,x))=P(1(0, D) € 4, (0, ®) € C, a(0, P) < )
= P(no(®) € 4, Ly —1s(®)) € 05 —1(P) < 1)
12 < a,.)dt
= — [ Pyft(Do) > t, no(T,By) € A, Lo —1o(T;Bo)) € C, —1o(T;Po)

0

a
=-Z—fPo(t1(¢o)>t,no(¢o)eA,Co(t)eG)dt, Aec®,0e§, ze [0,
3.7) P(w(0, ) e AxCx[0,a)

= P(n(0,P) e 4, (0, D) eC,r(0,d) < )

- —Z-fl’o(t< £,(By) < t+2, no(Py) € A, Lo(t) € C) s

Aef, 0, zel0, 00);
respectively.
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4. SEMI-MARKOV PROCESSES WITH AUXILIARY PATHS

4.1. General state space L. This section is devoted to a special case
N W model, which is of importance in applications, and for which formu-
8 (3.6) and (3.7) can be written in an essentially simpler form. Suppose

hat the Sequence {[v,, k,]},;/>°_,, forms a time-homogeneous MC with the

Ofo

kerne) nem
(4.

b P("n+1 €4, (Tpy1y Cnr1) €B I =1, (70, gn))

= P(’?n+1 €4, (Thirs Cup1) €EB 9, = l)= fQj(B)p(ly @),
4

Where Ae,BedD, jelL,
4.
) P, 4) = Pl cdln, =0, leL,4cg,
" the kernel of the embedded MC {r,}** . and

3
) QuB) = P((r,, L) €B |9, =1), leL,BeD,
18 . .
th: %t of distributions on D. The index » in (4.3) can be omitted and in

8equel we will use the notation

@(B) =P((z,{)eB|n =1, leL,Bed.
simpih‘;suucture of the process z(f, ) in the case considered is very
3 Dha,s. he values 7, of the first component 7 (f, @), which is constant in
tima & form a time-homogeneous MO. The distribution of the sojourn
L *n In the n-th phage and of the behaviour of the second component

1/ 10 this phage depends only on the value 7,. In accordance with

yk [ X
Pat}:;.and Schaufele [8], we call z(t, @) a semi- Markov process with auxiliary

The structure of the stationary distributions according to the Markov

kepp .
;l‘ (4.1) is deseribed by the following
HEOREM 1. (a) Every invariant probability measure
QA XB)=P(n,c4, (v, ) eB), Aecf,Bed,

With,
Te8pect 1o kernel (4.1) is of the form

(4.4)

Q(Ax B) = [Q/(B)x(dl),
Whepe 4
t.e, n(

(4.5)

Jt()

o 8 an invariant probability measure with respect to kernel (4.2),
Y @ probability solution of the equation

a() = [p(1, )n(al).
L

. (b . .
mvaﬁa)ml f (e 18 a probability solution of (4.5), then (4.4) determines an
Probability measure Q with respect to kernel (4.1).
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Proof. (a) Let @ be an invariant probability measure with respect to
kernel (4.1), i.e.

(4.6) Q(AxB) = [ [ [@(B)p(y, @)Q(dy x du)
A

!
-]

J
L
[@(B)p(y, d)Q(dy x D).
A

Then #(:) = Q(( )xD) is, in view of our assumption, a stationary
distribution of the time-homogeneous MC {n,}, i.e. a probability solutio?
of (4.5). Hence from (4.6) we obtain

Q4 xB) = [@,(B) [p(y, d)n(dy) = [ Q(B)n(dl).
A L A

(b) Let n(-) be a probability solution of (4.5). Then it follows fro™
representation (4.4) that

Q4 xB) = [@(B)(dl) = [@(B) [p(y, d)n(dy).
A A L

For B = D, (4.4) implies @(A X B) = n(4). Thus

Q(AxB) = [QB) [ p(y, &)Q(dy x D)
A L

= [ [ @(B)p(y, d)Q(dy x du),
L A

i.e. Q is a stationary distribution according to (4.1).
If we introduce the notation

(7)) Fo) =Plc<aln=0 =Q(r<a), 4 = [2dF0), 1L, 2B

then conditions (3.1) change into

Fy(+0)=0,1eL, 4= [Aa(d)< o.
L

THEOREM 2. If the sequence {[v,, k,J}i2> o8 @ time-homogeneo¥s l;[
with kernel (4.1)-(4.3) and there ewists a uniquely determined station i
distribution m(-) according to kernel (4.2), then the one-dimensional dist
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butions of the stationary processes v(t, D) and w(t, D) are of the form

48)  P(u(0, ) c 4 x C'x [0, )

1 x
=— Qr>1t,(8) e C)n(al)dt, Ael,0eF, ze[0, o),
al]e

49 P, @) e 4 x 0 x[0, )

—-—

1 ©o
\Ffoz(t<r<t—|—w, t(t) eO)n(dl)dt, AeQ, Cef, ve[0, ),
0

4
Tespectively,

Proof of (4.8). According to (3.6) we have

00, @) ¢ 45010, 0) = 3 [ Pofta(00) > 1, m(@0) € 4, Llt) < O)t.
0

The event

BlB0) > ¢, 50(@y) € 4, Lo(1) € O = {ro(@0) > 1, mo(Bo) € 4, &o(8) & O}

i
§a Statement only about the phase (z,, %,) of the stationary Markov

chaj o
Viealn {70y &, 1}, with distribution (4.4), which is uniquely determined in
W of our agsumption and Theorem 1. Hence

Pla(Pe) > 1, 10() € 4, L0(1) € €) = [@ufr> ¢, L(1) € O)m(aD).
A

In an analogous manner one can prove (4.9).
MarkIt Can easily be seen that the component 7 (t, ®) of 2(t, ®) is a semi-

OV Drocess (SMP) taking values in the general state space L and

hg,
Ving the semi-Markov kernel

P(Wn+1 E-A7 Tn+1 < l nnz ?/, Tn) ZIFz(m)p(y7 dz)’
A

yelL, xe[0, ), 4,

")and F,(-) are defined by (4.2) and (4.7), respectively (see [3]).

We derive the one-dimensional distribution of the stationary
kernel (4.10):

Where P (. ,

m (4.8
Sup With)

0, 0) e 4, a(0, 8) < 2] — %fﬂ(a(dm > 1, m0(®y) € A) dt

1 z
=—| | A—F,@))n(d)at, Aef, ze[0, ).
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Remark. It is possible to investigate two generalizations of OUr
model.

(a) The MC {[z,, k,1}} . has instead of (4.1)-(4.3) the kernel

(4.1a) P(’?n+1eA’ (Tnt1y Cny1) € B | K, = k)= IQI(B)T(I‘, dl),
4

Acf,BeD,kek,
where @,(B) is given by (4.3) and
(4.2a) r(k,A) =P, €4 |k, =k), Ael, kek,
is a stochastic kernel from K into L. .
In generalization of (4.2), expression (4.2a) means that the probablllty
law of 7,,, ; depends not only on the value of #,, but also on (7,, {,)

The structure of the stationary distribution is again described by
Theorem 1, where p(l, A) is given by the formula

P, 4) =P(paped|n, =1) = [ (1, 0), 4)Q(dw), leL,Ael
D

The statement of Theorem 2 and all its conclusions given in Section 4.2
are also preserved. It is easy to see that the class of piecewise MarkoV
processes considered by Belyayev [1] and Kuczura [6] is a special cade
of the model given by (4.1a), (4.2a) and (4.3).

(b) We can consider also a model for which the distribution of !‘he
couple [7,, {,) depends not only on the “mark” #, taken at the begilmm%
of the n-th phase but also on the “mark” 7, , taken at the beginning 9
the (n+ 1)-st phase. Such a model can be translated into the model cOﬂSld,'
ered throughout this section (sce [8] for the case of an SMP). For thi8
purpose we seb

L=LxL, K =LxD,
7(t, D) = [17,(D), 77n+1(¢)]7 te [tn(¢)7 tn+l(¢))
and obtain a model for which the distribution of (z,, {,) depends only
on 7,. By (4.8), the one-dimensional distribution of the stationary process

o(t, @) = [7(t, D), {(¢, D), a(t, D)]
can be given by
(411) P(5(0,9)eA x C x [0,)) =P(7(0, ®) € 4,£(0, ) € C,a(0,P) < )

1 T
= — [ Pafts(@0) > 1, 00(®) € s, 12(®Po) € Ay, £(1) < O)
0

1 xT
= 7_[fo”(7 >t,L()e C)p(y, dz)n(dy)dt,

0 4,14,

A=A xA,, A, 4,8, CeF, [0, ©)
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Where »(+,-) and n(-) are the kernel and the stationary distribution of
the embedded MO {n.}, respectively, and

Ays = [ Qu(redn), 4= [4,,p(y, d)(dy),
0 L

Qy.(B) =P((Tm Cn) €EB |0y =Y,y Npyy = z)a y,2€ L, BeD.

] The corresponding formula for the SMP [7(t, ), a(t, P)] takes, in
View of (4.11), the form

P(mn(0, @), a(0, &)] € A X [0, 2))

1 F B
=7f ff(l_FW(t))P(?/’dz)”(dy)dt, Ael,ze[0, ),

0 A A,
Where F, (1) = Q. (v < #), 1> 0.

SMP4.2. Countably infinite or finite state space L. We treat the

fro (Markov renewal process) with auxiliary paths in a way different
i M that taken by Pyke and Schaufele [8], and Schal [9] who also inves-

(fated such processes. If L is countably infinite or finite, then kernel
"1)-(4.3) of the MC {[z,, k,1}}* ., can be written in the form

n=—co

(4. / ) )
12)  Pliy =3y (Tnsay Last) €B | 0y = 4, (T &) = Py Qy(B),
( i,jeL, BeD,
4. . . . .
13) Dy =P(77n+l =]|’7n=l")7 @’jGL7
(4.14)

Qj(B)=-P((Tn7€n)EB|nn=j)7 BED,jEL-

ace If. 7y t€ L, is the uniquely determined stationary distribution
ording to (p,,), ;.z., then from (4.8) we obtain the formula

19 Ploo, 0) e B x Ox[0,0) = 2, [ Qule> 1, £ € O)at

keL, Ceg, ©e[0, o).

In order o describe the non-stationary behaviour on R* of the pro-

Cesy . o ers 1 Ategos
uti:ét’ D) defined in the preceding section we choose an initial distri-

(4. _ .
16) Q:(B) = P((voy L) €B, 7y =14), BeD, iel,

Le. g dicgee ..
2 dlStl‘lbutlon of the initial phase (o, k,) of the process. We assume that

(4.1 _
R lim ZQ,.(zo<t) =1

ig va‘li >0 je7,
anq d. The time-dependent behaviour of z(¢, @) is determined by (zy, k)
Y the sequence of phases {[7,, k,]}n>; governed by kernel (4.12)-
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-(4.14). By Pgis meant the distribution of the process z(t, @) on R+ induced
by the initial distribution (4.16) and kernel (4.12)-(4.14).

Now we give a sufficient condition for the strong regularity of z(¢, @)
t> 0, i.e. for the validity of

(4.18)  Pg(N(¢) = max{n: 1,(P) <t} < o) =1, te[0, o).
THEOREM 3. If all probabilities m;, i € L, are positive, then (4.18)
valid.
Proof. Since

Po(t"(:%) —>A) =1 a8 m—> oo,

we have Py(N(f) < o) =1, teR*. Furthermore, the representatiol
Py(N (1) < o) = Y m, PN (1) < oo)
ieL

holds, where P;(:) = Py(:|ny = %), ¢ € L. Thus, from the assumptiol
n; > 0, i € L, it follows P; (N (t) < o) =1, i € L, t € R*. Hence, by (4.17)
we have
t
Pg(N(t) < o) = D Quze> 1)+ D py [ P;(N(t—2) < 00)Q;(7, € dw) = 1-
ieL s A
Under the assumption of Theorem 3, in an analogous manner 01°
can also prove that

P3(imN;(t) = o) =1, ielL,

t—o00

where N,(f) denotes the number of points f, with #, = ¢ in the interval
[0, t). These points form a remewal process (process of i-renewals). Th®
distribution function of the distance between two successive §-renewal®
is denoted by @,;(z). From (2.2) and the identity m, = Py(q, = ) it folloW*
that the intensity A,({i}) of the stationary process of i-renewals equ 8

Ip((}) = mdp = —*-.

Therefore, in view of (2.1) the mean u,; of the distribution functio?
Gy (@) is equal to A4/x;. ¢

Let Hg,(t) be the renewal function of the (embedded) process 0
s-renewals induced by the initial distribution @ and kernel (4.12)-(4-14)'
Then the equation

R,(i, 2, C) = P (y(¢, ®) = i, a(t, D) < @, £(t, D) € C)
t
= [Q@r>t—u,{(t—u)eC)dHg(w), ieL,z>t, CeF, teR”
t—z

is valid.
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THEOREM 4 (ERGODIC THEOREM). If all the probabilities =, €L,
are positive and the distribution Junction G (x) s mon-lattice, then

E%Rt(i,m,0)=%f&(r>u, {(w)eC)du, 2>0,Ce§, ielL.
0

The statement follows directly from the key remewal theorem.

Theorem 4 states that the one-dimensional distribution of the station-
3y Process o(¢, @) determined by (4.15) is a limit distribution for any
itial distribution.

5. EXAMPLES FROM RELIABILITY THEORY

The behaviour of a wide class of redundant systems with repair can
syis1131‘;38(3ribed by SMP with auxiliary paths. Here, X is the finite set of all
sot ofm States and L is a subset of X. In general, L can be taken as the
Tenn: all up-states of the system. We consider two redundant systems with
Palr, the first of them is well known and can be described by a piecewise
2’:]‘07 Process (see [1] and [7]). However, we take no advantage of this
With and compute the stationary state probabilities by our formulas

Out extensive calculations. The second system to consider cannot

© described by a piecewise Markov process with a countably infinite
Space.

kin d5.11-,. T.he s.ystem consists of two redundant elements of the same
fails :ha‘ndJDg In parallel and of a single repair facility. If one element
» ben the repair quickly begins and restores completely the properties
BWite;:(ller-nent' After completing the repair, the element is simultaneously

il Simulmto the operation. System break-down occurs if both elements
the pe .taneously. The element lastly failed must wait until completing
ifops Palr of the other element. Switching times are neglectable. The random
o anmes. X, and X, of the elements and the random time to repair ¥
f'lnety failed element are mutually independent and have the distribution

iong
PX;<t)=P(X<t)y=1—e* 1>0,i=1,2,

. P(Y<t) =G t=>0
'Wlth the mea'n ( ) ( )7 ?

a = fmavdG(w)

ang
the Laplavce-Stieltjes transform

g(s) = [ e7*da ).
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The set X of the system states is of the form X = {0, 1, 2}, where
any state denotes the number of failed elements.
We determine the transition probabilities of the embedded MC {1,}

with the state space L = {0,1} as
Po=0, Pn=1, Pyp=PX>Y)=§(4), pu=1-§(2)
and for the uniquely determined initial distribution of {5,} we obtain

", — —£L T — 1 .
° 1+p ’ ! 1+p;
We state
. 1
Ao = E{mJIl(Xl, Xg)} = 2—1 ] Al = E{Y} =5 a,
§(A)+2ia
A = “0A0+“IAI = 21(1+g(l)) .

By (4.15) we obtain the stationary state probabilities ¢, for k € X:

_ﬂw _ Y g(4)
- = on,,(z>t, (1) = 0)ds = — = s +aia

00

[ 1 7 r
% =_Aion1(r>t, (1) =1)at =—AiofP(Y>t, X >t)at

(gl g T 1 =) 2(1—§(A)
_Ao(lamk m_A 2 = ) +2ia’

nllewt ) = 2)at = [ (L-am)a—e
_ 2(Aa—1+§(4)
T i +2ie

The stationary system availability 4 is the sum of the stationary
probabilities of up-states:

_ _ _ 24
4d=qgt+@=1-¢= G +oia

9.2. The second system to consider differs from the system treated
in 5.1 only in two points:
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(2) the elements have different reliability characteristics,

(b) if both the elements are available, then one of them is active
80d the other is in cold standby.

.. The random life-time X; and the random repair time Y, of the element
9) have the distribution functions

P(X,<t) =F,(t) and P(Y,;<t)=6(), >0,
With the Imean

b, = [ @dF;(t), =1,2.
0

The system states of the set X = {1, 2, 3, 4} are determined as follows:

f.or t =1, 2, the element (¢) failed and begins to repair; the element
t) switches from the standby into the operation;
for § — 3,4 we have system break-down states: while the element
—1) is still repaired, the element (¢ —2) failed and waits for repair.

The transition probabilities of the embedded MO {»,} with the state
"Pace I = {1, 2} take the form p,; = Pz = 0, P13 = Pay = 1.

There exists a uniquely determined initial distribution of the MO
.} such thag %, = %, = }. We state

(38—

4, = E{max(X,, Y,)} = f(l—Fz(t)G1(t))dt;

s = E{max(X,, ¥,)} = f(l"‘F1(t)Gz(t))dt,

0
1
4 =mdl +nd; = '2_(A1+Az)-

By (4.15) we can obtain the stationary state probabilities g, for k ¢ X:

— i 3 i g
o= Fl;f Qi(z>¢, L(H) =1)dt = -A—lof P(max(X,, ¥,)>t, X, > 1) dt

=ifp(x gy b
T R

T g 00
U= 710[ Qulr>1, () = 4)dt = —y;—lofP(max(Xz, Y,)>t, X, <t)dt
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T 3 ! -
=7f P(Y,>t, X, < t)dt =—A—fP(Y1>t)P(X2<t)dt
0 0

1 00
_ mf (1— @, (8)) Fy (1) dt.

In an analogous manner we can obtain

b, 1
Taa M 6= o of (1— G, (1)) Fy (t) dt.

q: = A1+A2

For the value of the stationary system availability we have

A=qg+¢=1—¢—¢ = (b1+bz)[f (2_F1(t)Gz(t)"Fz(t)Gl(t))dt]—I'

[1]

[2]
(3]
[4]
[5]

(6]
(7]

(8]
(93

[10]
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KONSTRUKCJA PEWNEJ KLASY STACJONARNYCH PROCESOW
STOCHASTYCZNYCH STOSOWANYCH W TEORII NIEZAWODNOSCI

STRESZCZENIE

da w pracy przedstawiono ogélne podejécie do proceséw stochastycznych, skla-

maf]:ych Sig z tzw. faz. Rozwazane procesy sa uogélnieniami proceséw odnowy, pél-

punk:WSklch 1 przedzialami markowskich. Korzystajac z wynikéw teorii proceséw

Sty uktowych otrzymuje sie rozklad stacjonarny rozwazanych proceséw. W przypadku

W ury pélmarkowskiej wlozonej wzory staja sie stosunkowo proste. Podano takze
3 Przyklady zastosowan w teorii niezawodnoAci.



