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1. Intreduction. In 1956 J. J. Schéffer [4] proved that for fixed &
and z > 1 the title equation has an infinite number of solutions in positive
infegers #, y only in the following eases: (I) & =1, 2 =2, (II) k = 3,
ze{2, 4}, (III) &k =5, 2 = 2. In all other cases the number of golutions.
was shown te be bounded by @ constant depending only on k. He conjec-
tured that ile only other solutions have 4 = 4 = 1, apart from & =z = 2,
# =24, ¥ = 70. Schiiffer’s complicated proof used an incffective method
due to Thue and Siegel. On applying the Gel’fond-Baker method, we-
are able to prove the following generalization.

THEOREM 1. L6t py, ..., B be o findle set of fized primes and denote
by 8 the set of imtegers composed of these primes. Let v and k= 2 be fived
rafional infegers with & ¢ {3, 5} if r = 0. Then the equation

(1) r1ER 2R L st =y

in positive indegers w e 8, o, ¥y > 1, 2> 1 has only finilely many solutions.

By the effectiveness of the used method, wpper hounds for w, #, ¥
and =z can be determined effectively. Note that it is a consequence of Theo-
rem 1 that for any integers ¢ > 1, b and k= 2 the equation

o +{a+1)Y 4 ...+ = Byt

has only finitely many solutions in integers > a, ¥ > 1 and 2> 1.

The deduction of Theorem 1 from rvecent results on Diophantine-
equations is straightforward if the polynomial r +1° 2%+ ... 2% in o is.
known to have at least three simple zeros. This polynomial is clogely
related to the Bernoulli polynomial B, (#), namely
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where By,; = Bpya(0) is the (k--1)-th Bernoulli number. We prove
slightly more than we need.

THROREM 2. For every » & Z the polynomial

Plz) = By (o) —B,+r

has af least three simple zeros if ¢ = 3 and at least four simple zeros if q > 4,
unless r = 0 and q < {4, 6}.

In case ¢ iy 0dd, a straightforward generalization of an argument of
Brillhart [2] shows that all zeros of P{a) are simple. The case ¢ i3 even
ig more complicated.

In Section 2 we quote the results on Bernoulli polynomials which
we need for the proof of Theorem 2. In Seetions 3, 4 and 3 the proof iz
given in case ¢ ig odd, g =0 (mod 4) and g =2 (mod 4) respectively.
In Section 6 we quote the results on Diophantine equations which we
uge in the deduetion of Theorem 1. The proof itself is given in-Section 7.
Some remarks on generalizationy and related results are made in Section 8.

We note that all proofs of results in this paper are offective and
we make no further reference to this aspeet of the method.

2. For ¢ =90,1,2,..., the Bernoulli polynomials B,(x) are defined
by

2™ <1 B ()2
— =Z_ T el < 2m
= 7

Their expansion around the origin is given by

q
Bo) = 3 (¢) B,
3=0
where B, =1, By = ~%, B, = %, ... are the Bernoulli numbers, One has
By =0 for k =1,2,3,... For the following well-known properties
of Bernoulli polynomialg and numbers we refer to Rademaecher [3], pp.
1-17.
(3)

{4}

B,(1—~z) = (—1)iB,(=).
CBa+1) = B{w)+ g2t
So By(2) = B, (1)-¢ = B,+q for ¢ > 2. By induetion, one finds (2).

(5) By(a) = gBy.. (o).
®) (=1 1B, >0 _for k>=1.
{N {(The von Standt-Clausen  Theorem) The denominator of the

Bernoulli number By, is the product of those different primes p
for which p—1 divides 2%.
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More precizely,

By, = Oy, — 2 _1_:
(p-1)12kp
where &,; i3 an integer.

18} |Boyl > 2-(2F) 1/(2m)*.
(9 B,(3) = (2*7—1)B,.
¢10y  The polynomials B, . ,(#) have no zeros in the sogment (%, 1).

Hence by (3) the polynomials B, (2) are monotonic in (%, 1). In
view of (3), (6) and (9) the polynomials B,, () are monotonically
increasing in (4, 1) if k is odd, decreasing if % is even.

Proot of Theorem 2. We distinguish several cases.

3. Suppose ¢ is odd. Choose € € N such that dP(wz) is a primitive
polynomial in Z[x], that is a polynomial with integer coefficients having
no common factor. By (7), d is even and squarefree, whereas for I = 1, 2, 4,
6y .00y g1, '

()az, = (£ tmod 2).

Now
g—1

ig—=1)
dP(a) = da+ ¥ dB, (lﬂ) o g
p

=o' Y (;ﬁ) o2~ (mod. 2).
=1
Hence,
, g1}
d{P(z}+ =l (w)} = ga?™ "+ 2 (QI;) (1+g—202" " =27 (mod 2).

i=1

Any common factor of dP{x) and dP'(x) must therefore be congruent
to a power of m{mod2). SBince dP'(0) = ¢dB,_, =1 (mod 2) we find
that dP(o) and @P'(«) are relatively prime (mod 2). So any irreducible
common divisor of AP () and dP'(x) in Z [#] must be of the shape 2Rz} +1.
Then dP(z) iy divisible by (2R (2)+1)* and the leading coefficient & of
dP(z) is divisible by the leading coefficient of (2R(z) —l—l)”. Since 444,
this is impossible unless & is a constant. All the zeros of P(z) are therefore
simple. A special noteworthy case oceurs when » = 0, so P(z) = B,(z).

4. Suppose g is even. The derivative P'(w) = ¢B, ;{w) of P hag
only simple zeros, so each zero of P(#) i of multiplicity less than 3. Choose
d € N such that dP(x) is a primitive polynomial in Z[z]. Let T (z) be the
ge.d. of dP(x) and dP'(@). Then T'(2) € Z[=x] is primitive and -

aP(z) = I*(n)@ (=),
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where @(z) € Z[z] contains all the simple zercs of P{»). The theorem
iz equivalent to the statement that deg@ = 4 unless g € {4, 6} and » = g,
By (1), d is squarefree. Since P(w) is mounie, we {ind that T'{z) must also
be monic. Sinee 7 & Z, either 2%4P(}) or 2¢7'dP(}) is an odd integer,
so P(3) # 0. By (3), P(1—a) = P(w). Bo for cach zero & of P(x) there
is & zero 1§ of the same multiplicibty. Therefore T'(z) is of even degree
and deg@ = ¢ (mod 4).

Now suppose that ¢ =0 (mod 4) and asgume that deg@ < 4, so
deg@ = 0. Hence, since dP(2) is primitive, @(x) = £1. Thus d =1.
The denominator of By, is divisible by 6 for k =1, 2, 3, ... So neccossarily
6i ( )for B=1,2,..., }g—1. Write g= 2%, where { is odd. Then 2{(;]‘;),

which gives a contradiction unless 1 = 1. So ¢ = 2° Next choose ye N
such that 3* < g< 3*™ and write ¢ = 3*+s3", where 3{s. Since ¢ is
even, § must be odd. Then 3¢ ( 3,,), which gives a contradiction un-
- less 5 = 1.

S0 ¢ = 2* = 378", Since any power of 3 is congruent to 1 or
3 (mod 8), the only solutions of this equation ave ¢ =2 or ¢ =4. So
g = 4. Since P’{z) = 4B,4(w) has the only roots 0, } and 1 and since
P(%) # 0, we must have P(0) = P(1) = 0, s0 » = 0. The theovem i3 thus
proved in this case.

5. Suppose that ¢ =2 (mod 4) and assume that deg® < 4. Then
deg@ = 2. Moreover, since g > 2, wo find that d is even. By (3), ¢ (x)
= Q{1 —2). Furthermore, T{z) iz monic. Hence, for some ¢ € %,

(11) AP (x) = (do*— dw -+ )T (z).
Since dP(x) is primitive, (d, e) = 1. It follows from
_ (d:ua—-dm—}-e)\(dmﬂu %dqw‘l“—«—%d(%)mﬁ"g-f— )
that _
' (dw —dm+c)]( — (g — 2)4&‘1’1—{—( ( )%a)'vq“’—{u )

and therefore d{'(%d (g)—c). Hence, (d, i (g)) =1. Thug d[6. Suppose
that 4 = 6. Then 34e¢ and 34¢. By (11), (3) and (4) we have
6P = eT(1) = 6r,
6P(2) = (124 6)T5(2) = 6r - 6q.

So both 6+ and 6(r--g) are divisible by 3°. By 3tg this is impossible.
8o we find that d = 2.

SBuppose that pie for some odd prime p. For 8(z) e Z[x] we denote
by {8 ()}, the image of § in Z,[x] under the canonical mapping. Choose
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F{x) such thab
(T (@)} = (o™ Ty ()],
where ()4 (T1{@)},, so st T {0). Then
(2P (), = (2" — 2} T3(@))), .
By comparing the coefficients of #™%! we find ..

0= —2T30) =9 ( i— ) ar—1 (IO P},

Consequently B, o, = B, 50 q :“T:a Thus (T, (), is constant.
Since T'(z) is monie, (T*(z)), = (2*), == (2"*),. Hence, by (11),

(2t —2a71), = (2;05'—‘51;1:4‘1 +3 (g)mﬂ-ﬂ + )p

fo ¢ =2 (mod p) and %(g) =0 {mod p). This is impossible, g0 ¢ = 1.
We therefore have either (22% —22-+1)|2P (%) and 7 = B{0)—B,(} -+ #i) or
(252 — 28 —1)2P(z) and » =Bq{0)—B,_,(12=—|-%}/§). We investigate these
cases separately.
Suppose that _P(m)
e Z is real and (§+34)

B (a)—Bil+3). Put o == }(g—2). Since
%@, we have

—r = B,(} 1)~ B,(0) = Re| ( ) “"ka}

=0

,‘—_bl’

= 0+ Re{—da(k+ 1"} +

-[enff-ira -

g) (330740 B, ( )(%+%vi)q“'+---

P B () (— B

—

Sinee d =2, 23,( )EJ for k =2,...; 2. Henee, 4“Bﬁ(g)(~«é)“‘1

= :::4135(6) is an even integer. Similarly 4°B,.., (415 +2)( Lk

even integers for & == 2,3, ... It follows that

wo(—a+3 (I} = b" = (=1 hate—y)

is an integer, which is appazrently odd. Consequently 4% is an odd integer,
showing by o2 1 that r ¢ Z. This is a contradiction.
Suppose that P{x) = B,()—B,(}+1/3). One finds that
By(w) = 2° —80° +3a* — 3o’ + B;.
8o
B () B (0) = }{3x? — 20 —1) (2 —x).
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Thus # = B(0) —Be(} -+ 1V/3) = 0if g = 6, which agrees with our theorem.
So let g > 6, whence ¢>=10. By (6), B, (1) is positive and, by (9), B (;-\
is negative. Finally, by (10), B, (=) is monotonmaﬂy ingreasing-in (3, 1)
We have by {4) and (3)

By(3+3V/3) = B —1+3V/3) +-q(— }+1V3)" " > By

= Bqu%—%‘f ) > By(3)
Suppose that Bg(%_':i"%‘]/?);) < B,(1). Then there is a pe($,1) sush that
B,(e) = Bg(%—{—%]/B). Hence P(x) has a simple zero in (}, 1), which gives
a contradietion. So B,(3+3V3) = B,(1) > 0. Since BJ(1) = 0 and B (1)

< 0 there is an ¢> 0 such that B,(1+s) < B,(1) < B,(}+ }¥/3). Since
42 10 we have by (4), (9) and (8)

—3-+3V3)

io!
B,(13) = B(H)+9(H* < (277 —1) amn T -27% < 0 < By(§+4V3).

(2w
Let ¢ be the maximum of Byle) in the interval [1 +¢&,14] and let this
maximum be assumed at the point v & (L--¢, 13). Since 1+ %l/?? was & simple
zero of P(x), we have that Bg(§+%]/§) < o, Thus P(») changes gign in
(1, 7) and in (z, 1%}, so P(z) muost have at least two zerog of odd mulii-
plicities in (1, 1%), which by (3) implies that deg@ > 4. Thig final contra—
dietion proves Theorem 2,
6. For the proof of Theorem 1 we need the following results.

LEnvya 1. Let 8 be the set of all non-zero integers composed of primes
Sfrom some fived finite set. Let P & Q[x) be a polynomial with af least two

distinet zeros, Then the equation
' Plx) = wy®
in integers w € 8, o, y > 1, ¢ implies that z < C, where 0 i3 a constant depend-
ing only on P cmd 8,
Proof. This is a direct consequence of [5], Theorem 2.
LEMMA 2. Let P € Q [w] be o polynomial with af least three simple zerose

Let b and m be fived imtegers with b = 0 and m = 2. Then the equation
Px) = by™
has only finitely many solulions in inlegers @ and ¥.

Proof. Thisfollows easily from a result of Baker {1] giving the stated
result in case P(x) € Z[#], b = 1. Let d be an integer such that AP (x) & Z[x].
Then ™ '@P(2) is a polynomial with integer coefficients satistying

bnl—lde($) = (bﬁ!y)m-
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According to Baker’s result there are only finitely many integer solutions

& and bdy. Fhis proves our assertion.

7. Proof of Theorem 1. We know from Theorem 2 that the polynomial

+a* =

E_ ok
o125 L k—l—l

(12} {Bipa{w 1) — By +r(B+1)}

has at least two distinct zeros. Henece it follows from equation (1)} by
applying Lemina 1 that 2 is bounded. We therefore may assume that 2
ig fixed. We can incorporate any sth power in #° Doing 8o thers are only 2°
possibilities for w. Hence we may assume without loss of generality that w
iz fized. 8o we have obtained an equation

r1Fo¥ L L ot = by,

in integers # and y. Aecording to Theorem 2 the polynomial on the right
side of (12) has at least three simple zeros, unless » = 0 and & e {3, 5}.
On applying Lemma 2 we find that there are only finitely many solutions
#, y. Thus the number of golutions {w, m, ¥, 2) of (1) iz finfte, unless » = O
and % e {3, 5}.

b#£0, m=2,

8. Remark 1. B. J. Strocker proved that the Diophantine equation
g =3"438" =5"+5"

bas the only solutions g == 2, 6, 10 or 30. It follows from this result that,.
under the assumptions in Section 5, d = 2 if and only if g = 6, 10 or 30..
This gives an alternative for the last part of the proof of Theorem 2.
A similar idea was used in the proof of Schiffer’s result mentioned in.
the introduction.

Remark 2. The proof of Theorem 2 remsains valid if we replace »
by rfs, where & is & squarefres odd integer. Thig implies that Theorem 1
algo holds if {1) is replaced by the equation

rLe{1% 2%
for some squarefree odd integer s.

Remark 3. It is possible that the condition in Theorem 1 that &
is fixed is unnecessary. Flowever, wo are not even able to prove that.
for fixed r and # = 2 vhe equation

P17 2% L o =yt

has only finitely many solutions in positive integers w e 8, 4, ¥ > 1, 2> 1.
Using the fact that the term »n® dominates the left side if # is large, one
can deduce that z is bounded and that the greatest prime factor of ¥
tends to infinity as # - oco. For the first fact one can apply [6], Theorem 1

e ) = wy®
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with b =w, Il =¢r+1°4+2°+ ... +{n—1)" and ¢ =2 For the second
statement one can apply the Corollary of [6], Theorem 3 with a, =N,
by =1, ¢; = & = v+ 2 L+ (1)

Added in proof. A result similar to Theoremn %, bub for the equation ILER
+2% 4 ... 2P+ B(z) = % has been publiched in Aecta Math. 143 (1879), pp. 13,
Here E is a fixed polynomial with rational integer coefficients. The proof in that
paper differa from the proof in this paper. Furthermors, a proof of the result of
Stroeker mentioned in Remark 1 has been published in Nieuw. Arch. Wigkunde 24
{1978), pp. 476-478.
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Small solutions of quadratic congruemces and small fractional
parts of quadratic forms
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1. Intreduction. As for quadratic eongruence, we have

FeeorEM 1. Let Q(x) = Q(zy, ..., m;) be a quadratic form with tndeger
eoefficients in an odd number b of variables. Then for each naiural m there
are infegers @y, ..., &), satisfying

{13 Q@1 ..., 23) =0 (mod m)
and having
() 0 < max{|oyl, ..., o)) < me™,

where elh) = (1/2) 4 (1/2h).

It is clear that the result remains valid for even h, provided we set
e(h) = (1/2)+(1 [2(h—1)} in this case. Clearly e(h) may not be replaced
by & nuomber less than 1/2, but it iz conceivable that the theorem remains
true with the right hand side of (2) replaced by em*® for h > h,.

As for fractional parts, Heilbronn [4] proved that for ¢ > 0, ¥ > or(e)
and arbitrary real o, there exists a natural n < ¥ with

llan?]| < N2t
where |l...}| denotes the distance to the nearest integer. Danicic [2] gener-
alized Heilbronn’s result by showing that for ¢ > 0, ¥ > ¢y (e, 8) and o
quadratic form Qws, ..., w,), there ewist integers ny, ..., n, not all zero,
With |ny,y ...y gl < N and with
1 (1, ..oy )l < (el N)+e,

Cook [1] was able to show that for & > 0, ¥ > o3(e) and erbitrary a,, a,,
there emist integers ny, ne not both zero, having |n|, ., < N and

"alﬂi - sz'”‘gu < N,

* Written while the second author had a research fellowship from the Max
Eade Foundation, New York.

16— Acta Arithmetica RXXVIT



