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Introduction

In this note we shall consider a version of the so-called secretary problem (see,
for instance, Gilbert and Mosteller, 1966) when the objective is to find one of the
three best candidates. To make this note self-contained, we state briefly the secretary
problem.

Let x;, ..., x, be the random permutation of numbers 1, ...,n (the “ranks”
of candidates), and let

y; = number of indices j < i for which x; < x;.

Thus, y; is the relative rank of x; among the first i terms. We assume that
Y1, Y2, ... are observed sequentially while x,, x,, ... are not observable.

After observing y; , ..., ¥: (i < n) we may decide to stop, or to continue observa-
tions. For i = n we must stop. If we stop at time #, we receive a, b, ¢ or nothing
{a = b > c > 0) depending on whether x; (the “true” rank of stopped candidate)
is 1, 2, 3 or > 3. The problem is to find the optimal strategy of stopping and the
expected return under this strategy.

Using the general results in theory of optimal stopping, one can show that the
optimal strategy is of the form: stop at first k for which either of the following
conditions holds: i

@y=land k2zr,
®) ye=2and k > s,
©) y»=3and k > ¢,

D k=n,

where 1l <r<s<t<n.

(23]
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r—1 form an “orientation period” A when we observe
J’n v ¥»_1 without stopping, followed by three periods, B= {r, ..., s—1},

= {s,...,t—1} and D = {¢, ..., n} with the property that we stop at first oc-
casion when relative rank 1 occurs in B, or relative rank 1 or 2 occurs in C or relative
rank 1, 2 or 3 occurs in D.

We shall find the asymptotic values for optimal “thresholds” r, 5, and 7. Though
the results are of little (if any) general interest, they possess some curiosity value,
since the numerical evaluations exhibit certain rather unexpected properties of
variability of r, s, and ¢ as one changes the incentives a, b and c¢.

Thus, times 1, ...,

Exact form of expected return

One can show that the expected return for the stopping rule based on numbers
1<r<s<t<n equals:

a+b+c (n— k)(n k— 1)
nn= D)= ?)[ ”Z

<h
+(r—=1)(s—2)
k=

(1) E()’, s, t) =

(n—K)(n—k—1)
TE=DE-2)

-1

+(r~1)(s— 1t~ 3)2 g+ 2= Dls-

2

k=g

20— 1)(s—2)(t— 3)2 T 2)(k 5

+ (= D(r—2)(t- 3)2 ]|

ket

m[l(r 1)Z(n k)+(r—1)2_‘(t—1 k)+(r—-l)(r-2)(t-—r)]

k=r

b s:l
R e [e=D6s-nE=5)+ 1) > =kt - 1)(r-—2)(t——kv)] .

k=r

We shall not give the proof in all details; instead, we shall illustrate the method
of deriving (1) by considering some sclectcd special cases.
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Let i;, iy, and i; be the (random) indices of places at which the true ranks
1, 2, and 3 appear in the permutation x,, ..., x,. Various terms in (1) correspond
to different configurations of appearances of iy, 7,, and i; in sets 4, B, C, and D.
Let us, for instance, consider the case i; €D, i, < i,, i; < i;. The probability
that i, = k and i,, {3 > k equals

n n—1l1

Since i; = k implies y; = 1, in the above case we stop at k (and win a prize a)
if we do not stop before k (in which case we do not win anything, since i, > k
and i > k). In order that we do not stop before k (for k € D), it is necessary that
in the sequence yy, ..., ¥~ Of relative ranks there is
vk—1;

(b) no term equal 2 at places j = s, ..., k—1;

(c) no term equal 3 at places j=1¢,...,k—1.

Thus, if x’, x”/, and x''" are three least elements among x, ..., Xz_1, then x'
must appear at a place j with j <€ r—1, x’ must appear at a place j with j <€ s—1,
and x'"" must appear at a place j with j < t—1. The probability of such an event
equals

(a) no term equal 1 at places j=r, ...

Summing over all k = ¢, ..., n, we obtain the contribution to the expected return

(r=1)(s—2)(t—3)(n—k)(n—k—1)
"= 1= 2)0— Dlk— 2% 3)

which accounts for the third sum in (1). In this case we may interchange iy, i,
and i;, obtaining the same expression for probability of winning. Such symmetry
is not always present, as may be illustrated by the following cases (which explain
why it appears hopeless to try this method in the general case when we want to
stop any of the best m candidates).

Let us consider the case i, < i, < iz with iy € 4, i; € B. Certainly, we do not
stop at i, or i3, and we could win only if we stop at i,. Now, for k > I; we have
¥e > 1, and the only element appearing at places k > i; with relative rank 2 will
be that at place #,, while for & > i, we have yx > 3 and no stopping is possible.
Thus, we lose if i, € B (since in the set B we stop only at relative rank 1), we win
if i € C, while for i, = k € D we win only if no element with relative rank 3 ap-
pears at places ¢, £+1, ..., k—1. Since in all three cases stopping is at true rank 2,
we get the contribution to E(r, s, t) equal

n
> w5

(r—D(Es—n(-—3)

b r—=D(s—r(—s)
n(n—1)(n—-2)

n(n—1)(n—2)
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Consider now the case i, < i3 < i; with i, € 4, is € B. As distinct from the
preceding case, here we win if i; € B or i, € C, while for i, = k € D the situation
is the same as before. Since now we win by stopping the best candidate, the contribu-
tion to E(r, s, t) equals

s~1 n
r—1 2 (r—1)(s—r)(z=3) 1
———— i—1—-k
”[ = D-2) £ ( TSV ) an =3

Asymptotic solation

Formula (1) permits to obtain the asymptotic form of the optimal stopping policy.
Let x ~ r/n, y ~ s/nand z ~ t/n. After some elementary calculations, one obtains

2 E(x,y,2) = (a+b+c)[x+2x2— —é—x3—2xy+

1xy 3, 3
T tEw +xlog(y/x)— mz—xsz +

1 3 3 ]
+a[2xy——2x2+ —2~x3-— —E-xyz-F—xyz] +b|:xyz—- -?xyz-—x2+xy+ é«xs} .

. In order to be able to compare the expected returns, let us put a+-b+c=1;
since a > b > ¢ > 0, we have then 0 < b < 1/2 and 0 < ¢ < min(s, 1-2b).

. Differentiating E(x, y, z) with respect to its arguments and solving the result-
ing equations, we obtain

B z={1+2071
b+2e+(1+20)"2— {1~ 10c+ (B+20) [b+2e+2(1 + 26)1/2]) 12
@ y= 6c
if ¢%#0
(1+b) S if ¢=0,

while x is equal to the root of the equation

® 3ex?—4(b+2¢)x+2logx = Ziogy—y(bﬂ-20+z“1)~ 1

with y and z given by (4) and 3.
Observe that if b = ¢ = 0, we get y = 7 = 1, and x = e~*, which is the well-

known solution of the secretary problem with the prize given only for getting the

best c.andidate. Fora=b=1/2,¢c=0we get z =1, y = 2/3, and x given by the
equation 3x = ¢*-1

(1966) » Which again is the solution given by Gilbert and Mosteller
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Numerical valaes

The table below gives some numerical values for the optimal x, » and z, and the
expected return E(x, y, z) under the optimal policy. It is worth observing that the
value x changes very little (see Fig. 1 showing changes for b = 0.3and 0 < ¢ < 0.3).
The reason for such small changes is, qualitatively speaking, quite clear: an increase
of x increases the risk of missing all “prized” candidates altogether, and hence
making no choice at all, while the decrease of x enhances the risk of getting too
high value with lowest relative rank so far, thus increasing the risk of making a wrong
choice.
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Fig, 1. Optimal values x,y,z and E for =03 and 0< ¢ < 0.3

The initial “orientation period”, determined by the value of x, is maximal
when b = ¢ = 0, and tends to shorten as the prize is split among the three best
candidates. The minimum, however, is not attained for even split, i.e. when @ = b
= ¢ = 1/3, In fact, for fixed b, x decreases with the increase of ¢, while for fixed ¢,
as b increases from its minimal to maximal value, x first decreases and then starts
to increase (the latter changes, however, occur only in the third and fourth
decimals).

This means that for a fixed prize for the third-inrank candidate, the orien-
tation period is shortest when the prize for the second best candidate lies in between
its minimal and maximal value. )
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Finally, lest us observe that splitting the prize has always a detrimental effect
on the expected return. When a = 1, b = ¢ = 0 (i.e. if we win a unit amount only
for getting the best candidate), the expected return is e~* = 0.3679. When we get
1/3 for stopping at any of the three top candidates, the expected return is lowest,
and equals only 0.2616. ‘

Table 1
Optimal thresholds x, y, and z, and the optimal return E for different prizes &
and ¢
¢ b x y z E
0 0 0.3679 1.0000 1.0000 0.3679
0.1 0.3594 0.9091 1.0000 0.3464.
0.2 0.3531 0.8333 1.0000 0.3281
0.3 0.3489 0.7692 1.0000 0.3124
0.4 0.3468 0.7143 1.0000 0.2987
0.5 0.3470 0.6667 1.0000 0.2868
0.1 0.1 0.3507 0.8849 0.9129 0.3323
0.2 0.3445 0.7956 0.9129 0.3136
0.3 0.3410 0.7258 , 0.9129 0.2983
0.4 0.3402, 0.6689 0.9129 0.2851
0.45 0.3409 0.6442, 0.9129 0.2793
0.2 0.2 0.3379 0.7501 0.8452 0.2985
0.3 0.3358 0.6771 0.8452 0.2774
0.4 0.3373 0.6208 0.8452 0.2717
0.3 0.3 0.3342 0.6236 0.7906 0.2696
0.35 0.3364 0.5957 0.7906 0.2640
0.33 0.33 0.3367 0.5868 0.7746 0.2616
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0. Introduction

The object of this paper is to analyze the necessary conditions which must be met
in order that the decision procedures applicable to one statistical decision problem
could also be used in other problems obtained from the original by suitable trans-
formations. The basic concept is that of F-reducibility of two statistical structures
(and of two statistical decision problems), where # is a family of mappings of the
underlying sample spaces. The paper gives conditions under which proximity of
measures in one structure is preserved in the reduced structure (which is a pre-
requisite for robustness of procedures), and under which a parameter in one structure
can also serve as a parameter in the other. '

Moreover, the conditions are given under which certain desirable properties
of parameters are preserved in the reduced structure. Applicability of the introduced
concepts to statistical analysis of stochastic processes is discussed.

1. Reducible statistical structures
By a statistical structure we shall mean a triple (%, , &), where % is an arbitrary
set, of is a o-field of subsets of &, and & is a family of probability measures on

(%, o).

Let now (%, &) and (%", #') be two measurable spaces, and let o and A"
denote respectively the classes of all probability measures on (%, o) and (%', L.
Next, let & be a class of &7/— /' measurable mappings f: & — &', With each

fe & we can connect a mapping f A~ A" by putting
FP(4) = P(f2(4)), A e
Let f-1P' = {P: fP = P'}. Futhermore, for & < A" and 2’ = A", let
F (@) ﬂ%‘, {F@} = (P ex FP = P’ for some P e and some f€F},

(29
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