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The results obtained above are then used for discussing some hypotheses test-
ing problems, and also establishing the asymptotic efficiency (in the Weiss—Wolfowitz
sense) of the maximum probability estimates.

Finally, it is indicated that, under suitable regularity conditions, the general
results mentioned above can be extended to the following cases: The r.v.’s involved
are independent but not necessarily identically distributed ; they are coming from
a stationary and ergodic Markov process; they are coming from a fairly general
stochastic process.
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Let X, ..., X, denote identically and independently distributed random variables
with the distribution function F(x).
Let H, denote the hypothesis

Hy: F(x) = as(x;'“),

where @(x) is the standardized normal distribution function. The constants x and
o are unspecified (nuisance parameters),

Tests for H, are called (one-sample) normality tests. We deal with such tests
in Section 1.

Sometimes we have more than one sample, with different nuisance parameters,
for assessing normality. The corresponding tests are called multisample normality
tests; they are discussed in Section 2. ‘

1. One sample case

Any goodness of fit test can be used as a test for normality if the empirical moments
are substituted in the theoretical distribution function. This modification, however,
changes the distribution of the test statistics. For the y2-test, the same tables may be
used, only the number of the degrees of freedom is to be diminished by the number
of estimated constants (Fisher [11] (1924)). Although this solution is of approxi-
mative character (see Chernoff and Lehmann [3] (1954)) the accuracy is sufficient
in most of the practical cases provided the sample size is large. For other goodness
of fit tests, separate tables have been prepared for the modified case. For the Kolmo-
gorov test, the critical values have been tabulated by Lillefors [13] (1967), for the
Cramér-Mises, Anderson-Darling and some other tests by Stephens [30] (1974),
see Biometrika Tables, Volume 2, Table 54.

A further group of normality tests are the tests of Shapiro and Wilk [27] (1965),
Shapiro and Francia [26] (1972)," DeWet and Venter [7] (1972) and d’Agostino
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4] (1971). Each of these tests has the test statistic

but the definition of the constants ¢; is different for each test. Here X(1) € ... < Xy
are the ordered sample elements. The constants and the critical values are tabulated
for n < 50 in the case of the Shapiro-Wilk-test, and for 50 € n < 99 in the case
of the Shapiro-Francia-test. The constants may easily be calculated in the case
of the d’Agostino-test and the deWet—Venter-test and the asymptotic critical values
are given.

The tests of Shapiro—Francia and DeWet-Venter are consistent, the d’Agostino
test is not. The consistency of the Shapiro-Wilk test is an open question; its version
to test the departure from the exponential distribution [28] is'not consistent [23], [24].

Further tests to be mentioned are the tests based on the higher moments, in
particular, the test of Bowman and Shenton [2] (1975), and modifications of the
y>-test: Moore [15] (1971), Nikulin [16} (1973).

Shapiro, Witk and Chen [29] (1968) have carried out extensive Monte Carlo
experiments in which the most important tests of normality were compared. From
the general practical point of view, a good test should have reasonably good power
against all practically important alternatives. A number of such alternatives have
been considered. This work, if considered together with the similar computatmns
of Dyer [10] (1974) and Shapiro and Francia [26] (1972), suggests that the tests
of Shapiro-Wilk, Shapiro-Francia and Anderson-Darling are practically the best,
these three matching each other. Since the test statistic of DeWet-Venter lies very
near to that of Shapiro-Francia, we may think that this fourth test shares the good
properties of the former ones.

But power is not the only aspect to be taken into account. This author believes
that the advantages of the y2-test make it still recommendable if the number of
data is large. It is particularly suitable if the observations are grouped and this
case frequently occurs in practice. The calculation work can be suitably connected
with ‘histogram. representation,

2. Multisample case

In many cases it is difficult or impossible to provide a sufficiently large series of
observations for assessing normality but it is possible to take observations in short
series or such data are available from the past.

Let Xy (E=1,..,r; j=1,..,n) denote .independent random variables.
The distribution function of Xi; is F[(x—u,)/o;] where u; and o, are, in general,
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unknown, but in special cases, they may be connected by some relations which are
known.

The null hypothesis is that F(x) is the standardized normal distribution func-
tion. The alternative hypothesis is that F(x) is not normal.

We consider below two cases: the case of common variance (homoscedastic
case) where ¢, = ... = ¢, = ¢ and the heteroscedastic case where no relation
among the nuisance parameters is supposed.

2.1. Homoscedastic case. We suppose n, 22 (i=1,...,7, 0, = ... = g, = 0.
Our procedure [21], [22] consists of two steps. The first one is the”following
transformation:
Y =X,- U,
where
nilx
ij
= 7;?:_1/?? + ]“;fh: G=1,.rsj=1, .., m=1).

Before the application of the above transformation it should be ascertained
whether the observations are, in fact, in random order. If there is any doubt, we
have to change the order of the elements within each sample, by putting a randomly
chosen element at the end (the element X;,, has a special role in the transformation).
The coefficients 1/(n-+}/n) and 1/)/n are tabulated, up to the sample size 20, in
[20].

,
The number of transformed elements is 3. n,—r. If the null hypothesis is true,
i=1

they are independent and normally distributed random variables with expec-
tation 0 and variance o2

The second step of the procedure is the test of the normality of the last-mentioned
variables. For choosing the appropriate test we refer to the aspects mentioned
in Section 1. .

In this step it is better not to use the information that the expectation is 0,
see Dyer [10] (1972), Deutler et al." [6] (1975).

2.2. Heteroscedastic case. Now we suppose n; 2 3 (i = 1, ...,r). No relation
between the nuisance parameters yy, ..., by Oy, -.r) @ i8 supposcd.

Now again the procedure consists of two steps. The first step is the following
transformation [22]:

S
Yu=(Xu Ul) w

where now
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=2 T
S; = I/Z Xy—-U)?,
=1

S; X
Sti = Pm || =1, ri =1, e, m=2).
Y ”’*(lx,-,.,_l—mml) ( :
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wa(x) is a monotone increasing function and is such that Sy,d:——mS,-/cri in the case
of the null hypothesis. The function y,(x) is fully determined by these conditions.
It can be determined with the help of the tables of Student and x* distribution
functions, see [22].

Tabulation of the function y,(x) and of the coefficients 1/(n-+ |/ 2n) and 1/y/2n
is under way [24].

If there is any doubt regarding randomness, at least the last two elements
in each sample (X;,,_, and X;,) are to be randomly selected.

.
If the null hypothesis is true, the resulting Z n;—2r variables Yy; (i =1, ..., r;
i=1

j=1,..,n—2) will be independently distributed with standard normal distri-
bution. The second step will test whether they are normal. The aspects for the choice
among the available tests is the same as before.

2.3. We may add the following remarks:

Some simplification can be made for the case where n; takes on its smallest
possible value (n; = 2 in Section 2.1 and n; = 3 in Section 2.2).

The 1960 paper of the present author [21] contains formula (2.1) but the trans-
formation given for the heteroscedastic case differs from (2.2). Formula (2.2) (see
[22], formula (7.1)) is a slight modification of the transformation proposed by
Stormer [31] (1964).

Formerly, Petrov [19] (1951) proposed a multisample test of normality, see
also Dunin-Barkovsky and Smirnov [8] (1955), pp. 354-360. The transformed
values of Petrov, however, were not independent; therefore, the use of only one
transformed value per sample was suggested. [21] was an improvement of the results
of Petrov, permitting higher efficiency in the multisample case and appropriate
for the one-sample case. It was the first exact test of normality in the one-sample
case.

Further tests of normality which use transformation of sample elements are
those of Durbin [9] (1961), pp. 49-54, O’Reilly and Quesenberry [17] (1973), Csorgs
etal. [5] (1973), Major (Major and Tusnady [14] (1974), p. 277). Durbin uses random
numbers. The transformations of Strmer, Durbin and the present author preserve
the shape of the empirical distribution function. An optimality property of the
transformation here proposed has been proved in [22].

Tusnady [25], Section 6 generalized the method of Stérmer for the multidimen-
sional case.

A multisample test of normality of another kind is that of Wilk and Shapiro
[29] (1968). This method consists of two steps. In the first step, however, only one

e ©
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statistic per sample is provided, which does not preserve the information regarding
the shape of the distribution. This test is appropriate if the alternative hypothesis

is complete non-homogeneity (the parent distributions are non-homogeneous in
their shape).

2.4. Characterization. Transformation (2.1) characterizes the normal distri-
bution in the sense that the normality of the transformed variables implies that of
the initial variables. This easily follows from the well-known theorem of Cramér.

Below we give a characterization theorem which is applicable to heteroscedastic
transformations.

In the following let X, ..., X, denote independent, identically distributed
random variables, and U and ¥ arbitrary random variables.

THEOREM. If

distr

(Xl: ‘XG,XI{: A’l: V) = (XL:XZaX31 X4.y V):

where 1 < i,j,k,1<6,1i,j,k,1 are all different, and the distribution of

(XI—U Xe—U
T T

is normal, then Xy, ..., X¢ are normally distributed.

Proof. Let Wi =X, 1~Xy;, Zy= Wy/V (i=1,2,3). It follows that the

distributions of Z,, Z, and Z, are identical and normal and, moreover, that
distr

(21, Z)=(~Z1,Z), i=1,2; j=i+1,...,3, which implies that Z;,Z,, Z,

are independent and have the expectation 0. Since

(A _?z_) - (& _’f’_z_)
FARNVA AMUA]
and Wy, W,, W; are independent and identically distributed, we conclude from
Theorem 13.5.2 of Kagan, Linnik and Rao [12] (1973) that the distribution of

Wi, Wa, Ws is normal. The normality of X, ..., X, then follows from the theorem
of Cramér. ’
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