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Without checking the conditions of the type presented in the paper, the re-
commendation of such a decision rule as described above is based on act of faith
only.
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References

[11 J.R. Barra, Notions fondamentales de statistique mathématique, Dunod, Paris 1971.

[21 B. Bednarek-Kozek and A. Kozek, Stability, sensitivity and sensitivity of character-
izations, Preprint No 99 of the Math. Inst. of the Polish Academy of Sciences; also this volume
pp. 39-64.

3] G.E.P. Box, G.M. Jenkins, Time series analysis, forecasting and control, Flolden Day
1970. :

[4] B.R. BHampel, A general qualitative definition of robustness, Ann. Math. Statist. 42 (1971).
pp. 1887-1896.

[51 B.L. Lehmann, Testing statistical hypotheses, J. Wiley, New York 1959,

[6] Ju. Prohorov, Convergence of random processes and limit theorems In probability theory
(in Russian), Teor. Veroyatnost. i Primenen. 1 (1956), pp. 177-238.

[71 V. Strassen, Theexistence of probability measures with given marginals, Ann. Math, Statist.
36 (1965), pp. 423-439.

[81 V.M. Zolotareyv, On continuify of stochastic sequences generated by recurrent procedures
(in Russian), Teor. Veroyatnost. i Primenen. 20 (1976), pp. 834-847.

Presented to the semester
MATHEMATICAL STATISTICS
September 15-December 18, 1976

e ©
lm MATHEMATICAL STATISTICS

BANACH CENTER PUBLICATIONS, VOLUME 6
PWN--POLISH SCIENTIFIC PUBLISHERS
WARSAW 1980

STABILITY, SENSITIVITY AND SENSITIVITY
OF CHARACTERIZATIONS

BOGUSLAWA BEDNAREK-KOZEK

Institute of Mathematics, Wroclaw University, Wroclaw, Poland*
and '
ANDRZEJ KOZEK

Institute of Mathematics, Polish Academy of Sciences, Wroctaw Branch,
Wroclaw, Poland**

0. Introduction

The term “stability” has a long history. It has been used by Lagrange, Poisson,
Poincaré, and Liapunov in problems of mechanics. Ulam [14] discussed the notion
of the stability of mathematical theorems from a rather general point of view: “When
is it true that by changing ‘a little’ the hypothesis of a theorem one can still assert
that the thesis of the theorem remains true or ‘approximately’ true?”. Ulam decided
not to formulate a generally applicable definition of stability and we do mot try
to do it here, either. However, a review of theorems ‘on the stability shows that
there are groups of problems in which the stability can be treated from the same
point of view. Here we restrict ourselves to three types of “stabilities” which are re-
lated to some properties of transformations of metric spaces. We call them d&(s)-
stability, 0~1(e)-sensitivity and y(¢)-sensitivity of characterizations, respectively.
The present paper is strongly inspired by lectures of V. M. Zolotarev given in 1976
in Varna and Warsaw on his approach published in papers [15], [16] and [17]. In
particular we use the set-theoretical model of y(e)-sensitivity of characterizations
given in [16] and [17]. .

Let (X, ox) and (¥, gy) be metric spaces and let f'be a function from X into Y.
We are concerned with functions which have one of the following properties:

1. 8(e)-stability

f(C®) = f(C)Y

(intuitively: similar reasons have similar consequences);

* Plac Grunwaldzki 2/4, 50-384 Wroclaw.
** Kopernika 18, 51-617 Wroclaw.
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II. 6-(e)-sensitivity
FTHC) < fHO)
(intuitively: similar consequences must have similar reasons);
IM0. 8~'(e)-sensitivity of characterizations
A%® A f—l(Bt?u)) < C,
where
C=4nf(B)
(intuitively: a slight deviation from “assumptions A" and, simultaneously, a slight
deviation from a considered “property B” may occur only on a neighbourhood of the
characterized set C).

We are interested in a quantitative approach to investigations of these proper-
ties. We present necessary and sufficient conditions for f to be &(e)-stable, for
fto be 67(¢)-sensitive and for a characterization of C by 4, B and fto be 6-(e)-
sensitive. Next, we apply the obtained results in cases when f is a transformation
from a set of probability measures into another set of probability measures. Finally,
we give some applications of the obtained results to statistics (cf. [S], [6]).

As is easy to see (cf. Proposition 2.1) 8(z)-stability of transformation f with
respect to a family of subsets Cy becomes equivalent to d(s)-uniform. continuity
of fin the extremal case when Cx consists of all subsets of X. Another and more
important extremal case is when Cy consists of one subset of X. For example in
mechanics, Cy may consist of the set of all stable points whereas in the theory of
probability or in statistics Cx may consist of the set of all gaussian or all infinitely
divisible distributions (cf. [3], p. 1572). In order that f be d(e)-stable with respect
to a given set it is enough that f'be “d(e)-uniformly continuous on the neighbourhood
of this set”, only. More precisely this is formulated in Proposition 2.4. Cleatly,
if fis 6(e)-uniformly continuous, it is d(e)-stable with respect to any family of sub-
sets Cy (Proposition 2.1a). On the other hand, the continuity of f does not, in general,
imply d(e)-stability of f with respect to a given set even, d(e)-uniform continuity
(at least local) of f is essential for this.

For example, Zolotarev's perfect or ideal metrics yield uniformities especially
convenient for investigations of &(e)-stabilities in the case where Cy consists of sets
of distributions of random vectors which are invariant with respect to translations
of random vectors and its multiplications by numbers. Normal and infinitely divis-
ible distributions are of this type. So, this and s-uniform continuity of convol-
ution with respectto anideal metric are the most important reasons of very elegant
results of Zolotarev on approximation of distributions of sums of independent
random variables ([17], Section 2.2).

In some cases it is possible to attain §(z)-continuity of f by changing the metric
on X (more generally, by changing uniformity U,y on X). Therefore, we formulate
ix'1 Proposition 2.3 a necessary and sufficient condition for [ tobe d(g)-uniformly con-
tinuous on X for a given metric gy. Moreover, Proposition 2.3 implies that there
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always exists a pseudometric % on X such that fis e-uniformly continuous. Section
2 and the discussion above supplement the program of investigations of stochastic
continuity formulated by Zolotarev in [15] and [17]. Proposition 2.3 supplements
Zolotarev’s discussion on the intuitive choice of a metric essential for a given problem.

Moreover, the use of d(¢)-stability inclusion and the definition of the Prokhorov
distance immediately yield Theorem 5.2 which was obtained by Zolotarev ([15],
Theorems 1 and 15; [17], Theorem 3) by much more deep considerations on minimal
metrics. Similarly, Theorem 5.5, which is another important but particular case
of Zolotarev’s Theorem 3 in [17], admits a trivial proof. More detailed discussion
of it is given below.

It seems that there are some consequences of Theorems 5.2 and 5.3 interesting
for statisticians:

(1) e-uniform continuity of the transformation generated by the sample mean
in the spaces of distributions (see the end of Example 4 in Section 7) should be
compared with the non-robust results of Hampel ([5], [6]);

(2) e-uniform continuity of transformation generated by the standard deviation
and, in view of Theorem 5.3, the lack of this property in the case of transforma-
tions generated by S? (see the end of Example 4, Section 7) should be compared
with the old discussion of statisticians on the “good” properties of standard devi-
ation and “bad” properties of S2.

8~1(g)-sensitivity is convenient for a formulation of “inverse problems of stab-
ility” and in the simplest case where f is bijective it reduces to d7*(¢)-stability
of f-1. Moreover, the use of §7(¢)-sensitivity of the transformation f leads to
a necessary and sufficient condition for the y(e)-sensitivity of characterizations
(Theorem 4.4). This last notion has firstly been formulated and investigated in
[16] and [17] by Zolotarev who, outside of the incorrect Theorem 1 in [16], in-
vestigated continuous transformations, only. The use of 67'(g)-sensitivity of f
instead of its continuity leads to a better understanding of the problem and shows
the role of “shapes”. of the sets 4 and f~'(B).

In Section 1 we recall the definitions of uniform spaces ([4]), proper regular
conditional probabilities ([9], [10]) and, moreover, we introduce some terms and
symbols which will be used in the sequel.

In Section 2 we give a precise definition of d(e)-stability and we show that
uniformities yield the most convenient tool for a quantitative theory of stability
of transformations. This is not surprising because it is well known that uniform
spaces are more appropriate for investigations of neighbourhoods of sets than
topology which deals with neighbourhoods of points. -

In Section 3 we give a precise definition of d~*(e)-sensitivity. We show that
the sensitivity is related to the uniformity of an inverse transformation into a quotient
space. Theorems given in Sections 2 and 3 show relations of &(e)-stability and
8-*(e)-sensitivity to another concepts.

Section 4 contains a precise definition of y(¢)-sensitivity of characterizations.
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This is a reformulation of the definition given by Zolotarev in [16]. Theorem 4.1
is a reformulation of Theorem 2 in [16] in a somewhat more general framework.
Theorems 4.2 and 4.3 may be considered as substitutes for incorrect Theorem 1
in [16]. Moreover, Theorem 4.3 yields a decomposition of the sensitivity of character-
izations into two parts: into the sensitivity of a transformation and into a part
which depends on the “shapes” and mutual positions of “the set of assumptions A”
and “the set of properties B”. Finally, in Theorem 4.4 we present a necessary and
sufficient condition for a characterization to be y(s)-sensitive.

The aim of Section 5 is to investigate the stability of transformations of spaces
of measures. In view of Proposition 2.1 we restrict ourselves to investigations of
uniformities of transformations of spaces of measures. Thus, Theorem 5.2 yields
sufficient conditions for 8(e)-uniformity of a transformation of spaces of measures
endowed with uniformities of the Prokhorov distances. Theorem 5.3 shows that
if the domain of the transformation is large enough, then this condition is also
necessary. Theorems 5.4-5.6 yield sufficient conditions for the d(g)-uniformity
of transformations of spaces of measures in the cases of metrics @prs, Qus, and
0w respectively (cf. Section 1 for the definitions of these metrics).

In view of Strassen’s theorem on a characterization of the Prokhorov dis-
tance [13], Theorem 5.2 follows from Theorems 1 and 12 announced in. [L5] and
proved in [17], provided metric spaces are Polish (cf. [3] in the separable case).
In this paper we need no assumptions on the metric spaces. Moreover, our proof
of Theorem 5.2 is a direct one, short and simpler than, e.g., the proofs of Strassen
or Dudley’s theorems. Similarly, in the case of metric spaces Theorem 5.5 follows
from a theorem of Dobrushyn [2] and Theorems 1 and 12 in [15]. Our proof of
Theorem 5.5 is trivial and leads to the best estimation of d(¢). A theorem similar
to Theorem 5.2 has been independently proved in [1] by Bartoszyfski and Plesz-
czyfiska.

In Section 6 we note that if a transformation f of metric spaces is an isomorphism,
then the corresponding theorems on ¢(e)-sensitivity follows from theorems of
Section 5 applied to f~*. Theorem 6.1 establishes the s-semsitivity of transforma-
tions of spaces of measures for arbitrary measurable f.

Section 7 contains simple examples which illustrate the use of the results obtained
in Sections 2 and 5. Similarly, Section 8 illustrate the use of the results obtained
in Sections 3, 4 and 6.
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1. Preliminaries

In this section we remind some definitions and simple properties of uniform spaces
and proper regular conditional probabilities.

Let X be a non-empty set. A vicinity of the diagonal 4 is a set ¥ = X'x X such
that 4 = ¥V and (x, x,) € V implies (x,, x,) € V. Let @y be the family of alt
vicinities of the diagonal. If ¥ & 9y, then 2V is an element of 9y given by

2V = {(x, x,): there exists an x; € X such that (x,, x5) €V and
(x3, x2) € V}.
Uy is called a uniformity on X if Uy ¢ 9y and if the following conditions are ful-
filled
Ul if VeUy and V < We Dy, then We Uy;
U2. if V4, V, € Ux, then VinV, € Uy;
U3. for each V e Uy there exists a W e Uy such that 2W < V;

Ud. OV = 4.
veUx

A pair (X, Uy) is called a uniform space.
Let (X, px) be a metric space and ¥, = {(x1, x,) XX X: gx(xy, x2) < &}
The family {V,} is a base of a uniformity U(gx), where

Uox) = {V & Dx: there is a V, such that ¥, = V}.

If px is a pseido-metric only and U(py) is defined as above, then condition U4
need not be fulfilled. In such a case we shall use terms “pseudo-uniformity” and
“pseudo-uniform space” instead of “uniformity” and “uniform space”, respectively.

Let (X, Uy) and (¥, Uy) be pseudo-uniform spaces and let f: X — ¥. The
function £ is said to be uniform if for each ¥ € Uy there exists a U e Ux such that
(f(x1), f(x2)) € V whenever (x;, x;) € U. If Ux = Ulex) and ¥ = V(gy), then f
is uniform if and only if for each & > 0 there is a § > O such that gx(x;, X2} < 6
implies gy (£0x,),/(x2)) < e.

If Uy and Uy are two pseudo-uniformities on X, then Uy is said to be weaker
than Uy whenever Uy < Uy. The identical embedding of (X, Uy) into (X, Ux)
is uniform if and only if Uy is weaker than Uy. Hence Ul(gyx) is weaker than U(gx)
if and only if there exists a non-decreasing function 8(¢) such that d&(ox) < x
([4D.

Let (X, o/, ) be a probability space. If &/, and &/, are two sub-o-algebras
of o, then &f; ~ of, means that for each A, € o/, there exisis an A, € s/, such
that u(d; A A4,) =0 and for each A, €sf, there exists 4; €y such that
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44y A Ay) = 0. A proper regular conditional probability (p.r.c.p.) on a c-algebra
o, given a c-algebra o and probability measure 4 is a function w(+, -; &/, p):
Xx .o, [0, 1] such that the following conditions are fulfilled:

CPl. 7(x, ;o 1, u) is a probability measure on o, for all x € X;
CP2. (-, A; &y, p) is ot -measurable for all A € sfy;
CP3. § (A, x; oy, wuldx) = u(AdnA,) for all Aesdy and A, € oA

Ay

CP4. 7u(x, Ay; o1, ) = ya,(x) for all Ay ey sly and x e X.

In the sequel we shall use the expression “m(x, 4; 4, u) is a p.r.c.p. given %
and u” provided there exist &/, ~ & and & ~ % such that m(x, 4; #, p) is
a px.cp. on &4, given &; and u.

The existence of p.r.c.p.’s has been investigated in papers of Musial [9] and
Pfanzagl [10]. It is known, e.g., that if o is the u-completion of a separable ¢-al-
gebra, o, is a ¢-algebra containing all u-null sets from o and w is either purely
atomic or & contains a u-null set of the cardinality ¢, then a p.r.c.p. given # and
w exists ([9], [10]).

Finally, we recall definitions of metrics on sets of probability (or, respectively,
finite non-negative) measures which will be used in the sequel. Let (X, ox) be a metric
space and u, » finite non-negative measures on Borel subsets of (X, gx).

The Prokhorov metric is given by

(1'1) gP(ﬂs V) = max(“(#’ ’V)r d("'n ,M))s
where
(1.2) o, 7) = inf{e > 0: p(C) € u(CH+e¢ for all closed C = X}.

We may replace C° by C* in the definition of ¢ without changing its value.
Also, we may replace “all closed C” by “all Borel sets B” since if C is a closure
of B, C*= B and C® = B®l. Here

C={xeX: gx(x,C) <e} and C7= {xeX: ox(x, C) < a}.

‘The Prokhorov metric metirizes the weak-star topology on the space of all pro-
bability measures on X for X separable ([3]; cf. also [11]).

Let BL(X, ox) denote the set of all bounded real-valued functions f on . which
are Lipschitzian, i.e.

1 fllss = sup{IfG); x & X}+sup {|fGe) =) fox(xr, x2); 1, 33 € X,

0x(¥1, %,) % 0} < o0,
Then

Nl sne = sup{1§ f(@)]: |1 1lsg, < 1}
The metrics

1.3) Gurn(ts 7) = |[14—||pps
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and gp define the same uniformity on the space of probability measures for X metric
and separable. Hence, both the metrics define the same topology. We have

(14) QBL*(/‘: ’V) € ZQP(;”: 'V),

1/2
(1.5) op(p,v) € (%QBL‘(JM’ ”))
(see [3D.

Now, let (X, #(X)) be an arbitrary measure space and let u, » be probability
measures on #(X). Then

(1.6) Qm(ﬂ; v)

1

max {(u—»)* (X), @—»)"(X)}
sup{|(u—»)(A)]: 4 € B}

Now, let X = R”and let # = F(R") be the ¢-algebra of Borel sets. A Meshalkin
metric py is given by

I

on(tt, v) = sup{|(u—»)(4)|: 4 is an intersection of at most n half-spaces},

where the “half-space” is an arbitrary set of points in R" which is of the form
n

{Gers o or x) €R™ Y@y, < b}, @, beR (see [8]).
i1

The Levy distance of probability measures on #(R") is given by
amn oulpe,») = max(aL(,u, 1), ou(¥, /“))’

where
03(u, ) = inf{e > 0: u((—c0, x]) < »((— o0, x])}+¢ for all xeR"}.

The Kolmogorov distance of probability measures on #(R") is given by

(1.8) ox(u, ¥) = sup {|u(d)—r(4)|: 4 = (—\oo,x], x e R"}.
If n = 1, then the Sibley metric g, is given by

(1.9) es(u, ¥) = max(as(s, »), 03, 1))

where

(1.10)  og(p,») = inf{a > 0: p((—-oo, x]) € »((— o0, x+el)+e

for all xe (— &~ ~—1——, -1—)}
& &
0, metrizes the pointwise convergence of distribution functions of sub-probability
measures at each continuity point of the limit distribution function (see [12].
In the sequel, whenever we deal with one of the metrics listed above, we assume
tacitly that the assumptions on (X, #(X)) indicated in an appropriate definition
are fulfilled.
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‘2. Stable functions

Let (X, ox) and (Y, gy) be metric spaces with metrics ox and gy, respectively, and
let £ be a function from X into Y. Denote by Cx a family of non-empty subsets of
X. If xeX and C c X, then

QX(x! C) = inf{@x(x: xl); X, € C}a

C*= {xeX: px(x,C) < ¢},

Cl= {xeX: gx(x,C) < &}
and

diamgx(C) = sup {ox(x1, Xx2); Xy, X2 € C}.
An analogous notation will also be used for metric spaces different from X. Let
é(e) > 0.
DermaTIoN 1. A function fis called 8(¢)-stable with respect to Cy if

f(€®) < ey (= ()
holds for every C & Cx and & > 0. If Cy is the family of all subsets of X and fis
d(e)-stable with respect to Cy, then f is called d(e)-stable.

Roughly speaking, property “to be stable” means that “similar reasons” lead
to “similar consequences”, where arguments of f are interpreted as “reasons” and
values of f are interpreted as “consequences”.

A function ffrom (X, U(ex)) into (¥, Ulgy)) is called (e)-uniform if oy(x,, x,)
< 8(s) implies oy(f(x,), f(x,)) < &.

PrOPOSITION 2.1a. If f-is a O(e)-uniform trangformation from (X, Ulex)) into
(Y, Ulgy)), then f is 8(z)-stable with respect to each non-empty family Cy.

b. If fis d(e)-stable with respect to Cy satisfying the following condition:

CL. for each o > 0 and each x € X there is a C e Cy such that x € C and

diamgy(f(C)) < «,
then f is O(g)-uniform.

Proof. Suppose CeCy and xeC’®. Then there is an x, € C such that
ﬁé;éj‘%)C‘;J.a(s) and the d(s)-uniformity of f yields gy(f(x),f(x0)) € &. Hence

Now we prove the second part of the proposition. Let oy(x,, ¥,) < é(e) and
y >0 Take a C, Ce Cy, such that x, € C and diamgy(f(C)) < y. By the 8(s)-
stability of f there is an x, & C such that gy(f(x,), S(x0)) € e. Thus, we have

QY(f(xl)’ f(xl)) < QY(f(xL): f(xo)) + Qy(f(xz): f(xo)) < e+y.

Since y is an arbitrary positive number, we have or(f(x0), f(x3)) < &, e, fis d(e)
uniform.

. -Remark 1. Clearly, if Cy contains all one-point subsets of X, then Condition C1
is fqul]led. In particular, if Cy is the family of all subsets of X, then the 8(g)-uni-
formity and 8(s)-stability of f are equivalent.
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Remark 2. We can replace “<” by “<” or “<” by “<* in the definition of the
8(e)-uniform transformation. However, in such a case, we should replace in Prop-
osition 2.1 “open neighbourhood” by “closed neighbourhood” or, respectively,
“closed neighbourhood” by “open” ome. In the sequel, the term “8(e)-uniform
transformation™ will always be used in accordance with the definition given at the
beginning of this section.

It is convenient to state as a proposition the following obvious result. Let
(X1, 0x) and (Y3, ov,) be metric spaces. Denote by g and A functions from X,
into X and from Y into Y, respectively. Finally, let ¢t = hofog.

PROPOSITION 2.2. Let f be &(¢)-uniform. If

1) ox,(x1, x\) < 8x(e) implies  ox(g(x1), g(x1)) < &
and '
(2.2) or(y, ¥'") € 8y(s) implies gy, (h(¥), B(/)) < €

for each e > 0, xi,xy €X; and y',y" €Y, then t is y(e)-uniform, where y = 0y o
o 80 by. .
This proposition gives possibilities for obtaining new results on 8(e)-stability
of a transformation provided one such result is known. For example, when X; = X,
Y, = Y and the metrics g5 and gy are changed to gx, and gy,, respectively, then
Proposition 2.2 yields at once the “new” 8(e). If X = X, then condition (2.1) is
fulfilled for a 8y if and only if U(ex) = Ulpyx,) or, equivalently, if for a non-de-
creasing function dx we have x(ox(x', ")) < gx,(x', x'").
Similarly, if ¥ = Y, then (2.2) is fulfilled for a dy if and onmly if U(gy) =
U(oy) or, equivalently, if
dx(ar, 0/, ') < ex (¥, ¥
Denote by X a quotient space X/(f), where (f) is an equivalence relation given
by
2.3) x(f)x, if and only if f(xy) = f(x,).
Let f be a function from X into Y given by
(24) J&x) = ftx)
Let g% be a metric in X given by
Q);((xu x;) = Qr(f(xx):f(xz))~

for a4 non-decreasing function Jy.

for any x ex.

Clearly, we have

PROPOSITION 2.3. A function f is a 8(e)-uniform transformation from (X, Ulox))
into (¥, Ulgy)) if and only if the canonical surjection iy: X — X is a &(e)-uniform
transformation from (X, Ulox)) into (X, U(ed)).

Proof. Indeed, it is enough to note that f= foiy, ix = f~' of and use the
fact that f is an isometry from (X, ¢§) onto (f(X), er)-

COROLLARY 2.3.1. U(g}) is the weakest uniformity on X such that f is a uniform
JSunction from X into Y.
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Let 2% be the family of all subsets of X. Denote by ¢, the Hausdorff pseudo-

metric in 2¥ given by
22x(Cy, C2) = max(dy, o),
where
a; = sup{ox(x, Ci); x€C;, i #j}, 4,7=1,2 (cf. [7)).

Denote by f’ a function from 2¥ into 2¥ given by f(C) = f(C), C = X. The function
S is said to be d(e)-uniform from the right on Cy if

CeCr, CioC, 0ax(Ci,C)<6(e) implies eux(f(C),AC) < e.

PROPOSITION 2.4. The function f is 6(g)-stable with respect to Cy if and only if f’
is 8(e)-uniform from the right on Cy.

 Proof. Let f be é(¢)-stable. Then C; o Cand 0,x(Cy, C) < 6(e) yield C = C,
< C°®. By the 4(s)-stability of f we obtain
fC) = fICY = AC*) = AO),

ie., 0,7(f(C),AC)) < & provided C e Cy.

If 7 is 8(s)-uniform from the right on Cy, then 0,(fIC’®), AC)) < &, ie.,
FC°*®) < F(C) provided C € Cy.

3. Sensitive functions

Let us start with the following definition. Let Cy be a non-empty family of non-
empty subsets of ¥ and let d(e) stand for a non-decreasing lefi-continuous positive
function. By d~%(¢) we denote a function given by

071(e) = inf{a > 0: 3(c)) > &},
ie., 67'(e) is the right-continuous inverse of d(s).
DeFmNITION 2. A function f from a metric space (X, ox) onto a metric space
(¥, gy) is called 8% (e)-sensitive with respect to a family Cy if
F7HEO) e fHC) (= (F1(C))
¥1olds for every set Ce Cy and & > 0. If Cy is the family of all subsets of ¥ and f
is §7*(e)-sensitive with respect to Cy, then f is called 0~ (e)-sensitive,
It is easy to see that if fis d~%(s)-sensitive with respect to Cy, then f~*(CY) «
SHCY 1 holds for every C e Cy.
' In order to avoid some pathological cases we assume in Definition.2 that f
is onto Y. For example, let £ be the identity embedding of X = [0,1) into ¥ = R.
If C = {0,1}, then f~1(C® is not a subset of SHC)™ whatever be ¢ > 0 and
¢ < 1. Thus the identity embedding would not be sensitive. Let us note that i we

change t.he assumption “fis onto ¥ for “Cy is a family of subsets of J(X)”’; then
we obtain an equivalent definition of the y(&)-sensitivity.

e ©
Im STABILITY, SENSITIVITY AND SENSITIVITY OF CHARACTERIZATIONS 49

Roughly speaking, property “to be sensitive” means that “similar consequences”
must be caused by “similar reasons”, provided arguments of f are interpreted as
“reasons” and values of f"are interpreted as “consequences”.

Let X be the quotient space X/(f) defined in Section 2. We define in X a pseudo-
metric px given by

(€R)) ox(%1, x;) = max(y, dy),
where
(3.2) oy = sup{ox(x, x); xex;, i#j}, i,j=1,2.

Clearly, ox is the Hausdorff pseudo-metric restricted from the space of all
subsets of X into X. In the sequel a pseudo-metric in X will always be px given by
(3.1)-(3.2). .

Let f be given by (2.4). Clearly, f is a one-to-one function from X onto Y.
f~% is the inverse function to f, i, f~': ¥ = f(X) » X and f~1(y) = x if and
only if f(x) = y. U(px) stands for the pseudo-uniformity on X gemerated by ox.

PRrOPOSITION 3.1, a. If f~* is a &(e)-uniform transformation from (¥, Ulgy))
onto (X, Ulex)), then f is 0~(¢)-sensitive with respect to each non-empty family Cy

b. If f is 6~'(e)-sensitive with respect to Cy satisfying the following condition.

C2. for each o > 0 and each y € Y there exists a C € Cy such that ye C and
diamox (f ~1(C)) < o, then f~* is §(e)-uniform.’

Proof. Let C & Cy. Proposition 2.1.a applied to f ~* yields f ~*(C°®) < f~1(C)".
Since izl o f ~1(CO®) = f~(C*®) and iz'(f ~1(C)) = f~1(C)™ holds, f is 57*(e)-.
sensitive with respect to Cy. Here iy is the canonical surjection of X onto X.

Now, we prove the second part of the proposition. Let y,, y, € ¥ be such that
or(¥1, ¥2) < 8(¢). Take y > 0 and C & Cy such that y, € C and diamgxf ~*(C) < .
If x, and x, stand for f ~'(y,) and f~*(y,), respectively, then &~*(s)-sensitivity
of fyields gx(x,f*(C)) < & for every x e x;. Let us fix x & x;. There exists an
Xo € ~1(C) such that gy(x, x,) < e+y. Condition diamgxf~'(C) <y implies
the existence of x, € x, such that gx(x,, x2) < p. Hence

0x(x15 X2) < 0x(x, Xo)+0x(%o0, ¥2) < &+2p,
ie. px(x, x;) < e+2y. Since the argument is valid for every x & x;, we have
sup {ox(x, x2); ¥ € x,} < e+2y.
By symmetry we have
‘ sup {ox(xy, X); x €x,} < s+2y
and hence ox(x,, x,) < e+2p. The left-hand side of the last inequality does not
depend on y > 0. Thus, we obtain gx(x:, x;) < ¢, ie., f~* is d(e)-uniform.

Cleatly, if £ is a one-to-one function, then Proposition 3.1 follows from Prop-
osition 2.1 applied to f 1, '

Remark 3. One can use in X metrics different from gx. Metrics gy given
by

ox (%1, %2) = Wy, o2),

4 Banach
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where «; are given by (3.2) are examples of such metrics. The function W is here
supposed to be defined on R* x R* and satisfies the following conditions:

W1 W(xy,0,) =0 if and only if oy = o3 = 0,

W2, Wy, o) = W(tz, 1),

W3. Wiay, 02) < W(By, B2) if ay < 1, and o3 < B2,

Wa. W(ay+ P, tat+pa) S W(ar, x2)+ Wy, f2),

WS5. W is continuous at zero on R x R*.

It is easy to see that if ¥ satisfies W1-WS5, then it is continuous on R* x B*,
Let W, and W, be arbitrary two functions satisfying conditions W1-WS5. Given
e > 0, let us take an &;, 0 < & < ¢, such that Wi'(e,) # 9. Let

o(e) = %iﬂf{Wz(%, az): oy 2 0,000 2 0, Wiluyg, o) = &1(8)}.

Clearly, 8(s) > 0 and Wy(xy, a,) < 8(¢) implies Wi(ay, o;) < & Similarly, there
exists 2 6'(s) > 0 such that W(xs, d5) < & whenever Wj(xy, o) < &'(e). This
implies that arbitrary two functions satisfying conditions W1-W5 give equivalent
metrics, ie., Uloxw,) = Ulexw,) (cf. [15], formula (2)). The Hausdorfl metric
is also of such a type and is given by Wi{x;, o) = max(a;, dy).

The family of functions W satisfying WI1-W5 has been used in [15] in order
to construct metrics on product spaces. All such metrics W(g;, 2), where g,
i=1,2, are fixed metrics, yield the same uniformity on the product space.

Suppose that W is a function satisfying W1-W5. Let y(e) be such a function
that max(x;, 0,) < o whenever W(x;,a;) < p(). Let W-i(a) = inf{# > 0:
W(ﬂx ﬂ) = d}

If the metric px is used instead of gx, then slight changes in the proof of
Proposition 3.1 yield the following (cf. also Proposition 3.4 given below):

PROPOSITION 3.2. a. If £~ is d (e)-uniform transformation from (Y, U(gy))
onto (X, Ulpx,w)), then f is (0 o y)~'(e)-sensitive with respect to each non-empty
Samily Cy.

b. If f is 8~1(e)-sensitive with respect to Cy and condition C2 is fulfilled, then
ftisdo W‘l(e) -uniform.

Denote by f~1 the transformation from (2%, U(g,») into (2%, U(g,x)) given
by f“(C) f~YC), where C = Y.

PROPOSITION 3.3. f is 8~ (e)-sensitive with respect to Cy if and only if f - s
d(e)-uniform from the right on Cy.

Proof. Let f be §~'(g)-sensitive. Take C,; such that C  C; < C%®, Then.
we have

SHE) e F7HCY) = fF7HC) < fH(C)Y,
Le., gax(f~*(C1),f7Y(C)) <
IFf~1 is 6(c)-uniform from the right on Cy, then @,x(f ~*(C*®), f~X(C)) < &
ie, f7YC*) < f~1(C)? provided C & Cy.
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Now, let (Xy, gx,), (X, ¢x), (¥, 0y), and (¥, @y,) be metric spaces. Assume
that g maps X; onto X, fmaps X onto ¥, and 4  maps Yonto Yy.Lett=hofog.
Let X; = X,/(g), X = X/(f), ¥ = Y/(h), and X1 X, /(2), where the equivalence
relations are given by (2.3). Denote by ox,, ox, Qv, and o%, the corresponding
Hausdorfl' pseudo-metrics given by (3.1)-(3.2) in X;, X, ¥, and Xl, respectively.
Finally, let g, f, h, and ¢ be given by (2.4), respectively.

PROPOSITION 3.4, If f =% is §(e)-uniform and

(33 0x(¥', x'") € Ox(e) = ox,(g7'(x), g7 x")) < ¢
and
(3.4) x, (¥, 1) < Ox(e) = (B 1(r1), B2 < &

hold for each x', x'' € X and yi, y{ € Yy, then t=1 is y(e)-uniform, where y = 0y o
o 6 e 5}{.

Proof. By Proposition 3.1.a applied to g, f;, and & we obtain that
t=H(CY®) < t-1(C)

holds for every C' = Y,. Thus, by Proposition 3.1.b, the function ¢ is y(&)-uniform.

Let us note that if X; = X and g is the identity embedding, then (3.3) is fulfilled
if and only if for some non-decreasing function 0y

Ox(2x,(x', x)) < ox(x', x™)

holds for x', x'’ € X. Similarly, if ¥; = Y and A is the identity embedding, then
(3.4) is fulfilled if and only if for a non-decreasing function dy

Sr(er(v, ¥')) < or, (v, V')
holds for y',y"” €Y.

4. Sensitivity of characterizations

Let C be a non-empty subset of the metric space (X, ox). C is said to be characterized
by sets A = X and B = Y whenever

Y C=dnf(B),

where fis a given function from (X, gx) into (¥, oy). ‘

DErINITION 3. A. characterization of C « X by 4 « X, B = Y and f is called
v(e)-sensitive if

“4.2) A° N I8 = (AnSfH(B))yren
holds for every ¢ > 0, where y(g) > 0 and
(4.3) lim () = 0.

a=0

Roughly speakmg, the property “to be a p(g)-sensitive characterization” means
that “slight deviations from assumptions . 4” and “slight deviations from the con-

4%
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sidered properties B may happen simultaneously only when “slight deviations
from the characterized set C = Anjf~*(B)” occur.

Let us note that if 4 = X, then (4.2) means that fis 4~*(¢)-sensitive with respect
to a one-clement family Cy, namely Cy = {B} (cf. Example 7a in Section 8 in
that case where the set of distributions of random vectors with independent com-
ponents is the domain of F). However, if 4 # X, then even the d-!(e)-sensitivity
of f does not yield (4.2). The reason is that B does not need to be a subset of f(A%®),
Moreover, if £ is not one-to-one, then the restriction of f'to a subset of X does not
need to be sensitive at all.

Let y(g) be given by

(&) = sup{ox(x, 4 0 fTHB): x e (4" nf (B}

Clearly, we have

@4)

Asmf_l(Bs) P (A nf—I(B))W”)] = VN,

Now, we give theorems on sensitivity of characterizations. Theorem 4.1 is
a slightly extended version of Theorem 2 in [16]. Theorems 4.2-4.4 deal with the case
of sensitive /. Since d~*(e)-sensitive functions need not be continuous, Theorems
4.2 and 4.3 may be considered as substitutes for incorrect Theorem 1 in [16] (see
the counter-example given below). In Theorem 4.4 we give a necessary and sufficient
condition for the sensitivity of characterizations in the case of 4~!(s)-sensitive f.

THEOREM 4.1 (Zolotarev). Let f be continuous and A and B closed. If the follow-
ing condition is fulfilled

C3. each sequence {x,} such that x, € (A" f~1(B*))\C contains a sub-

sequence convergent to an element of X,

then the characterization of C by A, B, and f is y(&)-sensitive, where y(e) is given
by (4.4), ie., (4.2) and (4.3) hold.

Proof. Inclusion (4.2) is evident. Suppose that (4.3) does not hold. Then there
exists a sequence {x,} such that

X, €A™~ (B, e, 0, and

By condition C3 there is x,, an accumulation point of {x,}. Suppose that limyx,
= Xo. Since px(xo, 4) < 0x(%y, A)+0x(xy, X0) (cf. [7], p. 105), we have that x, € 4.
Moreover, f(x,) € B*. By the continuity of £, lim f(x,) = f(x,). Because gy( f(xo), B)
< or(f(xn), B)+ox(f(xs), f(x0)) holds we infer that f(x,) & B. Thus, x, & C and
hence lim px(x,, C) = 0. This yields a contradiction.

THEOREM 4.2. Let f be 8~'(e)-sensitive (8(c) > 0) and A and f~*(B) closed.

If condition C3-is fulfilled and y(g) is given by (4.4), then the characterization of C
by A, B and f is y(6)-sensitive, i.e., (4.2) and (4.3) hold.

Progf. Cleatly, (4.2) holds. Suppose that (4.3) is not fulfilled. Then there is
a sequence {x,} such that x,e A% n f~1(B")\C, gx(*,, C) > o and g, 0. We
can assume with no loss of generality that 0 < 8(¢) < & Then we have 6~1(s) > ¢

ox(x,, C) > a.

icm°
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and limd6~*(¢) = 0. Now, by the §-1(e)-sensitivity of f, we obtain

80
Aen nf‘l(Ben) c Aﬁ“’(t)] N f—l(_B)d"‘(Bn)]_

Condition C3 yields the existence of a subsequence {x,} convergent to an x, € X.
Since lim 67(e,) = 0, we infer that x, € 4nf~1(B) = C,ie., lim gy(x;, C) = 0.
This yields a contradiction. '

THEOREM 4.3. Let f be 6~1(e)-sensitive, 0 < 6(e) < &, and A and f~*(B) closed.
Let y,(¢) be given by
4.5) v1(e) = sup{ox(x, C); x € (47 n f~1(B})}.
If the following condition is fulfilled

C4. each sequence {x,} such that x, € A*"~(f~*(B))*"\C contains a sub-

sequence convergent to an element of X,

then the characterization of C by A, B and f is y; o 8~1(€)-sensitive, i.e., (4.2) and
(4.3) hold with y(&) = y; o 671(e).

Proof. We have
(4.6) A* VfTU(BY) AT A fI(BYTHEN o CHOTIER,

Since lim 6-*(g) = 0, it is enough to prove that lirré y(g) = 0. If it is not the case,
then there exists a sequence {x,}, x, € 4~ f~1(B)\C such that gy(x,, C) > «
for some « > 0 and &, 0. Then condition C4 yields the existence of a subsequence
{x,} convergent to an x, € X. Clearly, x, € C, and hence limgx(x;, C) = 0. This
yields a contradiction.

Let us note that Theorem 4.3 yields a decomposition of the sensitivity of the
characterization into two parts p,(s) and 6~!(e). The first function depends on
“shapes” and the mutual position of the sets 4 and f~*(B), i.e., on “geometrical”
properties of these sets. The second part depends on the properties of function f
only. The following theorem makes more evident this “geometrical character”
of y,(e).

TuEOREM 4.4, Let f be 5-'(e)-sensitive, 0 < 0(e) < &, and let y,(s) be given
by (4.5). Then the characterization of C by 4, B, and f is (yy o 67)(e)-sensitive,
i.e., (4.3) and (4.3) hold if and only if condition

C5. x, €d, x; ef~1(B), limox(xy, x;) = 0 = limgx(x,, C) =0
is fulfilled.

Condition C5 means that subsets of 4 which are far from C are not in prox-
imity to f~1(B).

Proof. First, let us note that (4.6) and hence (4.2) with y, instead of y hold.
Thus, it is enough to prove that condition C5 is equivalent to (4.3) with y, instead
of y.

ySuppose that C5 is fulfilled and (4.3) does not hold. Then there exist a > 0
and x, €4 A f1(B)), &, \0, such that gx(x,, C) > a. Take x, € 4 such that
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ox(xs, x,) < 28, and x; €f"*(B) such that ox(x', x,) < 2&,. Thus, ox(x;, x,)
< 4g, and gx(x;, C) > a—2¢, > af2 for n sufficiently large. This yields a contra-
diction.

Now, let x, € 4, x;/ e f~*(B) and let px(x,, x;) converge to zero. Then for
each ¢ > 0 there is an N such that x, € f ~*(B)7 provided n > N. Hence x, € A”J
nf-4(B)" and ox(x;, C) < y,(g). Since hm y1(e) = 0, we obtam llm ox(x5, C) =

The theorem is proved.

Clearly, Theorem 4.4 implies Theorem 4.3 and Theorem 4 3 implies Theorem
4.2.

Let us make several remarks on the assumptions used in Theorems 4.1-4.4,
We have

(a) if A is compact, then condition C3 is fulfilled;

(b) the assumptions of Theorem 4.1 imply the compactness of the boundary of C;

(c) if 4 or f~1(B) is compact, then condition C4 is fulfilled;

(d) theassumptions of Theorem 4.3 imply both the compactness of the boundary
of C and condition C5.

Finally, let us note that the assumption on the 6~ (¢)-sensitivity of f'in Theorem
4.2 cannot be replaced even by the compactness of B. Indeed, let X = Y = 4
= [0, 1] be endowed with the usual metric topology. If

1 for x=0,
fx)=1x for xe(,1),
0 for x=1,

and B = {1}, then f~*(B°) = {0} U (1—¢, ). Since 4° = [0, 1], we have C = {0}
and y(g) = 1 for each & > 0.

Essentially, this yields a contradiction to Theorem. 1in [16]. However, to be
just in the framework of this theorem we should: (1) identify each point x & [0, 1]
with a constant random variable identically equal to x, (2) endow the set of such
degenerated r.v.’s with a metric equal to the Prokhorov distance between the dis-

tributions of these r.v.’s (clearly, this metric here corresponds to the usual metric
in [0, 1]).

5. Stable transformations of spaces of measures

Let #(X) be the o-algebra of Borel subsets of X. .#(X) is the sot of all finite, real-
valued, non-negative, countably additive set functions on A(X). The set of all prob-
ability measures on #(X) will be denoted by #(X). The symbols # and », may
be with indices, will stand for elements of .#(X).

. If fis a (B(X), #(Y))-measurable function, then it generates a transform-
ation F from #(X) into .#(Y), where

Fp=peof,
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ie.,
G0 Fu(C) = p(f~(0)
for Ce &(Y).

In this section we will consider property “to be stable” of transformation F
given by (5.1). This property depends on properties of f'and on the choice of metrics
in #(X)and #(Y). In the subsequent sub-sections we will consider the cases where
the sets of measures are endowed with the Prokhorov, BL*, B*, Meshalkin, Levy,
Sibley and Kolmogorov metrics. In view of Proposition 2.1 we restrict ourselves
to investigations on the d(¢)-uniformities of F.

5.1. LEMMA 5.1. A function f is 8(e)-uniform if and only if
(52 FHEY® < fHCD
holds for every closed set C, C = Y.

Proof. Let f be 8(e)-uniform. If x € f~*(C)*®, then there is an x, € f~*(C)
such that gx(x, xo) < 8(¢). Hence oy(f(x),f(xo) < &, i.e., f(x) € C?. This yields
x ef 1 (CH).

Now, let gx(xq, X,) < 8(¢). Take C = {f(x,)}. Then x, ef~*(C)*®. Hence
by (5.2), x, ef~(CD), ie., fis &(e)-uniform. -

TueoreM 5.2(1) (Zolotarev). Let f be d(e)-uniform, 0 < 6(¢) < &. Then F,
given by (5.1), is a 8(e)-uniform and hence §(e)-stable transformation from #(X)
into M (Y) which are endowed with the corresponding uniformities U(gex) and U(gp,y)-

Proof. Let pje #(X), i=1,2, and g, x(ﬂlt p2) < 8(s). We will show that
@s, y(F,ﬁ, F,,) < &. Indeed, by Lemma 5.1, we have

Fus By = infla > 05 iy (f71(0)) < pa(f7H(C ) +u
for all closed C = Y}
< inf{e > 0; uy(F-1(C)) < o (f~H(CY®)+ 6(a)
for all closed C <= Y}
< inffa > 0; py(C) < pa(C*®)+ () for all closed C = X} < &

Similarly, we have that o(Fu,, Fu.) < e Hence gpy(Fu1, Fuiz) < e The
d(e)-stability of F follows now from Proposition 2.l.a.

Remark 4. If metrics different from g, x and gpy are used in #(X) and #(Y),
respectively, then, in view of Proposition 2.2, we can deduce from Theorem 5.2
several new information on uniformities of F. Thus, the following metrics can be
used in Proposition 2.2 instead of gx, provided gy is the Prokhorov metricin (X):

L opuw (8x(8) = 8)s 2. ope (8x(e) = &)
Similarly, we may use the following metrics instead of metric gy, used in Prop-
osition 2.2 provided gy is the Prokhorov metric:

L g (0r(6) = 36), 2. 01 (0x(8) = 9), 3. 05 (3+(6) = o).

() We refer the reader to Section 0 for a discussion on relationships of Theorem 5.2 to
theorems given in [1], [15], and [17].
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Proposition 2.1.b shows that, in general, in order to ensure the d(e)-stability
of Fwe have to ensure the 8(¢)-uniformity of F. By Theorem 5.2 the 6(g)-uniformity
of Fis implied by the §(¢)-uniformity of /. Now, we show that, in general, the assump-
tion on 8(¢)-uniformity of fin Theorem 5.2 cannot be weakened. Let K(z, y) denote
a ball centered at a point z and of a radius y.

TrEOREM 5.3. Let F, given by (5.1), be a 8(e)-uniform transformation from
(o, Ulgex)), & < M), into (M), Uleey) If o4, the domain of F, satisfies
the condition

C6. for each y >0 and each x € X there exists a p € AnP(X) such that

w7 (KA, 7)) 0 K, 7)) > 19,
then f is a 8(e)-uniform transformation from (X, Uley)) into (¥, Ulor)).

Proof. Let px(xy,x;) = 81, 6; < 8(¢) for a given & Take y > 0 such that
0,42y < 6(s). Let u; be probability measures satisfying condition C6 for y and
xi, 1 =1,2. We have
¢3) pi(C) < pa(CHF)+ 8,42y

for each closed C < X. Indeed, if CnK(xy,y) =@, then 4#,(C) <y and (5.3)
is fulfilled. If there is an x, € CnK(xy, ), then C*2"1 o K(x,,y); hence
f2(COH3) 4 6, 42y > 1.

Thus, o(uy, #2) < 8(c). Similarly, we obtain o(u,, u;) < 8(¢). Consequently,
opx(is, 2) < 8(e). By the d(s)-uniformity of F we obtain gpy(Fu, Fus) < é.
This means that !

pa(fA K0, 1)) < ool £ UK (f(1), 4+29)) )+ oy

If y <3(1-¢), then K(f(xy),s+2y)nK(f(x2),v) # @. Hence gy(f(x,),
J(x2)) < £+3yp. Since the left-hand side of this inequality does not depend on y,
we obtain that gy(f(x;),f(x2)) < &, ie., fis a d(e)-uniform transformation.

Let us point out that condition C6 means that for each x € X and y > 0 there
is such a probability measure @ which is “almost” concentrated on the ball X(x, y)
and that f transports “almost whole mass” from K(x,y) into K(f(x), ). Thus,
this. condition is fulfilled if, e.g., o contains all probability measures concentrated
at points x € X.

5.2. In this sub-section we show that in some cases, direct considerations on the

transformations from (#(X), Ulgpre,x)) into (#(Y), U(gus,y)) lead to stronger
results than those which follow from Theorem 5.2 and Proposition 2.2 (cf. Re-
mark 4).

THEOREM 5.4. If f is ae-uniform (& < 1), one-to-one and onto Y, then F is an
as-uniform and hence oe-stable transformation from (M(X), Ulgnax)) into

(*”{(Y): U(an*,?))
Proof. ae-uniformity of f implies that

0x(f0x1), f(%2)) Jox(x1, x2) < o™

icm°
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holds for each x;, x, € X. Thus, we have

llg o fllosx < a~ligllasy,
where

llg e fllzex = sup{lg o f(x)}; x e X}+

+sup{|g o flx)—g o f(x)l/ox(X1, X2); X1, X2 € X},
and
llellns,y = sup{lg0)|; » € Y}+sup{lg(r)—g)l/ex(rr, ¥2); ¥132 € Y}
Hence we obtain

Qurny(z o f Y gz o f 1)
= sup{| {sd(Guu—pm2) 7 )]; ligllomr < 1]
Y A T )

ie., F is as-uniform. By Proposition 2.1, function F is ae-stable.

Remark 5. If metrics different from gppex @nd Q@psy are used in #(X) and
M (Y), respectively, then, in view of Proposition 2.2, we can deduce from Theorem
5.4 several new information on uniformities of F. Thus, the following metrics can
be used in Proposition 2.2 instead of gx, provided gx is the Dudley gg. metric
in MA(X):

L g (61{(8) = %E)) 2. Qp+ (6x(e) = ';'8)~

Similarly, we can use the following metrics instead of metric gy, used in Prop-
osition 2.2 provided gy is the metric @pre,y:

L op (B(e) = %69, 2.0y (6r() =% 6%,

3. 05 (6x(e) = % &?).

5.3. In the case of metrics ggex and gg.y we have

THEOREM 5.5.(%) (Zolotarev). Let (X, B(X)) and (¥, #(Y)) be measure spaces
with o-algebras ®(X) and B(Y) of subsets of X and Y, respectively. If f is a (.@(X),
B(Y))-measurable function from X into Y, then F given by (5.1) is e-uniform and
hence s-stable transformation from (H(X), Ulgnsx)) into (A(Y), Ulone,))-

Proof. We have

Quex(Fy, Fiz) = sup{lus(f ~H(C))— ua(f ~H(O))]; C € BN}
< sup{lu (C)—p2(C)]; Ce B} = ouex(, f2),

i.e., F is e-uniform. Proposition 2.1 yields the e-stability of F.

Remark 6. If metrics different from g« x and gy are used in #(X) and
(Y, respectively, then in view of Proposition 2.2 we can deduce from Theorem

(2) In this theorem we do not assume that X and ¥ are metric spaces. See Section 0 for a dis-
cussion of relationships of Theorem 5.5 with theorems given in [15] and [17].
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5.5 other information on uniformities of F. Thus, the following metrics can be
used in Proposition 2.2 instead of gy, provided gy is the gp.y metric in J/(Y):

L g (6Y(5) =38), 2. Ope (6¢(e) = %5): 3. 0z (6Y(5) = g),

4. g (Br() = &)y 5. ox (6x(8) = #), 6. on (O7(e) = o).

5.4. Now, we consider the case where the Meshalkin metrics are used.

THEOREM 5.6. Let f be a linear transformation from X = R" into ¥ = R™. Then
F given by (5.1) is an e-uniform and hence s-stable transformation Srom (M),

Uloy,x)) into (M(Y), Ulox,v))-
Proof. Indeed, we have

Ou,y (Fits , Fia)
= sup {|us (f ~4(C))— p2(f ~H(C))I; C'is an intersection of at most m half-spaces}
< sup {{p; (4)— u2(4)]; 4 is an intersection of at most n half-spaces}

= Qu,x(Bor5 fha)-
Thus, F is e-uniform and hence, by Proposition 2.1.a, e-stable.

Remark 7. If metrics different from. gy, x and g,y are used in (X) and #(Y),
then in view of Proposition 2.2 we can deduce from Theorem 5.6 other informa-
tion on uniformities of F. Thus, if 0x = @u.x, then we may use gp.,x instead of
¢x, in Proposition 2.2. In this case dx(e) = e.

Similarly, we can use the following metrics instead of metric gy, , used in Prop-
osition 2.2 provided gy is the metric gy,y:

Logx (0y() =), 2. 0u (x(e) = 8), 3. 05 (9r(e) = ).

6. Sensitive transformations of spaces of measures

In this section we consider y(¢)-sensitive transformations from one set of measures,
say & < #(X), onto another one, say % < #(Y). We are concerned with trans-
formations F given by (5.1), only.

In view of Proposition 3.1 it is clear that we should find conditions implying
the §(¢)-uniformity of F-1,

Recall that f is called an isomorphism between measure spaces (X, #(X)) and
(¥, #(Y)) if f is one-to-ome, onto, (#(X), B(Y¥))-measurable and f~* is (#(Y),
B(X)ymeasurable (if X and ¥ are Polish and #(X) and #(Y) are c-algebras of
Borel subsets, then, by a theorem of Kuratowski ([7], p. 397), the last condition
is a consequence of the first ones). If £ is an isomorphism, then F is a one-to-one
transformation from #(X) onto #(Y). In such a case we can use Theorems 5,2-5.6
with f and F replaced by f~* and F-2, respectively, and no new theorems are here
needed. Thus, essentially new cases arise only when f~*(#(Y)) is a proper sub-
o-algebra of %(X). Then we have to consider a proper quotient space X = &/(F)
and we have to find conditions implying the d(s)-uniformity of F~!. In Theorem
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6.1 given below no topology in X and Y is assumed. Thus, in this section (X .@(X))
and (¥, #4(Y)) stand for measure spaces.

Denote by %(uo), po € 2(X), the set of all probability measures u € Z(X)
such that u and u, are mutually absolutely continuous, i.e., Z(uo) = {4 € #(X):
if 4e%(X), then u(4) = 0 if and only if w(4) = 0}. We shall assume that
x, .%(X) fo) is a complete measure space. Let @ = f~*(%(Y)). Moreover, let
@pe,x Stand for the Hausdorff metric given by (3.1)-(3.2) in X(uo) provided gpe,x
is used in (3.2) instead of py.

THEOREM 6.1. Let f be a (.%(X), .%(Y))-measurable functwn from X into Y and
o € P(X). Suppose that for each p e F(uo) there exists m(x, 4; D, u) a p.r.c.p.
on B(X) given @ = f~*(#B(Y)).

Let F, given by (5.1), be a function from % (uo) onto ¥ = P(Y). Then, F~!
is an e-uniform transformation from (¥, Ulgss,y)) onto (X(uo), U(gps.x))-

Proof. Let vy, v, e ¥ and let u; € &(uo) be such that py € F~*(p;). Let m(x, 4;
9, py) be a version of proper regular conditional probability on £(X) given
9 = f~*(%(Y)) provided y, isa probability measure on #(X) (cf. Section 1). We
shall show that there is u, € (o) such that u, € F~*(r,) and

6.1 Ouex(f1s fo2) = Qpex(¥1,72)
holds. Indeed, let us take an arbitrary us € &' (o) NF~(p,).
We put
(6.2) pa(d) = (e, 4; 2, p)pp(d)  for A e BX),
where .@(X) ~ B(X). By the regularity of = the set function w, given by (6.2) is
a probability measure on @(X). If 4’ € #(X) and po(4' AA) = 0, then we put
pa(d) = pa(4).

Clearly, u, is a probability measure on #(X) and u, € Z(u,) = %(uo). Since
7 is proper, we have

p2{f7HO)} = pa{fHO)} = »:(C)
for every C e #(Y), i.e., y, € F~'(v,). Finally, we have
sup {lus (4)— u2(A); 4 € BX)}

= sup {| { s, 45 2, ) — )@ |; 4 < G0}
= sup{|§ (- @) |; A€ D} = sup{ps(C)-(O); Ce ADY,
A

e., (6.1) holds.

Similarly, for each u, € % (uo) NF-1(r,) there exists a p; € & (o) NF~(¥1)
such that (6.1) holds. Consequently, gpex(its, Hs) = 0uex(Fit;, Fpiz). This yields
the e-uniformity of F-1. By Proposition 3.l.a, transformation F is also e-sensitive.

Remark 8. Suppose that #(X) is the po-completion of the o-algebra of Borel
subsets of a metric space (X, ox). If a metric different from gg. x is used in #(X),
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then, in view of Proposition 3.4, we can deduce from Theorem 6.1 other informa-
tion on uniformities of F~*. Thus, we can use the following metrics instead of metric
gx, used in Proposition 2.2 provided gy is metric gps x:

Loge Ox(&) = &), 2. Quie (Ox(e) =32), 3. ok (0x(e) = &),
4 o (Bx(8) =6), 5. 01 (8x(8) = 9), 6. 05 (3x(e) = ¢).

7. Applications of stable functions

In this section we present some simple consequences of theorems given in Sections 2
and 5 on stable transformations. Examples 1-5 given below indicate the problems
in which these theorems are useful, also.

ExampLE 1. Let f'be a real d(e)-stable function and let f(x) < 0 for each x & C,

C c X. If gx(x, C) < 8(¢), then f(x) < & Indeed, x € C*® and §(e)-stability of f
imply that x € f(C)F, ie., f(x) < e

If X = R", #(R")is the o-algebra of Borel subsets of X and .#(X) is endowed
with a metric o, then “u € #(X) is e-gaussian” (¢]-gaussian) means that there exists

a gaussian measure g € #(X) such that o(u, wo) < e, @i, ko) < & Similarly,
“p is e-gaussian (g]-gaussian) with independent components” means that there
exists a measure p, € #(R") which is a product measure, i.c., Mo =1 @D ... Dy,
where y; € #(R*) are gaussian for i = 1,2, ..., n and o(u, pho) < & (o(u, o) < ).

ExampLE 2. Let X' = Y = R" and let f(x) = Cx, where C is an orthonormal
nx n-dimensional matrix and x stands for a column vector. Let F be the trans-
formation from 2(R") onto 2(R") given by (5.1). Then

(a) if p is e-gaussian, then Fu is e)-gaussian,

(b) if u is e-gaussian with independent components, then Fu is &l-gaussian with
independent components provided the Prokhorov metrics in P(X) and #(Y) are used.

Clearly, f is euniform and hence z-stable. Thus, by Theorem 5.2 we obtain
(a) and (b).

ExaMPLE 3. Let 2(X) and 2(Y) be metrized by Prokhorov metrics and X =
Y= R Let y; = x;+x; and y, = x;—x,. Then

@) if (X1, X.) has an e-gaussian distribution, then Yy, Y,) has 1/ 2e}-gaussian
distribution,

(b) if (X, X2) fas an e-“gaussian with independent components” distribution,
then (Y, Y,) has | 26l-“gaussian with independent components” distribution.

. Here f(x, ; %3) = (x;+%,, X;—x;) and therefore f is (a/]/i)-uniform, Thus F
given by (5.1) is (a/]{ 2)-uniform, too (cf. Theorem 5.2). By Proposition 2.1.a, F is
(Y 2)—s'ta‘ble‘ Now, if we take the gaussian measures on %(R") instead of C, then
the definition of 6(¢)-stability yields (a). Similarly, if we take instead of C the gaussian

measures on #(R") which are products of gaussian measures on ZB(RY), then
we obtain (b). ’
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Let us note that Theorems 5.4-5.6 and Remarks 4-7 provide further possi-
bilities of the use of the considered metrics.

ExaMPLE 4. Let 2(X) and 2(Y) be metrized by metrics gp.,x and g,y respect-
ively, X = R", Y = R, x = (x4, ..., X,) and moreover, let

1 n 1 n 1/2 1 n
X = —— ; = — —X)2 2 = _72
= ZX” s (n—l Z(X‘ E)) > n—1 Z;(x, o

i=1 i=1

X
t=—
s

Let {N{,, ..
with independent components. 0;, i=1,...,n and o are the mean values and
variance of the ith components, respectively. If u € Z(R") is a distribution of
(X1, ..., Xy), then 2(X), 2(S), 2(S%), D(t) stand for the distributions of the cor-
responding statistics. If N, . o,,. is the distribution of (X1, X2, ..., X»), then Na{ 71“

0, 0} be the family of distributions of n-dimensional norﬁlal vectors

o?

Ao, T(0~Ts XaS01-Tys 15,,-, Stand for the distributions of X, S, $% and ¢, respeot-
ively.
If Qne,r"(15 {No,...00,0}) < & then

.1 05 (2, {(Noayi}) < e,
72 2e.2(2(8), {to.z0-7}) S &,
(7.3) 05e,2(2(59), {35037} < &,
(7.4) 0se,x(2(), {tin-1}) < &
Inequalities (7.1)-(7.4) folow immediately from Theorem 5.5. It is clear that
similar inequalities hold when we put 6 =0, = ... =60, or ¢=¢p or 8; = ...

= f, = 0, etc. Moreover, Proposition 3.4 and Remark 6 indicate several variants
of the use of other metrics. It is interesting, however, that if we wish to use here
the Prokhorov metrics instead of gg, then Theorem 5.2 implies inequalities (7.1)
and (7.2), only. Indeed, since the functions s2(x) and #(x) are not uniformly con-
tinuous, they do not lead to uniform transformations from (2(R"), U(gy, &) into
(2(R), Ulgy,r))- Thus, in the case of Prokhorov metrics, the commonly used trans-
formations of spaces of measures induced by (5.1) and s2(x) and #(x) are not stable
(cf. [5]. This example illustrates the dependence of the property “to be &(e)-stable’’
on the choice of metrics, too.

ExampLE 5. Let X = ¥ = C[0, 11, ax(x:(+), x2(-)) = sup(}x, (£)—x2()]; ¢
€0, 1), ox = ev. If F(x(-))(®) = x(t)—tx(1) and u is an e-Wiener measure,
then Fy is a 2¢]-Brownian bridge provided F is given by (5.1) and the Prokhorov
distances in 2(X) and 2(¥) are used. If we use g, metrics in #(X) and #(¥), then
Fu is an e-Brownian bridge.

Indeed, since f is (e/2)-uniform, the first statement follows from Theorem 5.2
and the known fact that F transforms Wiener measures into Brownian bridges.
The second statement follows from Theorem 5.5.
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8. Applications of senmsitive functions

This section contains several simple consequences of theorems given in Sections 3
and 6 on sensitive transformations. Examples 6-10 indicate problems in which
those theorems are useful.

ExAMPLE 6. Let f be a real y(e)-sensitive function and let C, C # @, be the ‘

set of all solutions of the equation f(x) = 0. If

8.1 lg)l < &
for each x €X, then the set of all solutions of the equation
(8.2) fx)+gx) =0

is contained in C7¢%,
Indeed, if x, is a solution of equation (8.2), then x, €' {(—¢, &)}. By »(e)-
sensitivity of f we obtain
FH(=¢, 8} = £-1(0) = Cr,
Let us borrow the notation from Section 7.

ExampLE 7. Let X, Y, f, and F be the same as jn Example 2 and let #(X) and
P(Y) be metrized 'by Prokhorov metrics. Then.

() if Fu is e-gaussian, then u is &l-gaussian,
(b) if Fu is e-“gaussian with independent components”, then u is &l-“gaussian
with independent components”.

Since f'is a one-to-one function onto ¥, function f~! and F~! are well-defined.
Moreover, /1 is an e-uniform function from ¥ onto X = X. Thus, Theorem 5.2
yields (a) and (b) (cf. the remarks at the beginning of Section 6).

Clearly, in view of Theorems 5.4-5.6 we can use here metrics Qs Qprs OT
oy instead of gy (cf. also Remarks 4-7),

Now, let us restrict the domain of F to the set 4 of distributions of random
vectors with independently distributed components. Suppose that X from Section
4 is just (4, gp,x) and B < P(Y)nF(A) is the set of distributions of random vector
with independently distributed components. Then, in view of a Skitovich theorem,
C = AnF~'(B) is a set of gaussian measures. Since C = F~(B) and F-! is ¢-
sensitive in the case (e.g.) of Prokhorov or Meshalkin’s metrics, we obtain

A'NF(BY) = F-Y(B") < (F-(B))* = C,
ie., such a characterization of C by 4, B, and Fis s-sensitive (cf. [8]).
The following example shows consequences and lacks of Theorem 6.1,

EXAMP.LE 8. Let X = {(,/):1,j=0,1,..,n} Let S, § = X, be the support
of a two-dimensional random vector Z(i,) = (i,j). Let ¥ = {0, 1, ..., 2n} and
S, 7) = i+j. Suppose that

(83) o, ¥(2(f(2)), BC2n,p)) < ¢
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where %(2n, p) stands for a binomial distribution with given parameters 2» and
p € (0, 1). By Theorem 6.1, F~1 is e-sensitive, where F is given by (5.1). This yields
the existence of numbers py;, i,7 =0, 1, ..., n, such that

piy >0 for (i,j)eS, p;=0 for (@, )¢S,

No=1. 3 py= (2")pk(1—p)2"—k, k=0,1,..,2n
i7=0 =k k
and
sup{lP(Z = (i’j))_pi,jl; i;j = 0, 15 ey Tl} < &

However, if it is known that Z has independently distributed components,
then Theorem 6.1 yields no information on the distance of #(Z) from the set of
distributions of random vectors ¥ = (Vy, V,) with ¥y and ¥, independently dis-
tributed and f(V) ~ #(2n, p).

ExaMPLE 9. Suppose that inequalities (7.1)~(7.4) hold and 2(X)e & A,
where A is the Lebesgue measure in R". Then Theorem 6.1 implies

(@) one.r" (2(X), Gy) < ¢ provided (1.1) holds and Gy < & (A)is the set of all
distributions from () such that

9(-50 € {NE,UIVIT};

(b) if (7.2) holds, then gue,x(2(X), G2) < &, where G, = (1) is the set of all
distributions from % (2) such that

9(S) e {XG,E(M—E)’};
() if (7.3) holds, then ggurn(D(X), G3) < &, where Gy < Z(4) is the set of all
distributions from %(2) such that
(8 € {¥3 so-9}s
(&) if (7.4) kolds, then ggu g D(X), G4) < &, where Go < & (%) is the set of all
distributions from %(2) such that
2(t) € {ton1}-

ExAMPLE 10. Let us consider the case described in Example 5. Suppose that the
measure Fu is an e-Brownian bridge provided the distance is expressed in metric
nse- If 4 € &(W), where W is a given Wiener measure on C[0, 1], then Theorem
6.1 implies

Qur,cro, 1, Gs) < €.

Here G is the set of all probability measures » from % (W) such that Fy is just
a Brownian bridge.
Note added in proof: The authors are indebted to Dr W. Szczotka for pointing out the work

of W. Whitt (Z. Wahrscheinlichkeitstheorie verw. Gebiete 29 (1974), pp. 39-44) where results similar
to those of Section 5 have been obtained for Lipschitz mappings.
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1. Introduction

In [1] A. D. Alexandroff has presented an exhaustive study of weak convergence
of finite measures and finite-signed measures on normal spaces and completely
normal spaces. In [2] I gave a survey of Alexandroff’s theory, considering measures
and I there also gave some applications to weak convergence of stochastic processes
into the C-space and the D-space. Here, using these theorems, I shall give a more
complete presentation of the theory of weak convergence of probability measures
on the C-space and D-space.

Alexandroff’s main tools are linear functionals. Since weak convergence means
convergence of linear functionals, it seems natural to rely heavily upon linear func-
tionals throughout in the theory.

Alexandroff has two main theorems which I here state for measures. Here
a measure means a finitely additive non-negative set function on an algebra in
a o-topological space. A measure is called o-smooth if it is c-additive.

THEOREM 1.1 (Alexandroff’s first theorem). Let v be the Stone vector lattice
of bounded continuous functions from a normal o-topological space S into the real
number field R and L a non-negative bounded linear functional from v into R. Then L
determines uniquely a regular measure u on the algebra generated by the closed
sets and u satisfies the relation
@ L) = feu(d,  fev-

COROLLARY. For a metric o-topological space Theorem 1.1 remains true if
is changed into the Stone vector lattice v of uniformly continuous functions from S
into R and (i) still holds for f& .

THEOREM 1.2 (Alexandroff’s second theorem). Let S be a completely normal
space and & the algebra generated by the closed sets. Let {u,}§=3 be a. sequence
of a-smooth finite measures on 8. If {1} converges weakly to a measure s on &,
then u is o-smooth.

5 Banach [65]
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