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ON RANDOM DISCRETE DISTRIBUTIONS

1. Introduction®. Limit theorems for the Poisson-Dirichlet distribu-
tion and other related distributions were investigated by Kingman in [4].
Suppose (t), t=> 0, is a subordinator such that {(0) = 0 and V is the
8pace of infinite sequences (p,, Ps, ...) satisfying

P1>pe>...20, Dp=1.

Then define random variables ,; as follows:

L(in~ ) =L —1)n7))
(1)

When £, ..., {,, are arranged in descending order, followed by zeros,
Wwe obtain a random element @, on V. As n - oo, @, converge in distri-
bution to a limit which is a random element of V. Recall that the Poisson-
Dirichlet distribution #2(6) is a distribution on V which is the limiting
of &, when the distribution of ¢(¢) is gamma with probability density

(1) Cnj = j=1,...,m; 0 =1,2,...).

6tat~1e=% (1), x>0.

~ One can generalize this problem in a natural way by considering
Instead of the array given in (1) the array

&t
2 Em'

§=1

Tlpj = G=1,...,m3n=1,2,...),

Where &,; satisfy the following conditions:
(i) the random variables &,; (j =1,...,7; n =1,2,...) are posi-

tive and independent on a probability space (2, #, Pr);
X

* The paper was partially written while the author stayed at Oxford University..
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(ii) max Pr(&,;=>¢€) >0 as n—> oo (e > 0);
1<j<n

n

(iii) D &,; converges in distribution to a limit.
j=1

To get the analog of Kingman’s theorem we must know the joint

convergence of
n
Zénj’ E(n,l)? vecy ‘f(n,n)i 0’ 0, seey
j=1

where &, ,,>...> &,., are the random variables &,; (j =1,...,n)
arranged in descending order. This was solved, under the assumption
of continuity of F,;(z) = Pr({,; <z), by Loéve in [6]. In the paper
there is given an alternative proof without the continuity assumption
(Theorem 1). For the sake of clarity the proof is done for identically distri-
buted, in each row =, random variables §,; (j =1,...,7n). The idea of
the proof can be passed for the general case but computations become
tedious. However, we demonstrate the general proof of convergence of

n
(21 £niy Em.1y)- Under an additional natural assumption the sequence =,;
j=

{(j=1,...,mn) arranged in descending order converges in distribution
to a limit which is a proper distribution on V' (Theorem 2).

If the random variables &,; (j =1, ..., n) are identically distributed
for each n, we obtain a nice explanation of our result, in terms of random
distributions, by application of the work by Kallenberg [3]. He proved

that convergence in distribution of }' x,; (0 << 1) occurs if and only
i<nt
if convergence in distribution of the sequences of z,; arranged in de-

scending order occurs.
All results of this paper are stated in Section 2 and the proofs are

given in Section 3.
For all concepts connected with weak convergence of probability

measures we refer to [2].

2. Theorems. For cach n, let &pyy ..oy Enp, De positive, independent
random variables on a probability space (£, #, Pr) and let

F.(x) =Pr(§,; < o).
Throughout the paper we assume that -the following conditions
{A), (B), (C) hold:
(A) lim inf F () =1, x>0,

n—oo 1<j<k,
which is equivalent to
(A') lim sup |P,;(t)—1| =0, teR,

n—o0 1<ji<k,
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where @,(f) = fe—thnj(dw)‘;
0

kn
(B) lim ) (F,;()—1) =N(»), 2>0, N@+)—N(z—) = 0;
n—>o00 j=1
kp
(0) limsup Y E(&y; bj<e) =a, &>0.
n—>0 -1

According to the author’s knowledge, Kallenberg [2] was the first to
Point out explicitly that under (A) the assumptions (B) and (C) are

equivalent to
k

n
(D) Zénj_”’(a’N)’
i=1
where — denotes convergence in distribution and
—lgBe N = g 4 f (1—e )N (dz).
0

Denote by £, ; the i-th greatest element of the sequence £,,, ..., &k, 5

let us put
k n

Xy =Gy oo Snyr 0,0,...) and o, = Z'Enj'
j=1
THEOREM 1 (Loéve [6]). We have
(0'7” X(n)) - (O', X(oo)) as m—> oo.

The distribution of (¢, X)) depends only on o and N given by
(C) and (B), respectively. Its finite-dimensional distributions are given
in (7). The coordinates of X(«) fTorm a Poisson process with intensity
measure XN.

COROLLARY 1. For each natural L we have

ky Ky ky o0 00
(25;1'7 Z 'ffu', ’Z §£j7X(n))_>(0725(2oo.1')’ ct 2 5{100,1)’X(°°))
j=1 i=1 i=1 ji=1 j=1

as n —oo.

The next theorem deals with random elements on V' (random elements
on V' were first investigated by Kingman in [4]).

THEOREM 2. If (C) holds with a = 0, then
Xnlon—Py as n— oo,

Where Py is a probability measure on V depending on the function N only.
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Remark 1. As a special case we get the result obtained by Kingman
in [4].
Let

Enj = ‘E(jan) —§ ((J —1) an)!
where £(), t > 0, is a subordinator which has no deterministic drift with
distributions determined by the Lévy formula

Ee—%0 — e—t'P(z), where l[f(a;) =f (1—3‘W)N(dy).

0

If na, - A, then o, = &(na,) — £(4). Thus (B) and (C) with a =0
hold and, by Theorem 2, X, /s, converges in distribution to a limit.
Remark 2. If we put

& =o0olam,Nn) (j=1,...,n;n=1,2,...),

then o is distributed as o(a, N) but D) &y, ; is distributed as o(a, N).
j=1

This shows that Theorem 2 is false for a > 0.

Put
(2) Tpj = &pjloy, (I =1,k 0 =1,2,...),
m,t) = Y =, 0<i<1,
i<kpt
and
(3) o) = Y mleylt—1), 0<t<1,
j=1

where n = (n,, n,, ...) is a random element on V with distribution Py,
and 7; (j =1,2,...) are independent random variables uniformly distri-
buted on [0, 1] and independent of z. From Theorem 2 and the results
of Kallenberg in [3] we have

COROLLARY 2. Suppose additionally that &,; (j =1, ..., n) are identi-
cally distributed for each m. Then II, — II.

Remark 3. The uniform distribution U on [0,1] is the limit of
distributions M, (n =1,2,...) assigning mass 1/n to the point /n
(¢# =1,...,n). Repeating this argument with the sequence of random
distributions 77, assigning mass z,; to the point i /n (7,; are defined in (2),
and En,; =1/n since &,; (j=1,...,n; n =1,2,...) are identically
distributed), we obtain I7 defined in (3) as the limiting distribution. Notice
that realizations of I7 are discrete distributions with probability 1 but
the expected limiting distribution EIT = U is absolute continuous. If f is
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a8 continuous function on [0, 1], then

1 1
[ ), (@) ~ [ fo)T(dy).
0 0

1
Knowledge of the mean and variance of [ f(t)II(dt) is sometimes
' 0

interesting. After standard calculations we obtain

E f FI(ar) = f f(t)dt = Bf(zy),

Va,rf frr = Varf( TI)EZ 5

If = has the Poisson-Dirichlet distribution 22 (6), the quantity
EZn has a nice genetical mterpretatlon (see [5] and [7]). Using argu-
ments from [5], the higher moments of f f@) ) are also available.

3. Proofs. Proof of Theorem 1. For a function G(¢), t>0 and
0<r<y, we put

_[emie@), o<t<a,
Glx(t) - {G(m), w< t,

en _ JG() o<t<uo,
& _{G(‘v)y <,

0, 0<t <,
G(t) —G ()
Q. () ={——— <t
l:w( ) G(y)—G(w) 9 @ < ?/7
1, y<t.

In the case of a function @,, the notations above take the forms
G, G5 and G,,,, respectively.
For distribution functions G,, ..., G, we set

n

[T & =6@.x... 6,

i=1

where * is the sign of the convolution operation.

Now we need some lemmas. After the proof of Lemma 1 we sketch
the general proof of convergence of (o,, §m,y) forn =1,2,..,
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LeMMA 1. For all continuity points x of N the relation

kp

D Fpjo—> o(a, W)
j=1

holds.

Proof. Let x be a continuity point of N. We suppose that F,;(z) > 0,
which is possible, because of (A), for sufficiently large n. Write

o0 X
Puie(t) = [ €70 Fpyo(ds) = [ 67 F,;(ds)|F,;(w),
0 0

p(t) = 1im¢nj(t)'

—00
We show that
kn

lim [] (1— fwe‘tanj(ds)/tpnj(t)) - exp[- fme“”N(ds)]

n—)OOJ‘:l

which, combined with (see [6])

kﬂ
nFm-(w) - @ a5 n—> oo,
j=1

yields

"n
(4)  lim [ [ on(0)

n—>00 j_|

To prove (4) we show that if for an array a,; (j = 1, ..., k,;2 =1,2,...)
of positive numbers the equalities

(5) lim maxa,; =0,
n—co 1<j<ky,
kn
(6) lim }'a,; =a
"_’°°j=l
hold, then

kn
lim 1+4a,;) = €.
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The simple proof of this statement goes by applying the inequality

1
lg(l—2)+2 < 22, |z} < 3

to the relation
0, = [ €0F,;(ds)]gn(0).
x

Now, formula (5) follows from (A) (and A’), since

max la’m'l < maXx (l_Fnj (a;)) /mm I(pnj (t)l7

1<i<ky, 1<ji<ky, 1<i<ky,
and formula (6) is implied by (A’) and (B) (bearing in mind Helly’s the-
orem), since

I

n

| fme 1 (d8) oy (1) fme N (ds)]
& T

j=1

b
3

=1 fw 6 T, (ds) D) (pny (1) — 1) — fme“sN(ds)\
ji=lz I=0 z
kp 0
I f e-—lSF fe_ts.N(dS)I—l—
j=l =z x
;’ (@) max (1pas(t) = Lillpas )

This completes the proof of the lemma.
From Lemma 1 we obtain immediately the convergence of

ky,
(2 Enj’ E(n,l))
j=1

if we notice that
kﬂ
Pr(z Enj S @y &1y < ?l)
j=1

= Pr (2 i <@ | Elpy < ) Pr(épm,y) < Yy)

J=-1

= Pr(Znn,-< a) Pr(fmy<y) (n=1,2,..),
j=1

Where Mj (J =1,...,k,; » =1,2,...) are independent with Pr(,; < x)
- Fnjlu(w)'
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To prove the convergence of

kp
(Z Enj ) 5(71,,1)7 ceey 6(1!,"!))
=1

we need more complicated arguments. For the sake of clarity we assume
hereafter that &, =n, F,; =F, (j =1,...,n).
LEMMA 2. If 0 < & < y are continuity poinis of N, then
Fopy() = Nigy(t)  as m— oo.
Proof. We have for 0 <z <<t <y
) n (F,(t)—1) —n(F,(x)—1) N(t)— N (x)
llanlIU(t) = = .
nevoo n(F,(y)—1)—n(F,(2)—1)  N(y)—N(a)
LemMA 3. If v;+ ... +v, =k, then
n!

lim =1.
n—oo (M—K)I0®1 ... 0%

Some notations are needed. Fix a natural number m and let
00 =Y>Y1> o> Yp> Yy = 0.

Denote by Y the set of all non-decreasing functions y from {1, ..., m}
into {y;,..., Y,} such that y(4) <y, (4 =1, ..., m). Consider a function
y € Y. Suppose that it assumes I+1 values 7(1),...,7(I+1) such that

gA)>...>g(l+1)> y(1+2) =0.

The value y; is assumed v; times (¢ =1, ...,1+1). For convenience
we put v, = 0. Notice that 7(!+1) = y,,. Denote by k the greatest ¢ such
that y(i) > y,,; namely, k =v,+ ... +9,.

Now we are going to show that, for any m, y, > ... > vy, > 0, where
each y; (j =1,...,m) is a continuity point of N, and that, for any
except of points from a countable set, the sequence

kﬂ
Pr (2 ‘snj < @, E(n,l) K Y1y ooey g(n,m) < ym) (n=1,2,...)
j=1
converges to a limit. This is sufficient for proving Theorem 1 due to the
tightness of the sequence (s,, X y,), since the sequences o, and X, are tight.
We have

kﬂ
Pr (Z Enj < w’ E(nxl) < yl’ A | E(n,’nl) < ym)
j=1

n

= D Pr( Y £,<2,9(2) < by <y(L); .., Y(M) < & moyy < Y(m—1),

yeY j=1
0 < Eumy < Y(m)).
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Each component of the last sum is equal to (remind that ! and v,
(¢ =1,...,1+1) depend on ye Y)

Pr (2 Eni <, Y(2) < iy <y@d), ..., y(m) < Einm—1) S Y(m—1),

< £ < y(m))

l
= P Mgy <a, () N @i+ < & <T0),

n

N < ?/m})

j=l+1

= Ty (Zf <o i) () Gl+D)<Ey<i6),

1"1' =1 j= vy 1+1

jcﬁl{sm ym}) pr) (U <TG} () {6 <))

i=1j=v;_+1 j=k+1

n! * *(n—k)
ol ol n—)! (l 1 Fnl?z(j+1)z7(:)) + o9 (@) x
1 « Y. . i1
1

x [ (#ala+0) = Fa 5 P (0),

j=1

Applying Lemmas 2 and 3 we get

(1) nmSPr(&s 2y §(2) < Eny < F(L),y oo

noo

y( ) < f(n m—1) :’7( )7 S(n,m) < g(m))

Q) 1 ! * -
=24177 (l I NtE(Hl)F(:‘))*U(a,N ) (@) X
.o

yeY j=1

l
x [ [(@(5G+1) =¥ (53))) exp [V (9.

j=1
Substituting # = oo in (7) we obtain

Um Pr(&, 1) < @1y vy Enmy < Tm)
R—o0

-y n (¥ (@G +1)—7()) " exp [N (yn)],

yeY i=1
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which shows that points from X, form a Poisson process with the inten-
sity measure equal to N.

Proof of Corollary 1. Following the part of the proof from the
Appendix of [4], one can show that

[o o] 00
f: Vs (@ @0y ) > ( D) @) oy D) (@)) e B
j=1 j=1
is a continuous function in the set l7m of sequences
1= X2=...20, ijgM,

j=1

which together with the convergence of 2 3

iy DY Theorem 5.2 from [1],
gives

(;f: S”f’f(X(n))) - (0'7f(X(oo)))-

Proof of Theorem 2. From Theorem 1 we obtain immediately
X(n)/an_>7‘ = (“19 T2y “')’

where — denotes convergence in distribution on 171. Thus to prove The-
orem 2 it suffices to show that Py (V) = 1 or, equivalently, that

Z.onj =1
i=1

with probability 1. Fatou’s lemma asserts that

00

(8) 0> Y )

j=1

with probability 1. Since points from X, form a Poisson process with
intensity measure equal to N, we obtain

Eexp[——tZE(wj)] = exp[ f —e )N ( dm)]

So we infer that ¢ is identically distributed as Z &(,7)» Which by (8)

yields
= D (Ewplo) = D) =;
j=1 j=1
with probability 1.
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0 LOSOWYCH ROZKLADACH DYSKRETNYCH

STRESZCZENIE

Kingman [4] sformulowal twierdzenie o zbieznosci pewnej klasy losowych

Tozkladéw dyskretnych do rozkladéow Poissona-Dirichleta. W pracy zauwazono,
Ze twierdzenie to jest stuszne dla szerszej klasy losowych rozkladéw dyskretnych.
Do dowodu uzyto twierdzenia Loéve’'a z [6] o lgcznej zbieino$ci sum i statystyk
Pozycyjnych wierszy pewnej macierzy tréjkatnej, niezaleznych w wierszach zmiennych
losowych. Podany jest nowy dowdd twierdzenia Lo&ve’a, pozwalajacy opuscié zalo-
Zenie ciggloéei dystrybuant zmiennych losowych.



