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1. Introduction. The unknown parameters of a linear regression
model are usually estimated by the method of least squares, and G- or
D-optimum designs are the most frequently investigated experimental
designs for the least squares estimator (LSE). Both the LSE and, e.g.,
G- and D-optimum designs in no manner make use of prior knowledge
about the unknown regression parameters or about the domain of fore-
cast. But prior information is given mostly in real situations. Therefore,
it is of practical importance to combine prior information and actual infor-
mation in a well-defined way to obtain more efficient methods of esti-
mation and experimental design in a linear regression model.

The present paper deals with this problem in a Bayesian termi-
nology. In Section 2 we give a decision theoretic formulation of the esti-
Mation and designing problem in a linear regression model. Then we are
concerned with a special Bayes estimator (BE) for which we summarize
Some useful properties (Section 3). In Section 4 we deal with the designing
broblem for this BE. The main goal is to establish a certain robustness
of admissibility and D-optimality of designs relative to the underlying
estimator (LSE or BE). We show that under certain conditions designs
being admissible for the BE are also admissible for the LSE (and con-
versely) and, for a simple linear regression model, D-optimum designs
for the LSE are also D-optimum for the BE.

2. Definitions, notions and decision theoretic formulation of the prob-
lem. Let R* be the k-dimensional Euclidean space, Rt the set of positive
real numbers, P, the distribution of a random variable (or vector) Z,
VarZ the variance (or covariance matrix) of Z, and E, the operator of
€Xpectation with respect to the distribution P,. If no confusion is possible,
E; is denoted shortly by E. By A" we denote the transpose of a matrix
(or vector) A.
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Let B c R*. The random variables Y (z), € B, are assumed to sat-
isfy the linear regression model

EY(x) =0f(x), 6eTc<c R,
VarY(z) =1/, AeK < R*,

where f(+) = (fi(*), ..., f,(*))" is a vector of known real-valued and linearly
independent functions, 6 = (6,,...,0,) and A are unknown parameters
(shortly, 6 = (6', 4)").

Let V < B be the experimental region. Any n-tuple V, = (2,, ..., 2,)
belonging to V" is called an exact experimental design or design for short.
At the points ; of a design V,, we observe » realizations of Y (z), i.e., a real-
ization y of the so-called observation vector Y (V,) = ( Y(2,),..., Y(xn))'.
The observations are assumed to be uncorrelated, i.e., we have
VarY(V,) = A~'I, (I, denotes the (n X n)-identity matrix).

Based on a design V,, from a certain set V™ of designs of size » and
on the sample y, a linear function of the parameter 6, say w(x,0)
= A (x)0 € R™, m < r, is to be estimated for the points « from a set H < B.
A(x) is a given (m X r)-matrix and H is called the domain of forecast.
The estimator for y(, ) is denoted by v (x, ¥ (V,)), and p is to be taken
from some set D of measurable decision functions. The goodness of
estimation is valued by a risk R(d, z; ¢, V,) which is generated by a
non-negative loss function L(- ; -) on R™ x R™ according to the formula

R(3,2;9, V) = By, uL{v(@, 0); (2, X(V,)).

L(y(w, 0); p(v,y)) measures the loss incurred in estimating the
true parameter y(z, 0) by y(=,¥), By s denotes the conditional ex-
pectation of ¥ (V,) for given J, and the conditional distribution Py s
is assumed to be known.

The common problem of optimum experimental design in a linear
regression model can be interpreted as a statistical decision problem

(1) G =[TxKxH,DxV®™, R],

where the elements (6, A, x) € T x K X H are the states of “nature” and
the elements (v, V,) € D x V™ are the strategies of the “experimentalist”.

Now we assume that the experimentalist, in addition to the sample
information Y (V,), has a certain prior knowledge which he can express
by a prior distribution Py, on T'XK XH, ie, 6 =(0,1)eTxK
and # € H become random vectors 4 = (@, A) and X, respectively. A so-
lution of the decision problem (1), which regards both the actual and the
prior information, is the Bayes solution (y*, V};) with respect to P4 x,- If

Q(P(A,X)i ’;” V) = E(A,X)R(A’ X; ‘;’7 V)
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denotes the Bayes risk of the strategies (¢, V,) € D x V™ with respect to

P, x), then (y*, V) satisfies the equation
(2) Q(-P(A,X); "7’*, V;) = inf Q(P(A,X); ‘;” Vi)

(¥, V,)eDx (1)

Before we are going to search for a Bayes strategy (y*, V1), we briefly
describe, for comparison, the classical approach to the experimental
design problem.

Usually, w(z, 0) is estimated by the LSE. If

F(V,) = (f(@1); .oy f(@a))’
is of full rank, i.e., rank F(V,) = 7, then the LSE ¢ is given by
§ (2, X(V,) = A@)0(X(V,) = A@)(F(V,) F(V,) F(V,) Z(V,).
The covariance matrix
Varg = A~ A(x)(F(V,) F(V,)) 4 (z)
of ¢ depends on the design V, only by the so-called information matriz
M(V,) =n""F(V,)F(V,).

Hence, classical criteria of optimality of designs for the LSE are
suitable functionals of M (V,). For example, V,, is called D-optimum in V™
for LSE if -

(3) detM(V,) = sup detM(V,),

VneV('”')

and it is called I-optimum (relative to p) in V™ for LSE if

(4)  [trA(2)M(V,) A(2) p(v)do
H

= inf [trAd(2)M(V,)" A () p(e)de
Vae?™ g
holds for some given weight function p on H. Here trC denotes the trace
of a matrix C.
Let V" and V® be two designs and let 9> be the set of positive
semidefinite matrices of order . Then V) is called better than V¥ if

(5) MVO)—-M(VD)e W, M(VY) # M(VY).

This definition is appropriate to the usual notion of optimum design,
for V() is preferred to V» by most of the known ecriteria if (5) holds. ¥, is
called admissible for LSE if there exists no design V,, € V™ which is better
than V,. For example, D- and I-optimum designs are admissible in

V™ = {V, e V": detM(V,) > 0}
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(see [1]). However, this classical conception of admissibility does not
agree with an exact decision-theoretic definition of preference based on
the risk function.

It is possible to decompose problem (2) and to obtain the components ¢*
and V) of a Bayes strategy (9%, V) separately as solutions of decision
problems @&, and G, with a less complicated structure. We first consider
the estimation problem

@&, =[TxK,D,R]

for fixed x e H and V, € V™. Let P,,. be the conditional distribution
of 4 = (0, A) for given x ¢ X and let p* € D satisty

(6) VoeHVpeDVV,eV™: EyR(4,2;9" V,) < EyR(4, 259, V,).

This means that for any pair (z, V,) e H x V™ the estimator p* is
a Bayesian solution in &, with respect to P,,. The decision problem

G, =[H, V(n)y R*]
with the risk
(7) R*(w, V,) = By B(4, z; ’;’*7 V)

is called the designing problem for 9*. An optimum design V) e V™ can
be obtained as a Bayesian solution in @, with respect to the marginal
prior distribution Py , i.e.,

ExB*(X; V) = inf BrR'(X; 7).

LEMMA 1. Assume that the Bayes risk o(P4 x); v, V,) ewxists for every
strategy (9, V,) e DXV®™, If 3* is an estimator satisfying (6) and V,
8 Bayesian in G, with respect to Py, then (p*, V) is a Bayes strategy in G
with respect to P, x,.

Proof. By (6) and the Bayes optimality of V%, for any (¢, V,) e D x V™
we have \

Q(P(A,xﬁ ¥, V., = ExE, xR(4, X; P, V)
= [Bu,R(4,0; %, V)aPx(@)> [B,,R(4,5; 3", V,)dPx()
H "

= ExR"(X; V,) > ExR"(X; V,) = e(Pusx); %% Va)-

Remark 1. Lemma 1 can be generalized for a separate determina-
tion of optimal components not only of Bayesian strategies but also of
so-called Q-optimum strategies (p*, Vy) e D x V™™ minimizing the ex-
pression QR(-, -; v, V,); @ is an operator acting on T x K X H to make
the risk independent of the parameters (6, A, #). For the Bayesian case,
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Q= E(4,x) is to be chosen. The generalization, which includes, e.g., the

minimax optimality (@ = sup ), may be found in [2].
(0,4, x)eTxKxH

3. Estimation problem. Lemma 1 entitles us to consider at first the
estimation problem @, with fixed, but arbitrary ze H, V,e V™, We
will consider a Bayes solution in G, for a special but important case which
meets many real situations.

~ AssumprioN 1. Let the random vectors 4 and X be independent,
Le., Py, =P,.
AssuMPTION 2. Let the loss function be quadratic, i.e.,
Liy(x, 0);9(x, y)) = (p(=, 0)—p(2, y)) Ulp(®, 0)—p(=, y))
=: [lp(z, 6) —y (=, Y)Y,
Where U is an arbitrary matrix from ;.
ASsuMPTION 3. Let the observations be normally distributed, i.e.,

PY(V,n)/B = N(F(Vn)e’ At n)

Assumption 3 implies, e.g., T = R" and K = R*.
AssumPTION 4. Let P, be a normal gamma-distribution with the
density

2a
0 if A0

(@>0,v>0,uch,dec).
This is a conjugate prior distribution of

Pro = NF(V,)0,471,)
(see [87). It will be abbreviated by
P, = NG(a, v, u, D).
Under these four assumptions the estimator
®)  p*(x, X(V,))

1 )' ]
cl(v+7)l2—lexp i——(”+l]6~”|l2_l)} lf OERT, }r> 0’

p(6, AMayvy u, Q):—_‘

-1
I LA ANE S N EAC AR

I8 Bayesian in G, = [T x K, D, R] with respect to P, (see [8]).
ProPoSITION 1. The estimator p* is admissible in G, .

Indeed, under assumptions 1-4, p* is the unique BE. Moreover, p*
iy Tobust, to a certain extent, under a change of the loss function and the
Prior dlstnbutlon
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PROPOSITION 2. Let assumptions 1,3 and 4 be satisfied. Then p* i
also a Bayes estimator relative to loss functions
_ L("P(w’ 0); ';’(ma y)) = L(”'P(w: 6) —':"(ma ?/)”20)
which are nmon-decreasing functions of the argument |y(z, 6)—p(z, y)| -

This result follows from Lemma 1 in [6], which is proved in a similar
way as Theorem 4.6.1 in [3], by observing that the marginal prior Pg,
of @ is a t-distribution with the mode

1 -1 1
[I”(Vn)'F(Vn)-l- = CD_‘] [F(Vn)'?/ + Q_ly].

If the prior distribution is not known precisely but is a member of
the set

P = {PA: E(0|4) = u, Var(9|2) =%¢, EA =a},

then the estimator * turns out to be restricted minimax:
ProPoSITION 3. Under assumptions 1,2 and 3 we have (see [9])

supE,R(4, z; y*, V,) = inf supE,R(4, z; v, V,).
P e veD P4eB

It can be shown that the estimator ¢* is also optimum in some sense
relative to certain forms of non-Bayesian prior knowledge. This is, for
example, the case if it is known a priori that

(6—p) @& (0—p) <1
(i.e., the regression parameter belongs to an ellipsoid with the centre u)

and A e [a, o) (i.e., a is the least precision of the observation or, equi-
valently, a™! is an upper bound for the variance).

PROPOSITION 4. Let Ty = {6 € R™: (0 —pu) ™ 1(0—pu) < 1}, K, = [a, )
and let Dy, be the set of all linear estimators for y(xz, 6). If

rank A (z)' UA(x) =1,
then ¢*(w, ¥(V,)) is minimaz in G, = [T,xK,, Dy, R].
Proof. Any linear estimator p € D, can be written as

with some (r X n)-matrix W and w € R". Moreover, since rank 4 (z)' U4 ()
=1, there exists a vector w e R" such that A(z)' UA(x) = wu'. Con-
sequently,

R(6,2,®;9,V,) = Er(Vn)/o,;.He—TVY(Vn)—’w”fm'
1
= {[w+(WEF(V,)—1,) 6]'u)’ + TUWW
=:q(0, 4, W, w).
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Let
W, =[F(V,)F(V,)+(A®)"'17'F(V,) and w, =[I,—W,F(V,)]u.
Then we have

supq(0, 4, W, w,) = 1—1“.'WAW.:1“ T"SHP{“'[WZF(Vn)—Ir] 5}2,

6eTy 5'61’0
where T, = {5 eR": 5’@“‘5<\1}. Now, for any 2
supq(0, 4, Wi, w;) = 47"/ [F(V,) F(V,) +(0) "' ' u

6eT (1}

= infsupq(6, 2,/ W, w) = supinfq(6, 1, W, w)

w,w OeT_o 0eTy W,w
(see [5], Sections 2 and 3). Thus we have
supsupq(0, A, W;, w;) = supsup inf R(0, 4, z; 9, V,)
AR, 6eT, *eKy 0Ty gepp
< inf sup supR(6, 1, ©; 9, V,,)
';;.EDL IEKO OeTo

(the last inequality is kknown from game tl‘leopy) and

sup supq(0, A, W, w;) = a” '’ [F(V,) F(V,)+(a®) '] u
lGKO oETo
= sup supq(0, 1, W,, w,).
’.EKO GETO

But
Pz, X(V,) = A(@)[F(V,) F(V,)+(a®) 17 [F(VY X(V,)+(ad) " u]
can be written as '
¢*(w’ Y(Vn)) = A (») [Wa Y(Vn) +wa] .

Hence
sup supq(0, A, W,, w;) = sup sup B(6, 4, z; ";’*7 Va)
€K, 6eT 2eK 0eT
< inf sup sup R(6, 1, z; ¢, V,).
';;EDL ZEKO OETO

It should be noted that no distributional assumptions are necessary
for this minimax property (with the exception that the covariance matrix
of Y(V,)is A'I, with 1 > a).

A further and more detailed analysis of estimators involving cer-
tain non-Bayesian prior knowledge, but having the same structure as
the BE (8), may be found in [2] and [7].

Under certain conditions 9* can be expanded in a series which makes
it possible to compute the BE approximately, starting with the LSE P.
To do so let ||S|| denote the usual Euclidean norm of a matrix § = (85)y



572 W. Ndther and J. Pilz

ie.,
18] = (tr 8’ 8)¥? = (2 ﬁ)m
PROPOSITION 5. Assume that rank F(V,) = r. Let

1
J(V,) = ——[OF(V,) F(V,)]"*

and let plo, Y (V,)) = A(2)0(X(V,)) be the LE of y(=, 6). If [J (VI < 1,
then

&’* (m’ Y(Vn))
= 4@ (X (V) =T (V) p+ DT (V[6(X(V,)—T (V) a]}.
k=1
Proof. In functional analysis the series expansion

[—JT = S

k=0
is known to hold for any linear operator J in a Banach space (E, ||-||g) if

sup Iellz <1, H,=1{eeck: |elg<1},

where J° denotes the unity operator in E. Now, g (w, (7 )) can be
written as

;I’. (w’ Y( Vn))
= A(@)[L,+(aBF (V.Y F(V,))" | (V. F (V) (F(V,.)' T(V.)+

1
+—¢“1p)
= A(@)[L,~J (V)1 [B(X(V,)) = (V) .
The result follows with E, = {¢ € R": ¢'e <1} by observing that
sup [J(V,)elz, = S:}EPG'J( ) I (Va)e < trd (V) I(V,) = T (Vo) <1.
¢ellp

eck
Remark 2. The condition [[J(V,)|| <1 is satisfied, for example,
if the prior knowledge about the regression parameter is sufficiently vague
(i.e., if a is sufficiently large). In the limit case ¢ — oo the BE p* and the
LSE § coincide.

4. Designing problem. According to Lemma 1 we now consider the
designing problem G, = [H, V™, R*] for the BE y At first we compute
the risk R* defined by (7), i.e., the Bayes risk of y* with respect to
P, = NG(a, v, u, D).



Linear regression model 573

Let ze H and S(x) = A(z) UA(x).
LEMMA 2. If assumptions 1-4 are satisfied, then
(9) R*(2, V,) = E,B(4,2; 9", V,)
= [E(1/4))tr{8(x) [F(V,) F(V,)+ (a®)"']"'}.

Proof. Let F = F(V,) and &, = [F'F+(aP)~']"'. With the assumed
quadratic loss we get

R(0, 4, 2 3%, V) = tr8(2) &y [(a¢)"(0—/4)(9—u)’(a¢)“+ %FF]&D

From the definition of P, = NG(a, », u, P) it follows that the condi-
tional distribution Pg, is normal with mean x and covariance matrix
(a/A)D, so that

R*(w, V) = EAEO/AR(@y A4, x; ';’*a V)
1
= EA{trS(w) ¢1[(a¢)‘l % D(ad) '+ i F'F] (pl}

=[E(1/A4)]tr8(x)D,.

With the prior distribution Py on the domain of forecast H an opti-
mum design V), is to be determined according to Lemma 1 and formula (9)
by solving the problem
(10) Extr8(z)[nM(V3)+(a®)7']1"

= inf ExtrS(e)[nM(V,)+ (ad)™']'.
VneV(”)

A design V), satistying (10) may be called I-optimum for the BE. Indeed,
if Py has a density p(-) with respect to Lebesgue measure and if U = 1I,,,
then equation (10) takes the form

[trA(2)[nM (V})+(a®)'1" A () p(a)do

H
= inf [ trd(o)[nM(V,)+(a®) '] A(a) p(a)de
Vv (™ i

and the analogy with (4) is obvious. Here the matrix
_ 1
(11) M(V,) = M(Vn)“l‘%@_l

takes over the role of the information matrix for the estimator 9*.
Remark 3. (anM(V,))™" is the covariance matrix of the pre-
Pposterior marginal distribution of 6, i.e. (see [2]),

E{Var(0|X(V,))} = (andl(V,)) .
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In the sense of a proper décision theoretic definition we say that
a design V) e V™ is R*-better than a design V) e V™ if
VzeH: R*(w" v < R"‘(m V)
and
a5'70 GH R*(‘”oy g)) <R*(a7 V(z))

The design V,, is called R*-admissible for y* if there exists no design
V, € V™ which is R*-better than V,. Let M[Q] and L(E) denote the
column- space of a matrix’ Q-and the linear - -space generated by the linear
combinations of vectors of a linear manifold F, respectively. Now the
following interesting connection of usual adm1ss1b1hty with R*-admissi-
bility can be established.

THEOREM 1. Let U be of full rank m and assume that

(12) 2 U sm[A UW])

If assumptions 1-4 are satisfied, then every design being R*-admissible
for the BE " is admissible also for the LSE.

Proof. Assume that V, e V™ is R*-admissible for * but not ad-
missible for LSE. Consequently, there exists a design V, € V™ such that
M(V,)—M(V,) is positive semidefinite. This implies

M( W) =M (V,) e M,
8o that
tr8 (@) [M(V,)" =M (V,)""]
— tr UM A (o) [J(V,) =B (V,) 14 (2) T =:trQ(z) > 0

for every # € H. Moreover, there exists at least one point in H for Which
trQ(x) is positive. Otherwise, we would infer that for every x e H all
eigenvalues of @ (x) are zero, i.e., @ (o) is the null matrix. This would imply

Ve e HVze R™: 2’Q(x)z = 0
or, equivalently,
Ve HVqe M[A () T*]: ¢ [M(V,) ' —M(V,)  ]q =0

which is impossible because of condition (12) and M(V,) # M(V,).
Thus
R*(x; V,) = 7' [B(1/A)1tr 8 () M (V,)™"
n [E(1/A)]tr8(x) M (V,)™" = B* (%5 V,,)

for every x € H and strict inequality holds for at least one point in H.
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Remark 4. For a special case where A (z) = f(z)’, i.e., m = 1 and
y(z, 0) = f(x)'0, and U is a positive real number, (12) reduces to the condi-
tion that H contains at least # points @,,...,®, for which the vectors
f(®), ..., f(x,) are linearly independent.

The inversion of the statement of Theorem 1 does not hold in gen-
eral. But if we define “better than” analogously to (5), i.e., V¥ is called
better for BE than V) if

M(V))—M(VY) e W7,

then admissibility of designs based on LSE and BE, respectively, coincides.

In analogy with (3) a design V;} is called D-optimum in V® for
BE if

detM(V}) = sup detM(V,).

VeV

This means that a D-optimum design minimizes the generalized
variance det (E[Var @1Y (Vn))]) of the preposterior marginal distribu-
tion of the regression coefficients (see Remark 3).

Obviously, I- and D-optimum designs for BE are R*-admissible.
Because of the invariance of the admissibility of designs relative to the
underlying BE and LSE it is possible that even the optimal designs
for ¢* and 9y, respectively, coincide.

For the case of D-optimality this is true if we consider the simple
linear regression model

(13) EY(z) = 0,+ 0,2, V =[—1, +1].

Then we have

e

1 m, 1 W 1 «
M(Vn)=( )7 m1=—2w,-, m2=;2w§
m; My L i=1

and the D-optimum design V; for LSE in model (13) is given by

(n)2)o; = —1, (n)2)x;, =1 if » is even,

14) v} =
[(n+1)/2]a; = —1, [(n—1)/2]w; =1 if n is odd

(see [4]). _
Let the matrix @ of the prior distribution be diagonal,

(15) @ = diag(py, @2),

3 — Zastosowania Matematyki 16.4
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i.e., the regression coefficients are uncorrelated a priori. The D-optimum
design for »* maximizes

my +1 +1/ane,
an @, ang.

_ 1
(16)  detM(V,) = det (M(Vn)+ o (15'1) = my—mi+ )
i.e., it maximizes
2 m mo
My —m; +

2 = detM(V,)+ .
ane, ane,

The first summand is maximized by V. from (14) and the second

summand attains its maximum value 1/ang, also at V;}. Thus V] maxi-
mizes (16) and we have proved

THEOREM 2. Under condition (15), the D-optimum design for the LSE
i8 D-optimum for the BE in model (13).

Concluding, we remark that in the asymptotic case (n— oo) the
designing problem based on M (V,) coincides with the designing problem
based on M (V,) (see (11)). This reflects the fact that in the asymptotic
case the sample information dominates the prior information. .
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W. NATHER i J. PILZ (Freiberg, NRD)

ESTYMACJA I PLANOWANIE DOSWIADCZEN W LINIOWYM
MODELU REGRESJI PRZY UZYCIU INFORMACJI APRIORYCZNE]

STRESZCZENIE

W pracy przedstawia sie zagadnienie planowania doswiadezen w liniowym
modelu regresji przy uzyciu informacji apriorycznej jako bayesowski problem decyzji
statystycznej, ktory mozna roztozyé na problem estymacji i problem planowania
do§wiadczenia. Dla zwyklego estymatora bayesowskiego z kwadratows funkeja
straty, obserwacji o rozkladach normalnych i sprzezonego rozkladu apriorycznego
wykazuje sie jego odporno§é na zmiang straty i rozkladu apriorycznego i dowodzi
Pewnej wlasnofei minimaksowej. Formuluje si¢ problem wyboru optymalnego dos-
Wwiadezenia dla estymatora bayesowskiego i stwierdza pewna niezmienniczosé zwyklego
Pojecia doswiadezen dopuszezalnych. Ponadto w przypadku prostego modelu regresji
liniowej dowodzi sie, ze doéwiadczenia D-optymalne dla estymatoréw najmniejszych
kwadratéw i bayesowskiego sa jednakowe, jeSli wspélezynniki regresji sa a priori
nieskorelowane.



