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A NOTE ON A TWO-PERSON ZERO-SUM GAME
STIMULATED BY A MARKOV CHAIN

1. Description of the game. Consider a Markov chain {&,},cn;
N = {0,1,...}, where, for every n € N, z, equals either 1 or 0. The transi-
tion probabilities are given as follows:

P{$n+l=1|$n=1}=pn7 P{wn+l:0]"‘vn=l}=qn7

Py =12, =0} =0, Pz, =0z =0}=1.
We also assume that P{w, =1} =1, p, > 0 and p,+¢, =1, n e N.
Let us assume that players A and B observe a realization of the chain
and each of them may stop his observation at any moment of time n € N.

Each of the players tries to continue the observation longer than his
opponent but both players are interested in stopping the observation

1)

before the event | J {x, = 0} occurs. No player has any information about
n=0 .
his opponent’s behaviour. '

Now, let us define the pay-off for the game. Let m,n € N be the
moments of time at which players A and B, respectively, stop their obser-
vations. If m < n, then player A wins a unit value +1 in case z,, =1
and z, = 0, and A loses the value when #, = 1. If m = =, then the pay-off
equals zero for both players. If m > n, then A loses the value 1 provided
%, =1 and z, = 0, and in case x,, = 1 this player wins +1. Here, we
assume that the game is a zero-sum one and the pay-off for B can easily be
found. The expectation of the pay-off will result in the pay-off function
for the game. .

Taking into account the description of the game we see that a two-per-
Son zero-sum game I' = (N, N, K} is defined, where N = {0, 1, ...} and,
for m,n e N,

a,—2a, if m<n,
(2) KE(m,n) =10 it m = n,

2a,—a, Em>n
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with a = 1 and @, = py_,a,_, for k > 1. Here we assume that p, > 0.5,
for otherwise both players would have optimal strategies m -- n = 0.

In Section 3 we give a practical interpretation of the game and some
examples of numerical solutions.

2. Optimal strategies in I' = (N, N, K). Since the game is symmetric,
we shall consider only the space of mixed strategies for player A. The
same can be done for the second player. In the space 2 of all mixed stra-
tegies for player A we define a subspace %, in the following way:

(3) e Uzx=(®,x,...,20,0,0,...),
i
@, >0,4i=0,1,...,1, 2.’1‘ =1,
1=0
where z; is the probability that 4 stops the observation at the moment
1eN.

We shall prove in the sequel that under some assumptions concerning
the transition probabilities there exists an integer ! such that the optimal
mixed strategies in I" belong to Z,;. Notice that the value for the game
must be zero.

At first, we use the necessary optimality condition for a strategy
Z € %;. An optimal mixed strategy must be an equalizer siraiegy, i.e.,

{
(4) K(z,s) = ZK(i,s)w,. =0 fors=0,1,...10.
1=0

Hence, by equality (2), we obtain the following systemn of equations:

{
K(z,0) = 2(2a,.-1)m,. =0,

i=1

s—1 4
(5) K(z,8) = ) (a;—2a,)z,+ 2 (20, — a,); = 0
1=0 f=8+1

for s =1,2,...,1-1,

-1
Kz ) = D (a,—2a)z; = 0.
=0
The determinant of system (5) is skew-symmetric. Thus, if we put
l = 2m, the determinant is zero and the existence of a non-trivial solution
of system (5) is proved. »
Now, we shall find the solution of system (5). Let us set

)
£ = Do fori=0,1,..,2m.

j=0
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We easily notice that system (5) is equivalent to the following set
of equations:

(5%) K(Z,8)—K(x,841) = 0,(Pe&pi1—&s—1+P,—1) =0
for s =1,2,...,2m—1,
(5") K(z,0) = K(z,1) = 0.

Now, taking into account equations (5’) and putting

N, =1+ 6,
we obtain
(6) PeNgir—MNg—y =0 for 8 =1,2,...,2m—1.
Equations (6) have the solution
’7"” - itk=2r,r=1,2,...,m,
(7) e = s;_: 2g—1
1
’7‘” ik =2r41,7r=1,2,..., m—1,
§=1 28

where constants 7, and #, are to be determined. In that order we put

Thus (5") yields
K(x,0) =2a—n, =0, K(T,1)=2a+1—ng—pen, =0.

Hence we ecasily obtain %, = p;!.
Now, using the normalizing condition &,,, = 1 (or 7,, = 2) as well
as formula (7), we obtain

m m
No = 2 ”st—-l and a = npzs-r
s$=1

8=1

Hence we have the solution of (6):

2 if £ =2m,

, 2 [] poe-y itk =2r,r=0,1,...,m-1,
(7) N = 8=r+1

H ! if k=2r4+1, r =0,1,...,m—1. ,
st

§=0
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Now, we can easily find the components of z as defined in (3):
Ly = 770.—1,
Lyp = Noy—Nopy forr=1,2,...,m,
Trppr = Nopp1— Ny, for r =0,1,...,m—1,

or, applying (7'),

m

Zo =2”pzs—1_17

s=1

m r—1 ‘1
Ly, = 2 ]Y'p%_l—n for r=1,2,...,m—1,

§=r+1 8§=0 ‘p28

(8)
wz,“—n -2 I_[pz81 for r =0,1,...,m—1,
Pas s=rk1

m—1

” 1
wzm == 2_ -

ol Pss

For any arbitrary sequence {p,} it may happen that % with compo-
nents defined in (8) does not belong to %,,. Thus, we should require
that

(*) there exists an m > 1 such that

m m
Po Pas—1 < 0.5 < ”?zs—u

8=1

nl’zs npgs 1 S np28 npu , forr=1,2,...,m—1,

8=r+1 8=r+1

b < n Pas
§=0

and at least one of the inequalities is sharp.
The inequalities in (%) correspond to the following set of inequalities:

z; >0 fori=20,1,...,2m.

1

For example, if ¢ = 0, 1, then

m
2 H.sz—l_l = Oa — —2 rlpzs—
s=1

Let us denote by C the set of all positive integers for which condi-
tion (x) is satisfied for a given sequence {p,}.
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Remarks. 1. For some sequences of probabilities {p,} other specific
structure for the mixed strategy space should be assumed.

.2. For a constant sequence p, = p condition (*) reduces to the fol-
lowing:

there exists an m > 1 such that P < 0.5 < p™.

. Now, we shall study the sufficient optimality condition for a strategy
In Z,,. It states that for every s e N

K(z,8)>0, Z%e,,-

We-have already known that K (%,s) — 0 for s = 0,1, ..., 2m. Fur-
ther, for s > om 41, we obtain

(9) K(E, 8) = a—2a, = ﬁp2s—l (1 -2 ﬁp23p2m+1 ps—l)
8=0

8=1

= ‘ﬁpzs—l (1 -2 ﬁpzs)-
s=1 §=0

Now, we shall consider two cases.
(i) At first, let us assume that there is no integer m in € for which

m—1
g Pas = 0.5.

Next, we define an integer m’ € C such that

m’ m’'—1
(10) npzs <05< n Die-
8=0 8=0
. Using (9) we see that if m’ in (10) exists, then, for Z € %, described
¥ (8),
K(z,8) =0 ifs=0,1,...,2m,
K(Z,8)>0 if 8>2m +1.

Thus z e Z,,, is optimal.
(ii) It may happen that there exists an integer m'’ in C such that

m'—1
(11) H P = 0.5.
8=0

In this case, by (9), we have

KZ,s) =0 ifs=0,1,...,2m",
Kz,8)=>0 if s=2m" +1,
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and Z € 4,,,~ is optimal. Here we also have

and if m''—1 also belongs to C, then the strategy T € %y(,-_, is also
optimal. Thus we can take

(12) T = ax,+ (1 —a)z,,

where z, € Z,,,. and %, € Z,(,,~_,; and we ecagily notice that, for every
a €[0,1], ¥ defined by (12) is optimal.

Remark 3. Taking into account Remark 2 we see that, for a constant
sequence p, = p, m’ is defined by

PP < 0.5 < p™,
and if there exists an integer m'’ such that p™ = 0.5, then
P < 0.5 =™, ™ =0.5<p™ !,

and we have the sitnation described in case (ii) for Z, € Z,,~ and
Xy € Xomrr—1)-

Thus we have proved the following

THEOREM. If the transition probabilities in (1) of the Markov chain
(T, )nen Satisfy condition (x) for some integers m € N, then both players have
a unique optimal strategy in %, provided case (i) occurs, and if case (ii)
takes place, then their optimal strategies in the game stimulated by {w,}, .n
are linear convex combinations of strategies in X, and Xypm-_y)-

3. Some numerical examples. One can find more or less realistic
models of the game considered in Section 1. Here we consider two real
situations which can be modelled according to the rules of the game.

Assume that two partners use the same energy supply, and a random
cut in the energy supply may occur according to the behaviour of the
Markov chain {z,},.v. Each of the opponents may stop using the energy
at any moment of time provided the cut did not occur. The one who
had used the energy for a longer period of time and had stopped before
* the cut occurred wins the competition.

Now, let two research centers work on a project of certain device.
They are supported by the same bank and the support can be cut at any
moment of time n € N with probability p, given in (1). The one which
continues the research for a longer period of time before the cut appears
wins the game.

Let us consider some numerical examples of the game.
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Example 1. Let us take p, = p, n € N, for p = 0.9. By Remark 2
we observe that for m = 6 we have p™*! < 0.5 < p™ and the compo-
nents of the optimal strategy can be evaluated according to formula (8).
The I_'esults are given in Table 1.

TABLE 1

i T i ZT;

0 0.0628 6 0.0862

1 0.0482 7 0.0661

2 0.0699 8 0.0958

3 0.0536 9 0.0735

4 0.0776 10 0.1065

5 0.0595 11 0.0816
12 0.1187

Example 2. Here we assume that p, = p**!, n e N, for p = 0.9.
Then condition (*) requires that there exists an m > 1 such that

pm(m+l)+1 <05 < pm(m+l)’
2
™ +2r+1<0.5<pm2 for r =1,2,...,m—1,m.

We easily notice that the condition is satisfied for m’ = 2. Hence,
by .formula, (6), we have

o =1.0628, 5, = 1.1111, g, =1.3222, ¢, = 1.5241, g, =2,
and the components of the optimal stx:a,tegy are as follows:

@, = 0.0628, ;.= 0.0482, =, = 0.2011,
@y = 02119, =z, = 0.4760.

Example 3. Now, let p, = 0.8, p, = 0.6, p, = 0.625 and p, = 0.9

for " = 3. We easily notice that p,p, = 0.5 and case (ii) considered in
Section 2 occurs. For m'’ = 2 we have

PoP1P3 < 0.5 < P1Psy  PoP2Ps < 0.5 < PoPa,

PoP:py < 0.5 = pop.,
and for m’’ —1 we obtain

PoP1 <05 <Py,  PoP: = 0.5 < Do.
Thus, we find that for m = m'’ = 2

Mo =1.08, = =125, 7, =18, x93=2, 5 =2,
and for m'"" —1 =1

No = 1-27 N = 1.25’ /D = 2.

4 — Zastosowania Matematyki 17.1
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Hence the optimal strategy in that case is a convex linear co.mbination
of the strategies given in Table 2.

TABLE 2
m =1 m =2

% I @; i @
o | 020 0 0.08
1 0.05 1 0.17
2 0.75 2 0.55
3 0.20
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UWAGI 0 GRZE DWUOSOBOWE] 0 SUMIE ZERO,
ZWIAZANE]J Z PEWNYM LANCUCHEM MARKOWA

STRESZCZENIE

W pracy rozwaza sig gre dwuosobowg o sumie zerowej, zwiazang z dwustanowym
laicuchem Markowa, gdzie jeden ze stanéw jest pochlaniajacy. Gracze obserwujs
oddzielnie realizacje tego larcucha i mogg w kazdej chwili podjaé decyzje o przer-
waniu obserwacji przy zalozeniu, ze wezeéniej nie nastapito pochioniecie. Wygrywa ten,
ktéry dluzej prowadzil obserwacje, lecz zatrzymat si¢ przed pochlonieciem. Znaleziono
optymalne strategie graczy w pewnej podprzestrzeni strategii mieszanych w tej grze.



