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ON SUMMATION OF CERTAIN DINI SERIES

1. Introduction. One of the basic problems that appear when the
Problems of the mechanics of continuous media (and also others). a‘u:e
dealt with ig g Physical interpretation of the results obtained. Th1§ is
especially difficult when the solutions themselves take the form of multiple
Integrals or series. In particular, when dealing with the problem of heat
O Mass trangport one can often obtain the solutions in a form of Fourier-
Bessel or Dinj [8] series. The type of the series obtained depends on the
kind of boundary conditions. Boundary conditions of the first kind lead
frequently to the solution in a form of Fourier-Bessel series whereas
boundary conditions of the second or third kind allow us to get the solu-
tion often in a form of Dini series. Such series can also appear in other
Problems, if the region under consideration has a rotational symmetry,
the differential equa-tions of the problem are linear and of the.sec(.md order,
and the boundary conditions are expressable as linear combination of the
function and its firgt derivative with respect to the radial variable. Such
Beries also arise when solving the dual series equations [6].

The object of our paper is to sum certain Dini series of the type

(1.1') N ;':;anHc ()‘njw)JnH(}'nfy) ,
e (Anj t 0%) Ay — 0" + H?) 7 (M)

Where J,(z) denotes the Bessel function of the first kind and Ol‘d..el‘. n
(see [3] and [8]), » = 0,1,..., 8, k, | = 0,1, Jqy is the j-th positive
Toot of the equation AJ,(A)+HJ,(A) =0 (j =1,2), H and a are
arbitrary real constants (¢ # 0), and =,y €(0, 1),

The manner of deriving the sums of the series considered rests on the
idea of Woelke [9] which is generalized in [1]. That method relies on
Solving certain partial differential equation in the distributionail doma.un
and getting a solution that appears to be certain regular distribution which -
18 the sum of certain series of type (1.1). The equation itself can be created
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by making use of the Lommel integral

(1.2)

z] 1 , ,
J 2V (p2) V(A do = i Vo Ua(a) V() — oV (3) U (i)

zy

and of the integral
(1.3) [ U, (6)ds = 2" T, (2),
(1}

where 1 # u, 2 and u are arbitrary real or complex constants being dif-
ferent from zero, #, > #,> 0, U,(x) and V,(x) are the solutions of the
Bessel equation, and f'(2) = df/dz.

The basic problem for the summation of the series under consideration
is a construction of a sequence of functions f, e L'°°(0, 1) which is of type
0 (see [4] and [7]). In [9] that problem is not treated at all. The author
displays only the partial differential equation, the solution of which is used
to derive the further formulae. The present paper contains the construction
of the sequences of type J that are needed to build up the equation which
“solves” the problem of summability of the series under consideration.

2. Fundamental series. Let us consider the sequence of functions
{0wm (s Y5 H)}pe,,... that is defined as

(21) a(n)m(m’ Y H) = T(n)r(w7 y)-L(n)m(w’ Ys H)’

where

2'%_2 Jn(:um‘w)Jn(”niy) if ze (0’ 1)’

(2.2) Ty (@, y) = i=1 o (tnd)
0 i.f & ¢ (0’ 1)’
,ltmm)J (”my)
2 —4 B
w[z sz+1 ”m (“)°(m’ y)
(2.3) L(n)m(wi Y, H) = _ Em Z'f;jJn()'m'w)J”(l"jy) ] if # € (07 1)7
(1§j—n2+Hz)Ji(lnf)
0 if « ¢(0,1),
0 f H+n>0,
(2.4) Amp(@; Y) = B, (Ax) I, (A0Y) |
0Ln\Ayno Aoy if H+n < 0.

(Ano+ 1" + H?) I7, (Ano)



Dini series 119

Here u,; is the i-th positive root of the equation J,(#) = 0, the num-
b.ers r and m are 30 chosen that the r-th zero 4., of the function J,(u)
!les bgtween Aym and Ayme1y Ao Stands for the absolute value of the pure
lmaginary root of the equation AJ,(A)+HJ, (1) =0 if H+n<0 [8],
and I, (2) denotes the modified Bessel function of the first kind and order
n (see [3] and [8)).

. The shape of the function Owmym(®, ¥; H) is chosen in the above-de-
seribed way because of the properties of the sequences {T,),. (%, ¥)},_1,,...
and {L(n)m(w, Y; H)},oey 5. . The following theorems hold:

THEOREM 1 (Watson [81). If (a, b) 18 any part of the closed interval
[0, 1] such that y is not an internal point or an end point of (a, b), then the

b
existence and the absolute convergence of f Vi f(t)dt are sufficient to ensure
that ¢ |

b
lim [ T, (2, y)f(@)dw = 0,
>0 g
where 0 < y < 1. (If y =1, 4t is, of course, supposed that b < 1.)

THEOREM 2 (Watson [8]). Let f(x) be a function defined arbitrarily
1

¥ the interval (0,1) and assume that [ Vof(c)de exists and (if it is an im-
. 0
Proper integral) is absolutely convergent. Let

1
’ 2
O = ——— | @f(@)d, (u,;7)dx
(n) J3¢+1(P"m')!f() (pni®) de,

where n = 0,1,... Let y be any internal point of an interval (a, b) such
tht 0 <a<b<1 and such that f(x) satisfies the Dirichlet conditions [5]
(&, b). Then the series

2 )i (Hn;Y)
i=1

18 convergent and its sum is } {f(y +0) +f(y — 0)}.
CorOLLARY 1. If y € (a, b) = (0, 1), then

b
lim f Tipe(@, y)dz = 1.

T—>00 o

THEOREM 3 (Szmydt [7]). Let f, e I°°(E") (r =1,2,...) and sup-
DPose that

(1) for every M > 0 there exists a constant ¢ < -+ oo such that

&2
[ fmdt| <C  for , it < M;
L
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(ii) for all t,, t, with ¥, # 0 £ 1,, t, <1,, we have

ty 0 i t,t,>0
lim [ f,(t)dt ={ f e

7->00 ‘l

Then the sequence { [z} is of type 6.

COROLLARY 2. The sequence {T (). (%, Y)},1,,... 18 of type 6 with respect,
to the variable x..

Proof. We must show that the assumptions of Theorem 3 are ful-
filled. Taking into account T,,, as a function of # we can easily prove
that it is locally integrable by virtue of (2.2). Assumption (i) is fulfilled
by virtue of Theorem 1, and (ii) is also satisfied because of Theorem 1
and. Corollary 1 (it suffices to substitute # = ¢+ y into the theorem and the
corollary to get them in the form of the assumptions of Theorem 3). Thus
we have proved that the sequence {I\,,} is of type .

THEOREM 4 (Watson [8]). If (a, b) is any part (or the whole) of the
b
interval (0, 1), then the existence and absolute convergence of f l/;:f (x)dx
a
are sufficient to ensure that

b
limff(w)L(n)m(w7 Y5 H)d‘w = 0’

N—>0 g

provided that y € (0,1). And, if b < 1, the theorem is valid when y € (0, 1].

THEOREM 5. The sequence {6y (®,y; H)}por,s,..., defined by (2.1),
when considered as a sequence of functions of the variable x, is of type 6.

Proof. It is evident from the definition of g,), and from (2.2) and
(2.3) that oy,),, is locally integrable. Hence we must prove only that as-
sumptions (i) and (ii) of Theorem 3 ate satisfied. By virtue of Theorem 4
we can easily show that

¢y
(2.5) Hm [ Liym(z,y; Hydo = 0.

m—>00 ‘l
To get (2.5) it suffices to choose a function f(x) as follows:

v i ze(ty, t) < (0,1),
f@ = {0 if 3 (0, 1)\[t, t]-

Hence for every M > 0 there exists a constant C; < -+ oo such that
‘2 t2' t:.'
| [ G 45 DV |< | [ Ty (2, 9) 8] + | [ L8, 95 H) | < C+ 0= Cs
£ £ £

for [t,], |t:] < M. We have C; < + oo because of (2.5). Thus assumption (i)
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of Theorem 3 is satisfied. By virtue of (2.5) we also can write the equality
iy iy
hm f o'(n)m(t, Y5 H)dt = lim f T(n)r(t7 y)dty
M—»00 ¢4 r—»00 ¢ 1

which ensures — by virtue of Corollary 2 — the validity of assumption (ii).
Thus the sequence {0y} is of type 4.

As a result of Corollary 2 and Theorem 5 we can state that for all
¢(2) € CF (see [7]) the following equalities hold:
+o0

lim f Tuyelz, )@(x)dr = @(y) = (5(50—1'/),4’(90)),

r—>00 _y

(2.6)

+o00

in:o [ (@, y; p(@)dz = o(y) = (8(z—1), p(a)).

-0

(2.7)

e

Making use of (2.2) and (2.3) we can rewrite O(uym (¢, ¥5 H) in the form

= 2o (A 2) I (259)
(28)  opm(z,y; H) = 20 {A(n)o(“” ¥+ 2 (;.21.—n2—ji-11’2)J2 Zjl 5)}’
i nj I n\ Sy,

where z, y € (0,1) and A )o(Z, ¥) is the function defined by (2.4).

~ Thus — by virtue of (2.2), (2.8), (2.6) and (2.7) — we can write the
distributional equalities

O o (i) T (0:9)
(2.9) 22 n = d(y —2),

J121+l (.um')

' _Aes T (g ) (R
(2.10) 2w{A(,.)o(w,:l/)+ > (12;_;2 jr""l’{,)}&y:)}=a(y—w),
=1 U n\ 4y,

Where n = 0,1,2,... and z,y € (0, 1).

Let us multiply distributionally the both sides of equalities (2.9)
and (2.10) by I, (ax)[n(x)—n(x —Z)] with 0 < y < Z < 1. Choosing a test
function to be a constant for z € (0,1) and making use of (1.2) and (1.3)
We arrive at results which can be written in the form of the following partial
differential equations of the first order (in what follows we neglect the
overlining over the variable z):

(2.11) {Snw,y)}_ 1, (ax) 6{Sn(w,y)} I,(ay)

8%(w,y)] ol (az) oz \8Z(x,y)|  2axl,(ax)
Here o
()T g (i ¥)
S T — n\Mni
o 9) i (p2i+a®) T2 ()
(2.12) =1

" 22T, (As0) (A
§%(z, ) =2( TalInlai) | ¢ (2 ysa)
j=1

Mg+ 6%) (An;— n? + H*)J;(4,5)
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with
(n4+1)a"y"a™? if H+n =0,
Sy @, y50) =1 n(H+n)—1 |

2 2

Ayo(z,y) otherwise,

n being the Heaviside function.
The solution of (2.11) takes the form

(2.13) B,1,(@)+ 5 To(ay) Ky (00),

where B,, is a constant which can be defined by the condition

(2.14) S,1,y) =0 when solving (2.11),
or
0
(2.15) HSE(1, y)—}-[%s,’f(m, y)] =0 when solving (2.11),,
z=1

and K, denotes the modified Bessel function of the second kind and
order n [8].

Since both S, and SZ are symmetric in # and y, taking into considera-
tion (2.13), (2.14) and (2.15) we can obtain the relations

f, Jn(‘um-w) Jn(”niy)
(216) D

= 202 {n(x —y) Fp:(a, 2)I,(ay) +0(y — @) Fp (a, y) I, (ax)},

t=1

~ A2, (A ) (Ao
@10 D o (i) I8 — 8o, 95 @)+
j=1 "

S a0+ BT (Ay)
+2a* {n(z —y) FE (a, 2)I,(ay) + n(y —2) FE (a, y) I, (ax)}.

The distributions defined by (2.16) and (2.17) are regular and may be
treated as functions [7].
We introduced for brevity the following symbols into (2.16) and (2.17):

1 K
Fo(p,2) = 1 [K,.(pz)—In(pz) I”((;))]’
(2.18) .
1 (H+n)K,.(p)—pK..+1(p)]
Fr(p,?) = K, —1I, .
m(P 2) 4pa[ P2 = Ll T T (0) T T ()

In what follows we make also use of the abbreviation
(2.19)

1
Ffz(]’; ) = Ip? [Kn+l(pz) +1,,,(p2)

(H+n)K,(p)—pK,(P) ] .
(H+n)1n(p) +PIn+1(P)
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Relation (2.16) is the fundamental one for deriving the summation
formulae for the Fourier-Bessel scries. In this paper we do not deal with
those since they are derived in [1]. In the further analysis we make use
of formula (2.17) that is the fundamental one for deriving the summation
formulae for the Dini series of type (1.1).

 In what follows we often speak about passing to the limit with both
sides of the formulae for z or y tending to 1. The uniformity of conver-
gence of the Dini series in this case is ensured by the considerations and
theorems being given in [8], Sections 18.34 and 18.35.

3. Other series of type (1.1). Let us differentiate distributionally
formula (2.17) with respect to 2. We obtain

(3.1) S ZsT 11 (Apg @) (R,59)
“d (A +a®) (22— n? + H2)J2 (4,)
— Ano[n(H +n) _1]In+1(2now)
(}'flﬂ—a‘z)-ln()'now)
+2a? {n(x — y) F5 (a, x)I,(ay) — n(y — @) Fri(a, ¥) I, (az)},

Z(n)o(w ’ ?/) +

where

- App(@,y) i Hi+n #0,
A(n)o(wa y) = {0 if H4+n = O,
the function A (%, y) being defined by (2.4).
If a >0 in (3.1), we obtain

(3.2) 2‘ Zm'Jnﬂ (;‘njw)Jn(}‘njy)
~ (A — '+ HY) T} (Ayg)

I 1(20%) - nz—y) (y\"
- o+ w11 22 o, )+ LD (2

_, Multiplying both sides of (3.1) by —a~* and both sides of (3.2) by
™" and then adding we get

(3.3)
\! }ij +1(}~ jm)J (4 j?l) . [1“‘77(H+’"')]In+1(}~now) a T
Al i . = wo(@ ¥)+
= A+ @) (2 — 0P+ H?)JE (A,) Ao (A2 — @) I, (A0 ) mo(®

n
+ato—pfeaa (L) ~2F e, o, @n)+
+n(y —x)20F 7, (6, Y) Lo,y (a).
Differentiating distributionally (3.3) with respect to y we obtain
(3.4) 2"": By 11 (hag®) T 12 ()

o= (Anj+a®) (An; —n* + H?) 3 (Apg)

[n(H +mn) —1]In+l(}'n0w)1n+l (Ano¥) 1
= 2 2 mo+
(2’n0_ )In()'nom)In(lnoy)

+2a? {n(a:—y)F,’;’,(a, m)1n+1(ay)+’7(?l—‘”)ng(“’ Y) 1, (a2)}.




124 K. Grysa and J. Jankowski

Making use of (2.17), (3.1), (3.3) and (3.4) we can derive (for a #* b)

the summation formulae
R 2T, (A @), (A Y)
3.5 nj n "
(3.5) ;(Aﬁ,—*—ﬁ)(l ,+b2)(l —nz-l—H’)Jf,(}.M)

.2
B_at {n(zx— y)[a’zl’-, 1(a, )1, (ay) —

VI (b, 2) I, (by) 1+

A(n)o(“f‘,i'l) b
+’7(y"w)[“2pfl(aa?/)1n(aw) | (b, ¥) 1, (bx)1},
where :
—A(”)o(d/', :'/) .
H
_ E ) (B, T HIR A
Ay, y) =
(n)o\%
(n+1)z"y™ .
—_ —75'2-—— if H—l—n = 0;

od ST (A ) (A )
(3.6 lﬁj n+1\"nj n \*nj
) J;‘ (A35+ @®) (A7, + 0%) (A2; — 0 + H?)J; (4y)

_ [1—n(H+n)]2n01n+l(lno$)z(n)0(w7 y) +
(Ao — @) (259 — 1) I, (Ano )

2
P = y)[a* Fr(a, 2) I, (ay) — b Fr; (b, @) I, (by)] —
—n(y— ) [ FFi(a, Y) I 1 (a0) — b F (b, y) I, () 1},

lﬂi n+l(1mw)Jn(Am'y)
(.7) 2 B, @) (2, + ) (2%, — n + HD) 2 (A)

_ "7(“’-:'1) (_y_) + [n(H—{—n) 1]In+l(ﬂ'n0w)z(n)0(w7y) +
20’z \ Ano(Aing— &%) (A — V%) I, (A040)

2
Tt {n(x—y)[bFE (b, x) I, (by)— aF;(a, 2) I, (ay)]+
FEI (b, ¥) 1,1, (b)]},

v —
+n(y—2)[aFg(a, y) I, (ax)—b

2011 (Ans®) I 11 (Ansy)
&9 2 (Anj+ 0°) (435 + 0°) (A7 — 0° + H®) I, (Ag)
bz_ 7 {1(@—9) 0" Fri(a, 2) L, y1 (ay) — ¥ Fay(b, @) I, 1 (by)] +
+0(y—2)[0"Fy; (@, 9) I, p1(a0) — B2 F5 (b, 9) L, (b2) 1} +

+ [1 n(H+n)}In+l(Anox)1n+l()'n0y)z(n)0(w7 y)
(Bg— 6%) (22— 1) I, (Ano) I, (Aoy) ’
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O Tt @) T s ()
3.9 +1\pj n+1\%nj
(3-9) g;' (lfzj'{'bz)(;'ij— P+ H) G (Aeg)

(y [x)"*!

n-+1
= 79 ~2BE G, a0 + nly—a) ol

4t (n+1)

—2FH(p [1_n(H+'”‘)]In+l(}'now)1n+l(}'noy)z(n)o(mr y) )
e ’y)I"'“(bm)} - 22 (A2 — 01 I, (Ano®) I, (Ano¥)

The cases considered above enable us to find further summation
formulae for simpler series as well as for more complicated ones. A con-
siderable number of interesting relations can be obtained by allowing »
or y to tend to 1. Such formulae as well as the applications of them are
given in [2] and we do not quote them here.

Replacing a or b in equations (3.1)-(3.9) by ia or & (i =V —1),
respectively, we can easily obtain another set of summation formulae
for the series involving in their denominators the differences of squares.
In this case it suffices to use the following relations [1]:

(810)  Ey(ip) = — Zi™{¥o(p)+Wu(p)}, Lnlip) = i*Ja(p)-

Substituting the right-hand sides of (3.10) into (2.18), and (2.19) we
obtain

B11) FH@p,2) = —i™6E(p,2), FE(ip,2) =i "16L(p,2),

where

T (H4+n) Y, (p)—pY,..1(P)
G(p,2) =—51Jn -
m(?)2) 8 { (#2) (H+n)d,(p) —pd, 1(D)

H _ T (H+n) Y, (p)—pY,.(p) . }
G (p,2) = 8p° {Juﬂ(l’z) (H+'n)J,,(p)—pJ,.+1(p) Y, ..(p2)

Yn(pz)}?
(3.12)

Then making use of (3.11) and (3.12) and formulae (2.17) and (3.1)-
-(3.9) we can derive the following set of summation formulae:

2 lfijn(lm‘w)Jn(lnjy)
L (32— %) (2 — B (g —m* + H) T (2y)

¢

= Ay (@, 9)+2(a*— 1) i (@— ) [4*GE (a, ) J , (ay) — B*GE (b, 2) J . (by)] +

+0(y — o) [6°Gri(a, y) I, (a2) — DGR (D, 9) T (b2) 1},
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where
— A2, Y) .
(n)o\Y? if H
Ao, y) (A0 + @%) (Ao + %) 50
mp\T, Y) =
n+1)z"y" .
— —(——a—él))z—y if H4n = 0;
2 I (A (A Y)
f n\’nj n\’*nj
(3.13) 2 (1 +b2)().2-—n2+H2)J2()nj)

jn)o(way)+2(a‘ +b2)"1{?7w y)[a* Gy (a, 2)J, (ay) — b* Fr (b, @) L, (by) 1+
+9(y —a)[a* G5 (a, 9) T, (az) — b Fy (b, y) I, (b)1},

where
—A (@, y) )
. Bty TETn A0
A (2, y) = " "
(“)0( ’y) (n+1)wnyn .

5: By 1 (Aay®) I (Ag¥)

(22— a®) (22, — b) (A2, — 0® + H?) I (Ayy)
= 2(a>— b)) {n (@ —y) [6°GE(a, @) ], (ay) — b*GE (b, 2)J, (by)]+
+7(y — 2) [6°6B (@, Y) T 11 (a2) —BGE (B, y) ., (b0)]} +
Ano[1— n(H+n)]In+1(l o) i

(A2 + 0%) (A2, + b%) I, (A,0)

+ (n)o(w, Y)»

2 B3 11 (@) I (A5 9)
po (Af,,— 2)(A JH—bz)().f,,— 2—|—H’)J’(}.,,,)

= 2(a’+b") 7 {n(z —y) [a*Gr:(a, ) I, (ay) — B F 3 (b, @) I, (ay)]+
+n(y— ) [8°G75 (0, Y) T 10 (a0) + P FL (B, y) L,y (a2) 1} +

Ao [ —n(H +n)]1, . ,(2,,%)
(A2 + @) (Ano — b) L, (Ao )

Ay (@, 9),

2 Ani 41 (A ®)J 1 (A059)
(25— @) (A2, — b%) (A2, — 0¥ + H) T (Ayy)
—2(a — ") {n(z — ) [aG7:(a, 2)J . (ay) — bGr; (D, 2)J, (by)]+
+1(y —2) (8631 (ay Y) I 41 (a2) — DG (D, ?I)Jn+1(bw)]}+

[n(H +n) =111, ;) (Ao @) Agyo (@, y) n(z—y) (g/_)”
Ao (B0 4 a?) (22,4 B%) I, (A, ) 2a*b’z \z
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0

2 }'ann+1(j'njw)Jn(lnjy)
Lt (s — @) (2054 ) (22, — m? + H?) J%(,5)

= 2(a’+ %) {y(z —y) [aGL (a, x) ], (ay) + bB* FE (b, 2) I, (by)1+
+9(y — ) [aGE(a, Y)d i (ax) — bF (b, I, 11 (bx) ]} +
[n(H +n)—1]11, 1 (A®) Z(n)o(wy Y) n(z—y) (_:i/_)n,

Ano (Mg + a%) (A2 — 1) 1, (A0@) 2¢*b’x \o

j M(}F Zliign+l(}‘njw)‘]n+'l(}'njy)

et A —a”) (A — D) (A2 — P + H?)J75(A)

= 2(a*—b")" (2 —y) [a*GT, (a, @) J 41 (ay) — B*GE, (b, 2)d 1 (BY) ]+
+0(y—2)[a*GF(a, ) J, 1 (a0) — B GEy (B, Y)d 1 (b2) 1} +

[n(H+n) =111, 1 (A,02) L4y (}*noy) -

A
+ (2204 @) (220 + D) I, (A,02) I, (A0 ) (@1 9)s

[ <

(3.14) Afonn+l(z'm'w)Jn+l(lnjy)
& (Aaj— @) (A% + b2 (A% —0* + H*)J 2 (Ayg)

= 2(0° +5")" n(@ — y) [0*GE (a, 2) T 11 (ay) — B FIE(B, @)L, 11 (b9)] +
+0(y—2) [’ G5 (a, §) T i (a2) — D Fry (b, 9) I, (b2)1} +

[n(H +n) “1]In+1(}~now)1n+1(}*no?/)Z(n)o(m, Y) .
(]‘?10 + a‘z) (}'io - b2)1n()'n0m.)1n(ln0y)

Further interesting relations can be obtained by allowing z or ¥
?0 tend to 1. Derivation of the summation formulae for the series involv-
Ing denominators with more complicated combinations of products of
Sumns of squares and of differences of squares is also very simple. In par-
ticular, for a single difference of squares one can immediately obtain the
Summation formulae substituting ¢a instead of a into (2.17), (3.1), (3.3)

+

and (3.4).

4. Sums that can be expressed by combinations of the Kelvin functions.
Replacing a and b in equations (3.13), (3.14) and others by aVi we obtain
the sums of the series that involve the binomial A3;+a*. These sums will
be expressed by combinations of the Kelvin functions (see [3] and [8]) in
their polar form. Generally, the substitution into any of the relations
written above ia and/or ib instead of a and /or b leads to the sums expres-
8able by the Kelvin functions.

Let us make the mentioned substitution in (3.13) and (3.14) for
@ = b. We obtain
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o0

(}un)w)Jn(lnjy)
W £

i=

sin [, (az) + 0, (ay)]+

= Ay (2, 9) +

M, (az) M, (ay) N, (az)
20° {" [”(”"”) M, (aa)

‘( y)) sin [, (ag)+ 0 (aw)]]
+ [n(z—y) +0(y —2)] ((H +n)* N, (a) ¥, (a)sing, (0) +
+a* N, 1 (a) M, ., (a)sing,(0) + a(H +n) [N ,(a) M, ., (a)cosp,(0) —

—IM,(a) N, 1, (a)cosg,(0)]) ((H +n)* M} (a)+ a* M, (ai +

+n(y —=)

—}—2a/(H+”)J‘In(a)l”n+l(a')cos [0""*'1(“) - on(a) - j“}])“l}’

where

_A(n)o(m’ y) .
. ‘ if H+n #0
A(n)o(w’ y) = }‘:0'*'“4 ’
—(n+1)a"y"a"* if H+n = 0;

O A2d L (Au®)d, 1 (AY)
4.2 nj¥ n+1\"*nj n+1\"nj
(4.2) 2 (A +a*)(An; —n? + H*)J 2 (Ay)

[n<H+n) UL (e L (hat) 7
- (Mo +a%) L, (A,02) I, (A0y) Ao
M, (ax)M, ., (ay) {_[n(w_y) N, . (az)

sin [@, ., (ax) + 0,1, (ay)]+

2a n+1(aw)
Nypoy)
(=) G i (a9) + Oy a0)] | +

+ [n(z—y) +n(y —2)1((H + n)* N, (a) M, (a) sing, (1) +
+a* N, (a) M, ., (a)singy (1) + a(H +n) [N, (a) M, ,(a)cospy(1) —

C M, (@) N, (a)cosg, (1)) ((H + ) M2 (a) + a2 M2, (a) +

+2a (-4 1), (0) M )cos [ 6,000~ 0,00 - £ ])
where
@1(k) = 0,4 (az) 40, ., (ay) + @, (a) — 0,(a),
pa(k) = O, (az)+ 6n+k(a'y)+‘pn+lr(a’)_ 0,1(a),
@3(k) = 0,1 (a2)+ 0, ., (ay) +@,(a) —0,,,(a) —=/4,
¢4(k) = n+k(aw) + 0n+k(ay) +¢n+l(a') - an(a) +1‘L'/4,
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M,(2) = Vberiz+beilz, N,(2) = Vker’z+keilz,
04(2) = arctg(bei,z/ber,z), qﬁ,,(z) = arctg (kei, z/ker,?),

ber, 2, bei,z, kel‘nz, kei,z are the Kelvin functions of order n (see [3]
and [8]). They are related to the Bessel functions J,(2), Y, (2), I,(2) and
K, (2) by the following formulae:

TuVi2) = (~1)PM,, (2)exp[ —if,(2)] = (—1)"(ber,z—ibei,z),
L(Viz) = (="M, (2)exp[i6, (2)] = (—i)"(ber,z+ibei,z),
Kn(l/@TZ) = 1" N, (2)exp[ip,(2)] = i"(ker,2+ikei,2),

Y, (Viz) = (—1yr {iMn(z)exp[—iBn(z)] - %N,,(z) exp[— i«p,.(z)]}

2
=(=-1)" {beinz+ibernz— — (kernz—ikei,,z)} .
K

.The formulae derived above seem to be rather complicated. We could
9bta,1n further summation formulae like (4.1) or (4.2). However, the most
nportant point seems to be the possibility of performing such a summation.

3. Conclusions. In many cases the solution of the differential equations
takes the form of a Dini series. The summation formulae given above make
the physical interpretation of such a solution possible. Application of the
Summation formulae for the Dini series as well as some particular cases
Interesting from the point of view of the theory of continuous media are
Shown in [2]. It is also obvious that summation of the series mentioned
In the present paper liberates us from the tiring procedure of determining
the values of the roots of transcendental equations. That seems to be

one of the most essential advantages of the formulae worked out in this
Paper.
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K. GRYSA i J. JANKO WSKI (Posnan)

0 SUMOWANIU PEWNYCH SZEREGOW DINIEGO

STRESZCZENIE

W pracy wyprowadzono wzory na sumy pewnych szeregow Diniego, zaleznych
od dwu zmiennych. Sumowalnoéé tych szeregéw uzasadniono na gruncie teorii dystry-
bucji, korzystajge z wlasnoéci ciggéw deltowych. Dzialania dystrybucyjne, wykony-
wane w pracy na tych szeregach, prowadza do wynikéw bedacych dystrybucjami
regularnymi. Pozwala to wysumowaé pewne szeregi, pojawiajace si¢ np. w problemach
mechaniki oérodkéw ciaglyeh.



