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ON A MINIMUM CYCLE BASIS OF A GRAPH

1. Introduction. Let @ = (V(@), E(@)) denote a simple graph, i.c.,
a graph without loops and multiple edges. We define a cycle C in G as
a sequence of edges

0= {(miu ;)5 (Bgyy B3)5 <oy (5,5 @5), (05, 0;))},  Where b >3,
such thatifl 5 k, then ; # x; . The length |C| of the eycle C is the number
of its edges. chles of a graph G generate the cycle space with symmetric

difference of C, and C, (i.e., C,®C, = (C,VC,;)— (0N C,)) as an addition
of cycles C, and C,. The dimension of the cycle space is equal to

A =9(@) = m(G)—n(@)+p(d),

where n (@) = |V (Q)], m(G) = |E(G)|, and p (@) is the number of connected
components of G. A cycle basis of G is defined as a basis for the cycle space
of G which consists entirely of cycles.

Let ¢ = {04, C,, ..., C;} denote a cycle basis; then we define the

length of € by
A
16| = D104
i=1

Without loss of generality we may assume that G is a biconnected
graph, i.e., every edge belongs to a cycle of @ and the cycle space of G
is not a direct sum of subspaces.

We are interested in finding a minimum cyecle basis. Such bases have
been considered by Stepanec [2], Zykov [5] and then by Hubicka and
Systo [1]. In this paper we formulate the problem in terms of matroids and
then we consider a particular case of the general problem, namely, of
finding a minimum eycle basis which is a fundamental cycle set, i.e., which
can be generated by a spanning tree.

In papers [2] and [5] methods for finding extremal cycle bases were
Presented, but they do not give a solution for all graphs. Paper [1] containg
the characterization of those graphs for wh'ch the methods of [2] and [5]
fail to find a solution and includes algorithms for finding subminimum
cycle bases and subminimum fundamental cycle sets.
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In this paper we present counterexamples for the conjectures that
the algorithms of [1] find & minimum cycle basis and a minimum funda-
mental cycle set of a graph. In the last section we propose a method for
finding a subminimum fundamental cycle set of a graph, which is an itera-
tion of the method of [1] for pseudo-random starting solutions.

2. Matroid formulation. The problem of finding an extremal cycle
basis of a graph can be formulated in terms of matroids.

A matroid M = (X, #) consists of a finite set X of elements and of
a family # of subsets of X which satisfy the following conditions:

(a) O € £ and all proper subsets of a set I in # are in 4.

(b) If I and J are sets in .# containing p and p + 1 elements, respec-
tively, then there exists an element @ € J — I such that Iu {z} € .

A subset I in £ is said to be an independent set. Let M = (X, f)
be a matroid whose elements X have obtained non-negative weights w,
ie., w: X - R, U{0}. We are interested in finding a maximal independent
set of a matroid for which the sum of weights of its elements is minimum.
This problem can be solved by the following greedy algorithm:

GREEDY ALGORITHM. Choose the elements of the matroid in the order
of their weights, the lightest element first, rejecting an element only if
its selection would destroy independence of elements chosen so far.

The problem of finding a minimum cycle basis of a graph G can be
formulated now in terms of matroids as follows.

Let M = (X, .#) be the matroid induced by @, i.e.

(a) X is the set of all simple cycles of G;

(b) the set I = X belongs to the family .# if and only if I is a cycle
or I is a set of independent cycles.

A maximal independent set of # is a cycle basis of @G. Let [C| be the
weight of a cycle C. The problem of finding a minimum cycle basis of a graph
G is now equivalent to that of finding the maximal element of # which
has the minimum weight. We can find such an element of .# by the greedy
algorithm.

The main disadvantage of the greedy algorithm applied to the problem
of finding a minimum cycle basis is that we must know all cycles of
a graph G.

3. Let Oy, 0,, ..., 0, be a set of independent cycles of C. Let us put

Gi = V(Gy), B(GR)), G = <V(GR), B(Gy)),

where

k k
v(ay) =HV(C‘)’ E(@) = UE(G)

t=1
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and
B(&) = (V) x V(@) nE@G).

In other words, G% is the subgraph of G generated by the edges of cycles
e,, 0,, ..., C,, and G, is the subgraph of @& induced by the set of vertices of
these cyecles.

AvcoriTEM 1 (Hubicka and Systo [1]). Initialization. Let 4, € E(G).
Find the shortest cycle C, containing u,.

General Step. Let C,, C,, ..., 0,_, be a system of independent cycles
chosen so far and such that »(G5_,) = k—1. For w, e BH(G)—E(G;_,)
find in G the shortest cycle C, which contains u, and satisfies »(Gf) = k.
Repeat the General Step as long as possible.

If ¥ is a number such that for every v, € E(G)— E(G5_,) every short-
est cycle containing u, satisfies »(G}) > k, then perform the Completion
of the Algorithm 1 for one edge from E(G)— E(G5_,) and go back to the
General Step.

Completion. We have »(@;_,) =k—1 and »(G}) =k+p> k.
Find a sequence of vertices @, ¥;, ®ay Y2y +-+y Tpy1y Yp41 Such that they
belong to C; and G%_, and the cycle C; from z; to y; (¢ =1,2,...,p+1)
is not contained in G;_,. Find ¢; and f;, the shortest paths from x; to v,
in @5_, and C,, respectively. The current system of independent cycles
is of the form

010z ey Oy iy = (ez'l’fz'l), seey Ok+p = (eip’fip)’
where (¢;,f;), ..., (e,-p, f,p) are p shortest cycles chosen among p-+1

cycles (eq, f1), --:-7 (€ps1s fps1)-
Algorithm 1 finds a subminimum cycle basis of a graph G.

\Z
S

Ve

Fig. 1
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The graph G shown in Fig. 1 has 2 =»(G) =.20—1241 = 9 inde-
pendent cycles. Applying Algorithm 1 to G we can perform the General
Step four times. Namely,

u, = (a,b), C,=1{a,b,d,c,a}, »(G] =1;
u, = (d,e), C,=1{d,e,f}, v(G3) = 2;
us = (f,9), Co={f,9,%,h,f}, »(G) =3;
uy = (¢, 5), C, =1{s,5,k,1}, v(G3) = 4.

Now, for every edge u, € B (G)— E(G;), every shortest cycle contain-
ing u, satisfies »(Gg) > 5; therefore, we must perform the Completion.
Let us = (a, h); then Cs = {a, b, 1, a} and »(G5) = 6. Then we have

‘' wy=a, Y, =h, & =h, yY,=a,
e, = {a,c,d,f,h}, f,={a,h},
e, ={h,f,d,c,a}, f,=1{h,a},
(€15 f)I = I(ez, fo)] = 5.
Thus, we augment the current subbasis bj
Cs = (61, f1) = {a,¢,d,f, h, a}

and then we have »(G¢) = 6. For every edge wu,e E(G)— E(G}), every
shortest cycle containing w, satisfies »(@7) > 7; therefore, we perform
the Completion again. Let w, = (d, k); thenC, = {d, k, 1, d} and »(G3) = 9.
Then we have

2, =d, z, =k, z3=1,
Y=k 9.=1, ¥y =4d,
er ={d,f, h,i, %k}, fi={a,k},
e, = {k,i, h, 1}, fo=1{k,1},
e ={l,a,c,d}, . f3 ={,d},
(e i)l =58, leas )l =4, (65, fo)l = 4.

The two shortest cycles are |
Cy = (s, fa) ={k,i,h,1,k} and C, = (e,f;) ={,a,c,d,l}.

Finally, Algorithm 1 finds the cycle basis ¢ = {0, C,, ..., Co}
of length |¥| =4+3+44+3+3+5+3+4+4 =33 but it is not a
minimum cycle basis. The set of independent cycles ¢’ = ¥ — {C¢}VY
v{l,d,f,h,1} is shorter, namely |¢’| = 32.
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Generally, let us consider the following case. Let
€ = {01’ Gzy sey Okr 0k+17 R OA}

be a cycle basis found by Algorithm 1. Let k be such that »(G,) > k. Possibly,
in the graph G there exists a cycle C such that E(C) < F(G,) and there
exists je{1,2,...,A—k} for which |C| < |Cy,. If the cycle C is not
chosen by Algorithm 1, then the Algorithm 1 does not find a minimum
cycle basis of G.

4. Let us consider a particular case of the general problem of finding
a minimum cycle basis which can be derived from a spanning tree of a graph.
Such cycle bases have been characterized in [1] and [3]. We have for
instance the following lemma:

LemMA 1 (Hubicka and Systo [1]). A cycle basis € = {0y, Cs, ..., 03}
of a graph @G can be derived from a spanning tree of G if and only if € contains
no cycle which consists of edges belonging to other cycles of €.

In general, a minimum cycle basis may not be generated by a spann-
ing tree.

Now we present a method for finding a minimum fundamental
cycle set.

Let T be a spanning tree of a graph G and let w(«) and t(u) for w e M (T)
= B (@) — E(T) denote the length of a minimum c¢ycle in @ which contains %
and the length of the cycle in E(T)u {u}, respectively. It is easy to see
that the following lemma holds:

LeMmA 2 (Hubicka and Systo [1]). Let T be a spanning tree of @ graph G.
The fundamental cycle set €(T) generated by T is a minimum cycle basis
of G if and only if w(u) = t(u) for every edge w € M (T).

Two spanning trees T and T, of a graph G are adjacent if there exist
edges w e B(T) and v € B(T,) such that BE(T) = E(T,)— {v}u {u}.

LevMMA 3. If a fundamental cycle set €(T,) is a minimum cycle basis
of a graph @, then T, is a locally minimum spanning iree of G, i.e.,

w(e) = min 2 w(e').
geE(Tp) {T:d(T,To)=1} ¢'cE(T)

Proof. Let us suppose that T, is not a locally minimum spanning
tree of G. Then there exists a tree T which is adjacent to Ty and its length
is smaller than that of T, i.e., there exist edges v € M (T,) and v € E(T,)
such that

—

E(T) = E(Ty)—{v}u{u} and w(T)<w(T,)),
where

w(T) = CEEZ(,;)w(e).
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Therefore
w(v) > w(u) = t(u) = |Cp (u)|.
Since fveE(O'To(u)), we obtain w(v) < |Cr,(u)] and we arrive at
a contradiction.
The following example shows that the converse does not hold.

Example 2.
1 3 2 \\\
i
4 6 ;
_ .
G T T
Fig. 2

The weights of edges of @ are
w(l) =w(2) =w3) =3, w(4)=w(d)=w(6)=A414.
Then for the spanning tree T, we have

w(Ty) =3+3+4+4 =14, |¢(T,)] =3+4 =171,
and for T
w(T) =3+3+4+4 =14, |4(T) =3+5 =8.

T is a minimum spanning tree of G and a locally minimum spanning
tree of G, but ¢(T) is not a minimum cycle basis of G.

On the base of Lemma 3 we ought to look for minimum cycle bases
which simultaneously are fundamental cycle sets among bases generated
by locally minimum trees.

ArLGORITHM 2 (Hubicka and Systo [1]). Initialization. Let T be
a spanning tree of a graph @. For instance, T may be a maximum spanning
tree of the weighted graph G, = <V (G), E(G); w), where w: W(G) > R,
and w(u) is the length of a minimum cycle in G containing edge .

General Step. If w(u) = t(u) for every edge u € M(T), then €(T)
is a minimum eycle basis of @; therefore, the algorithm is terminated.
In the opposite case, find edges »* € M (T) and v* € E(T) such that

I%(Tu‘v‘)l = min min !%(Tuv)h
ueM(T) veE(Cp(u))
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where T, is the spanning tree of G which consists of edges E(T)—{v}u{u}.
Let T* denote T,.,.. The spanning tree 7™ generates a minimum basis
among the cycle bases which are derived from the spanning trees adjacent
to T. If |4 (T*)| < |¢(T)|, then replace T by T* and return to the General
Step. If |%(T*)| > |%(T)|, then the algorithm is terminated. € (T) is the
subminimum fundamental cycle set of G.

The next example shows that Algorithm 2 finds a subminimum funda-
mental cycle set of a graph G.

Example 3. Consider the graph G and its spanning trees shown in
Fig. 3.

Fig. 3

It is easy to see that every tree T, which is adjacent to T satisfies
1Z(T)] < |Z(Ty)I.

We have |¢(T)| =22 and ¢(T) is not a minimum fundamental
cycle set, since € (T,) is of length |¥(T,)| = 20.

Algorithm 2 can be modified in such a way that it will search for the
global minimum among the local minima obtained for different starting
solutions. This approach has successfully been used in many heuristic
algorithms, for instance, Lin used a similar idea in his method for solving
the travelling salesman problem.

ALGORITHM 3. Step 1. Generate a pseudo-random spanning tree T
of @.

Step 2. Improve T, by applying Algorithm 2.

Step 3. If the found solution 7" is better than the last solution T
which has been obtained so far, i.e., if |¢(Z")| < |4(T)|, then replace T
by 1.

Step 4. Repeat the algorithm from Step 1 until the computation time
runs out or the answer is satisfactory.

This approach requires further investigations.
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5. In this section we shall consider
only planar graphs. Following an idea
of Hoperoft and Tarjan, and Hadlock
who studied difficult algorithmic prob-
lems of graph theory for planar graphs,
namely isomorphism and maximum cut,
respectively, we may ask whether the
problem of finding a minimum eycle
basis can also be simplified for planar
graphs. Our first observation is illus-

Fig. 4 trated in Fig. 4; there exists a planar

graph for which a minimum cyecle basis

is not a planar cycle basis, i.e., a set of interior faces of an embedding
in the plane.

Thus, firstly, we simplify the general problem and we ask for a mini-
mum planar basis of a planar graph. Another problem which appears
is as follows: characterize planar graphs for which a minimum cycle basis
is planar.

The importance of planar bases for planar graphs follows from the
role which they play in characterization and determination of such graphs.

Let G be a planar biconnected graph with m edges and let ¢ = {C;}
be a planar cycle basis of @. Then we have

%] = D101+ 1Cexl — [0ex] = 2m—|Coyl,

C’l-e?

where C,, is the exterior cycle of the embedding of G with € as the set
of interior faces.

A planar graph G is k-outerplanar if k is the maximum number of
vertices which can lie on the boundary of the exterior face of a planar
embedding of @G in the plane. G is outerplanar if k = |V (@)|.

We have the following relation between the length of a minimum
planar cycle basis and the k-outerplanarity.

THEOREM (Systo [4]). Every planar cycle basis € of a planar biconnected
graph G with n vertices and m edges satisfies

%] > 2m —mn,

and a minimum planar cycle basis is of length 2m —k if and only if G 18
k-outerplanar.

Thus, the problem of finding a minimum planar cycle basis of a planar

graph is closely related to that of testing k-outerplanarity. See [4] for
further details.
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0 MINIMALNE]J BAZIE CYKLI GRAFU

STRESZCZENIE

W pracy wykazano, iz przypuszczenia, ze algorytmy z [1] znajduja minimalng
baze¢ cykli i minimalny zbiér cykli fundamentalnych, sg bledne. Zaproponowano
ponadto metode znajdowania subminimalnego zbioru cykli fundamentalnych, ktora
jest iteracja metody opisanej w [1] dla pseudolosowych rozwigzain poczatkowych.
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