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1. Introduction

In this paper we shall continue the study of prediction theory of a stationary process
considered as time evolution in a correlated action, which was began in [4]. As
in the precedent paper, we shall follow the line of Wiener and Masani prediction
schema for (finite) multivariate stationary process [7], [8].

The notion of completion of a correlated action, which we shall introduce in
Section 2, will allow us to give a precise meaning to the predictible part of the
process and, consequently, to formulate more precisely the prediction problems
(Section 3). Since some results from [4] are used here in a slightly different context,
we prefer to outline their proofs. In Section 4, under the supplementary condition
of boundedness imposed on the spectral distribution of the process, similar to
Wiener-Masani boundedness condition [8], we shall determine the predictible part
of the process by means of a linear (infinite) Wiener filter. The solution of predic-
tion problems are given in terms of Taylor coefficients of the maximal outer func-
tion which factorizes the spectral distribution of the process (see [3]).

The reader will certainly note that we permanently use the ideas from the
Sz.-Nagy and C. Foias model for contraction [6] to give an operator or functional
model for prediction. Our model is based on an operator valued positive definite
map (on the integers), which corresponds to an infinite variate (discrete) stationary
process.

2. Complete correlated actions

The notion of correlated action was introduced in [4] as the triplet {¢,5¢,1},
where & is a Hilbert space (the space of the parameters), # is a right #(£)-module
(the state space), and I': 3 x o — Z(8) is an Z(£)-valued map (the correlation)
with the properties:

@ Tlh, k>0, TTh, il = 0= h=0.

28+ [435]
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@) I'thy, hol = I'(hs, hy]*.
(i) T[S dih, 3 By = 3 42T, g,18).
J }
Let now &, be two Hilbert spaces and o = £ (&, A’). Putting for 4
e #(8) and Ve P(E,H)
AV = VA

where VA4 is the usual composition of 'operétors, we make 7 a right #(&)-module.
If we define I" by

Q.1 IV, Vol = ViVs,
then obviously I" satisfies properties (i) and (ii). (iii) is also fulfilled:

r [ZAA, Vi, Zj: BW,| = (Z v,A)) *(Z w,B))

= D AIVIWB, = ) ATV, WiB,.
7J ]
Hence {¢, 3¢, I'} is a correlated action. In fact, as the following propositioﬁ shows,
any correlated action can be imbedded into one of this type.

PROPOSITION 1. Let {&,3#,I'} be a correlated action. There exist a Hilbert
space A" and an- algebraic imbedding h — V), of the right £ (€)-module # into the
right % (&)-module (8, A" with the properties

22) TThy, hol = ViVi,, ki, hoeof.

(2.3) The elements of the form ye = Via, with aed and heH#, span a dense
subspace in X .

This imbedding is unique up to a unitary equivalence.

Proof. The proof follows the construction of the Aronszajn reproducing kernel
in a Hilbert space [1], [2]. Let 4 = & x5 and y(,,y, be the complex valued func-
tion defined on A by

249 Yan®,8) = (L'lg, Ha, b)e.
On the linear span of these functions we define the form

<Z y(a_,.lu)’Zy(bk.Eg)> = Z(T[gk, hjla;, bg-
3 TE
» @y €8, choose a € & and 4; € £(6) such that ;0 = a;. We have
\
<§JJ Yiazhps Z‘,V(a,,.ak)> = Z(P Thes hjlay, ),

= Z(I"[hk, hl4,a, A,a), = Z;(A”‘I’[hk, hld;a,a),

= (T[ZA,,hk, ZA,hj] a,'a) >0

For ay, ...
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Thus (-, ) is a sesquilinear semi-positive deﬁmte form. The Hilbert space o is
obtained in the uwsual way from this form.
For any h € 3 we define

(2.5) Vi@ = Yany, a€é.

Using (2.5) and (2.4) we have
[Waali% = 17wl = (T[h, Ka, a), <
therefore V), € L (&, A).
For any h,, h, € # we have
(F[hnhz]“ b)y = <',Vc- hy)s Vb, h,)> <Vh,a Vn‘b> = (Vt’fth,a b),
Hence

[Tk, B - lalf;

F[hx, hz] = V* V;u
and so property (2.2) is verified. Property 2.3) resu]ts from the construction of
the Hilbert space .

If A — V, is another imbedding of s#° into .S,”(é“ A"y which verifies (2.2) and
(2.3), then setting

XVia= V,a
we obtam a unitary operator X: X — " such that
XV = Vi

The proof of the proposition is finished.

The Hilbert space o, uniquely attached to {¢, 3#,I'} as in Proposition 1, is
called the measuring space of the correlated action {&,#,I'}.

We say that {&, o, I'} is a complete correlated action, if the map A - ¥V}, of
S into L (&, A’) is onto.

Recall that a I'stationary (discrete) process in a correlated action {&, ¢, '}
is a sequence {f,}*% of elements in 5 such that I'[f;, f,] depends only of the
difference m—» and not on m and n separately.

For a Istationary process {f,}*$ we use the following notation:

H={hew | h= Af, 4c2@)
i<n

n
VAZXA

k=—o

+00
AL, = \/ Vel
Remark that we also have
xi=\/ v,¢.
heH']

We say that two Jstationary processes {f;}*% and {g.}*% are stationarily
cross-correlated if I'[f,, g,,] depends only of the difference m—n.

PROPOSITION 2. For amy I-stationary process {f,}% there exists a unitary
operator Uy on A%, such that

(2.6) Veu=Up¥s,.
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The I-stationary process {g,}*% is stationary cross-correlated with {f,}£ iff there
exists a unitary operator Up, on
= AL VAHE
such that
Up=Uglt], and U= UgldtL,.
Proof. Setting on the generators of A,

UJ‘ IG”a = Vf‘nua!
clearly we obtain a unitary operator on ¥, satisfying (2.6).

Let {f,}*= and {g,}*% be stationary cross-correlated processes, and Uy, Us
be as above. Then, if we put
27 Upe(Vy.a+ Ve b) = V.04 Ve, b,
we have’

| Use(Vy,a+ ‘/;’nb)le = ||Vp.a+ Vg..“bnz = ”y(d..ﬂwﬂ+y(b;ﬂm+1)”z
= {Va. 1y TV, tme1>s Ve, frs) TV busmin)?
= (I‘[.fn+15ftl+1]a a)+(~r[gm+1agm+1]by b)+
+2Re(r[fn+ls gm+1]b a)
(I’Lfm fula, )+ (I'gn, £alb, b)+2Re(I'[fy, gmlb, a)
= {|Vy.a+ Vbl
It follows that (2. 7) defines a unitary operator Uy, on X% which extends both Uy
and U;.

The unitary operator Uy is called the shift operator attached to the I'stationary
process {f,}*% and Uy, the extended shift of the stationary cross-correlated processes
{f}ES and {g.}13.

Let us remark that (2.6) implies

where Vy = V.
In what follows we use the following notation:

2.8 A, = \{ UF'V,8 = Ao
and
29) U, = U,

A I'stationary process {g,}*% is called a white noise process, provided
I'lgn, gl = 0 for n # m.

*We say that a process {f,}*3 contains a white noise process {g,. *oif:
(i) {g.}*2 is stationary cross-correlated with {f,}*% and

I’[f;ugm]"‘o, m>n,
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(i) V;& = A7,

(lh) RGF[I;, —&n> gn] *

A I'stationary process {f,, *% is called deterministic if it contains no non-
zero white noise process.

" We say that a I™stationary process {f,}*Z is a moving average of a white
noise {g,}*2 if {f,}*2 contains {g,}*2 and #% = A7 .

THEOREM 1. (Wold decomposition in time domain.) A I-stationary process
{f,}*% admits a unique decomposition of the form

(2.10) Jo = tpto,

where {u,}*3 is a moving average of a white noise {g,}*% contained in {f,}*3,
{0a}£3 is a deterministic process, and I'lu,, v,) = O for any n, m. The white noise
{ga}*% is the maximal white noise process contained in {f,}*3.

Proof. Using the imbedding # — ¥V, of & into Z(£, X" and (2.6), we may
consider

Ja=U}Vs. ,
By the Wold decomposition of the isometric operator U, on %", , we have
(2.11) K= M (F)OZ

where
F=A,0UX,, M(F)= U"f and &=\ ULX,.
n=0
Let P be the orthogonal projection of 2, onto M, (%) and P be the ortho-
gonal projection of ", on the wandering subspace #. If we put u, = U}PV,,
v, = UNI~P)V; and g, = UfPsV;, then (2. 10) is obvious and we have
T[up, v) = VFPUF-"I—-P)V, = VFUF"P(I—F)V; =
Since
I’[gmgm]=V*P}‘Um—"P§?Vf=0 n#Fm,
it follows that {g,}*% is a white noise process. The I™-stationary whlte noise process
{ga}1% is contamed in {u,}*%. Indeed, we have:
() {g.}*2 is stationary cross-correlated with {u,}*3 and
T'lu,, g, = V}PUF"PsV,=0 for m>n.
(i) ¥, = PxV,8 S PV,8 = KA.
(“]) I'[u,.—g,,, gn] = P[uni gn]_r[gm gn] = VfPP-’I{V'—V;PA’Vf =0,
Since we clearly have
2.12) L o = A = M(F), ,
it follows that the process {u,}*3 is a moving average of the white noise process

{gn}-h:u
Let us check that the white noise {g,}*3 is also contained in the I’-stanona.ry

process {f,}*
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(1) For any ae & and m >n we have
(T'fw gnla, a)s = (VFUF"PgVia,a)e = (PeVea, Ui""V;a)s = 0.

‘We have also:

() Vi& = PsV;é < A,

(3) I'[fn_gmgn] = PU;:: gn]_r[gm gn] = V;‘P-VV}"‘ VfP‘FVf = 0.

Hence the white noise {g,}*% is contained in {f,}r%.

Let {g,}*% be another white noise process contained in {f,}*2. We shall
see that {g,}*% is contained in {g,}*3, too. Firstly, we see that

@.13) V& < F.

Indeed, remarking that the extended shift Uy equals Uy, for any a,a,e & we
have

(Vea, U Vea ) = (VEURH Ve, a)e = (Ilfo, g141]a, a,) = 0,
is contained in {f;}*%. Therefore
Vo ¢ F < M (F) =
From (2.14) it is seen that for m > n we have
' Ilg, gl = VEP£UF"V, = 0.

because {g,}*%2

Since
T[g,.-g,’,, grlx] = F[gn’ gv’r]—-r[gv,u g"l] = V.}(Pﬁ'VK’_F[g;: gr’x]
= V}Ve—TLlgs, g1l = I'lfu, g1 —Tlgn, gl = I'lfu—gn, &1l
it results ({g;}*= being contained in {f,}*%) that Rel'[g,—g.,g.] > 0. Hence
{g.}*2 is contained in {g,}*%, i.e. {g,}*% is the maximal white noise contained
in (4}3.
Let{l,}*3 be a white noise contained in {v,}*%. Then we have
Tuy, 1] = VFPUP-"V; = V}PUP~"(I-P)V, = 0.
It follows that {/,}% and {f,}*% are cross-correlated and I'[f;, I,.] = 0.
The fact that V& < A% is obvious, and
ReT'lfu—l, 1) = Rel[u,, L)+ Rel[o,~1,, 1,] = 0
Therefore the white noise {/,}*% is contained in{f,}*2, and by the maximality
of {g.}*% in {f,}*3 it follows that {/,}*% is contained in {g,}*=. We then have
Tlgn, b = ViP5V, = V}Pg(I—P)V; = 0.
Hence
P[ln! ln] = Rep[gm l,,]—ReI’[g,,—l,., ln] <0
which implies /, = 0.
If we consider
2.19 Jfo=t,+o,

being another decomposition of the form (2.10) and if {u;}*2 is a moving average
of the white noise {g;}*3 contained in {f,}+%, then, by the maximality of {en}12,
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it follows that {g,}*= is contained in {g,}*%.
Moreover, Vg & = #. Indeed,

(Ve'a’ Ufn+lvfan)% = (VJ*U;+1 VE':as an)# = (T[fg,g,'.+1]a, an)ﬂ'= 0

and V. & is orthogonal on U, X7, ie. V,. & = #.
From (2.13) we have

Hence V6 < A", = M (F).

(2.15) Vr= VotV
and
(.16 AL = A0DA.
Let us denote: &, = FOV,. & and ¢, = UfPgz,V;. Then it is obvious that
{9.}*% is a white noise process contained in {f,}*% and we have:

0) (s, gala, @) = (VEUP-"Ps,Vya,0) = (P, V;a, UF™"V ,.d) =

(ii) V,& = A% (by the fact that V,& L A"} and (2.16)),

(iii) Rel'[v,— Rel'len, g —1I'qn, 441

= VEPs V;~V}PsVy = ViPsV;—V}PsV; = 0.

It results that the white noise process {g,}% is contained in the deterministic process
{on}%, i.e. gn = 0. Therefore #, = {0} and consequently V,. & = &. Hence we
obtain that A = HE = M(F), X%, = R, and by (2.15), (2.16) it follows that
Vw = PVy. So we have u' = u and v = v.

The proof of the theorem is finished.

The process {g,}*2 is the innovation part of the process {f,}*% and it is
called the innovation-process associated with {f,}+3.

~Gns Qn]

3. Prediction problems

Let {f,}+2 be a I'stationary process in a complete correlated action {&, #, I'}.
Denote:

G.D =f{newxin= )ZA,J,,, A e 2(8)
<0

where only finitely many of the 4, are non-zero operators. Following Wiener and
Masani [7], we call 5#, the present and past of the process {f,}*3 and interprete
it as the total information. obtained on the process up to the present moment (¢ = 0).

To predict the process at the next moment (¢ = 1) means to obtain the best
information about f; in terms of the elements in 5. The following proposition
will give this a precise sense.

PROPOSITION 3. Let {f;}*% be a.I-stationary process and {g,,}+"° be the maxi-
mal white noise contained in it. Setting

(3.2) h=h-a,
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we have F[f,,gl] =0 and
(33 Ifi=fi. fi-fil = Jnf TUfi~h, i~

where the infimum is taken in the set of the posztzve operators in £(8).
For any a €& we have

G4) T~ £i~fila, @) = inf Z Ly filay, ap)
Hk=0

where the infimum is taken over all finite systems a,, ..
Proof (see [4]). For any ae & we have

TV~ fi=fila, a)e = (Tlgs g:1a, ) = (V}PsVya,0) = || P#Vyal?

it 3 ornel

wamin & and ay = a.

I

inf

Bye0nyAmES

inf [[Vja— k| =
keU, X,

infﬂ;o UVl = iufkgo VFUEV,a), a)e
m

inf Z o4 [f;,ﬁ]ﬂj» ATH

ay,,. .a.,el K=
ag=

|

thus (3.4) is proved

Let now h = Z 4if-y be an arbitrary element in #,. For anyac &, setting

ay = —Ara we obtam

(Ui ~h, £~ Hla, )¢ = (I’[f1 ZA,, oo fim ZA,f_,]a a),
m+1

=0
Z Lo S~y a)e = Z T fdap ar)e = Z T fday, a)e.
From (3.4) it is clear that
Tifi=fufi=Al < TUfi=h fi-
Let 4 be a positive operator in #(&) such that for any he
< I'[fi=h, fi—h).

For any ac# and a,, ..., an € & we choose A, € £(&) such that 4,a = a.

Then we obtain

(4a,0) < (F[f1~;A,,f_k,fl—ZA,f.j]a,a) = Z Ty, fday, @)
= k,j=0

Using again (3.4), we see that 4 < I'[f,— fl, fi— f,]
This propositions shows that if in some way we can determine fl, then this
contains the best information about /1 that we can extract from the knowledge
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of the process up to the moment t = 0. This justifies calling f1 the predictible part
of f; and A[f] = I'lf;— fl, fi— f1] the prediction-error operator.

Now we can formulate more precisely the prediction problems in the follow-
ing manner:

(1) To determine a sequence of finite operators 4y, -y

Ay in £(8) such
that (2 Aif i)y tends strongly in (&, X) to f1

(2) To compute the prediction-error operator A[f].
As in the Wiener-Kolmogorov theory of prediction, what is supposed to be
known is the correlation function

r(n) = F[fm{»mﬁl]'
It is clear that I'(n) is an % (&)-valued positive definite function on the group of
integers. Using the Naimark dilation theorem, we can represent I'(s1) in the form

2

Iy = § emar (),
o
where F is an #(&)-valued semi-spectral measure on the undimensional torus, the
so called spectral distribution of the process {f,}*%. It is easy to verify that
[#7L,, V;, E], where E is the spectral measure of the unitary operator U}, is the
spectral dilation of F. When no confusion can arrise, we denote it by [, V, E].
In [3] we attached to any Z(&)-valued semi-spectral measure Fan outer L?-bounded
analytic function {&, #, ©(4)} which is maximal with the property that its semi-
spectral measure Fy verifies Fg < F. (See for details [3].) In [3] and [4] we also
proved that

n_ 2

inf Y [ e-ra(F(na, a;)

B0=a,81,-., @€ K570 O

(Ama’ a) =
n 2w
inf Y § =9 d(Fe(t)ay, a)
k,j=0 0
(6(0*6(0)a, a).
In fact, Fg is the spectral distribution of the moving average part {u,}*% of {f,}3.
We also have: 0 < A[f] < I'(0); 4[f] = 0iff {f,}+2 is deterministic; 4[f] = I'(0)
iff {f,}*= is a white noise process; A4[f] > A[p] for any white noise process {p,}*3
contained in {f;}*%; and A[f] = A[g}if {gs}*% is the maximal white noise process
contained in {£,}*3. '
As regards the first part of the prediction problems, to determine the pre-
dictible part f1 of f;, it is rather a difficult task. From the formulas I’[f"1 , 811 =0,
I'[h, g,] = 0 for any h € o, and

Ig, a1 = ~h, fi—

we can interpret f; = f'l—l—g1 like an orthogonal (in I') decomposition of f; with
respect to 5#,. From this it results that f1 is in a sense close to 5#,, but the problem

I

[

inf I"[fl
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to describe this “closeness” by an approximation procedure seems to be vefy com-
plicated. However, under some supplementary boundedness condition on the spectral
distribution F, similar to that imposed by Wiener and Masani in the matrix valued
case [8], we shall determine, in the next section, ﬁ as the sum (in the strong sense)
of an infinite series of elements from #,.

4. Linear predictor

The supplementary boundedness condition on F is the following: there exists a
constant ¢ > 0 such that
—cdt< F < ——1— ¢~idt,

@D 2 T 2w
‘We shall begin with the following

PROPOSITION 4. Let F be an &(8)-valued semi-spectral measure on T, {&, &,
O(A)} be its maximal outer function, and G = @(0)*@(0). Then F verifies condition
(4.1) if and only if {€, F,0(1)} is a bounded avialytic function which has a bounded
analytic inverse, Fg = F, dim& = dim& and there exists an identification of
{€,F,0(} with an invertible bounded analytic finction {£, &, D(A)} such that
“4.2) D(0) = G2,

Proof. Let {¢, &, D(1)} be identified with {€, &, @(1)} as in the proposition

and let {#, &, P(4)} be its inverse. Then there exist the Fatou limits @(e") and
P(e') and

1

@“3) dF = dFy = -2‘7¢(e")*¢(e")dt.

For any trigonometric polynomial p and @ € # we have
2n 2n

| bera(rraa)= o S I @Ep(e")al

2

< ||¢n2—21;§ D&l d

and
27 2%

S Ip(ePd (F)a, a) = —«S IP(e*)p(e")al

2
1
> —z;nwuﬂg 1) D(e)p(et)all

2

212172  IpCe#alar,
0
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where @ and ¥ are the multiplication operators in £(&) generated by ®(c*),
respectively ¥(¢'). It results that for any positive continuous function ¢ on T we
have ;

2 2m 2m

- < < - 2|1
g 717 0t < | pdF <012 | pat

i.e. F satisfies (4.1). :
Conversely, suppose that F satisfies (4.1). If [, V, E] is the spectral dxlatlon
of Fand U is the unitary operator corresponding to E, then

X (Z U"Va,,) = Z e™a,

defines an invertible operator from X", to H*(&), which intertwines U with the
shift operator on H?(&). Then clearly

X(N)U#+) = () UXA, = {0}.

Thus O U"A" . = {0}, which implies (by the factorization theorem [3]) that
nz0

Fg = F. Obviously, (4.1) implies that {¢, #, ©(4)} is bounded and the correspond-~
ing @, is a bounded operator with bounded inverse @;!. The operator @31 inter-
twines the shifts; thus it arises from a bounded analytic function {#,&,2(1)}
which is the inverse of {&, #,0(A)}.

Let us consider the operator X: & — & defined by X = G*/22(0), where G
= 0(0)*6(0).

We have

[1Xal|* = |[G'2Q2(0)al|* = (G2(0)a, 2(0)a)
= (6(0*0(02(0)a, 2(0)a) = ||OO)2(O)al* = [lall*

Hence X is a unitary operator from & onto &.

If we put

D) =X6O(1), AeD,
then we have
@(0) = XO(0) = G*2Q2(0)O(0) = G2

Clearly, {¢, &, ®(1)} is another identification of the same function {¢, &, O(1)}.
The proof is finished.

Let now {f,}+2 be a I'stationary process whose spectral distribution F satisfies
(4.1). Xts prediction-error operator A[f] = G is then an invertible operator on &.
Let {g.}*2 be the maximal white noise contained in {f,}*3. Denote
(4.4) hy = G™1%g,

Then {A,}*% is a white noise process such that
Tlhy, Ial = Is.
The process {h,}*% is called the normalized innovation process of {fHi}ts.
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Let {£,&,60(1)} be the maximal outer function of F identified as in Proposi-
tion 4. Then the geometric model for prediction can be drawn as follows:
A =IX8), A, =Li#),
V=20|¢, ¥a)=0~0(Ma,
U = the multiplication by e~ in L*(&).
We have also the following identification for our processes viewed as operators
from & into L*(#):
fui'a = e MBEa,
gn: @ — e~ "O(0)a = e~ "G g,
hy: a— e"™a, .
Let us write also the Taylor expansions of the function {#, &, ©(1)} and its
inverse {&, &, 2(A)} as follows:

@5 9m=GM+;@m

4.6) Q) = G124 ; QA

PROPOSITION 5. Let {f;}*% be a Istationary process whose spectral distribu-
tion F satisfies the boundedness condition (4.1). Then we have

@7 ﬁ=2@mk
=0

and

@8 =Y Qufo

=0
where the series are supposed to be convergent in the strong topology on £ (&, X).
Proof. Working with the above identifications, for any a € & we have

o0 o 0

=y )

? Ohy_ya = E :e—l(n-—k)!@la = g—int E eé*0,a = e~ "O(e)a = fia
=0 =0 k=0

and

z‘Qkf;_ka _ Z e‘“"“""@(ei‘)ﬂka
k=0 k=0

]

e M@ () Z M Qua = e O(e)Q(e")a
. k=0

= e g = h,a.
The convergence of the series and the commutation of the operators with the
summations which appeared above is verifiable in an obvious manner.
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THEOREM 2. Let {f,}*% be a I-stationary process whose spectral distribution F
satisfies the boundedness condition (4.1), {€, &, ©(2)} be the attached maximal outer
function and {6, &, 2(A)} be its inverse. Then the predictible part ﬁ, of f, is given by

(4.9) ﬁu = Z Ejf(n—-])—j
j=0
where
J
(4.10) E = z; 001,
£

" The prediction-error operator A[f] is
A[f] = 60)*6(0).
Proof. From (4.7) and (4.8) we obtain

~

) ©
Je=Io—8n = nghn—k'"G”zhn = Z@khn-k
k=0 k=1

= f]j@k So stn-—k—s = ii"@p.ugsfn_;..
=] §=0 p=05=0

= Zw ( Z @”“Q‘)f"“”“’ = i (5 :@PHQJ-P) Fene1y-4-
J=0 p+s=j J=0 p=0

The convergence of the series and the commutations involved are easily veri-
fiable.

In such a way we can obtain the predictible part ﬁ, of f, using the linear (in-
finite) filter E,, E,, ..., so-called the linear predictor or Wiener filter for prediction.
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