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By the way, the same argument also shows that the spectrum is bounded. The
complex (A.(E/F), 8,-) is exact if and only if (A4,(E/F), 8y)) is exact where
a—s
(1+|s|2)1/2 :
When s is large, a(s) is a perturbation in the sense of Proposition 5 of s, = s5/|s|,
and d,, is a perturbation of &y We know that s/}s| is a non-zero system of scalars,
is therefore regular. The complex (4,(E/F), 8,_,) is therefore exact.

o(s) =

PROPOSITION 7. Assume that (ay, ..., @,) is a regular system of strict commuting
endomorphisms of EJF, a; induced by a}: E — E. Let by, ..., by be new commuting
endomorphisms of E[F, induced by b}, E — E. Assume that
lai—bHlzwe < & llat—bHlewn < & llaia} —a}al+bibi —bibjllewn < e,
with ¢ small. Then (by, ..., by) is regular.

For the proof to go through, at least, we must assume not only that (b,, ..., b,)
is near to (@i, ..., d,) in the Banach algebra of linear transformations of E which

leave F invariant. We must also assume that the commutation [a;, a;] are near to
[B:, b;] in the two-sided ideal of linear mappings of E into F.
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Introduction

In this article we treat a number of topics, as indicated in the table of contents,
on the interrelation between the algebraic properties of the spectral radius and
those of the algebra. Originally these investigations were motivated by the well-
known contrast between commutative and non-commutative Banach algebras. For
example, spectra of elements behave much better in commutative algebras than
in non-commutative algebras. Therefore we tried to explain to what extent spectral
properties (nice in some reasonable sense) of elements in the algebra can effect
commutativity, the essence of the Gelfand theory. It emerged that the key to this
mystery is contained just in the notion of the spectral radius. It is indeed interesting
to find if the properties of the spectral radius can give information about the prop-
erties of the whole spectrum and, moreover, about the structure of the whole
algebra. Of course, we obtained these results first for Banach algebras over the
complex field because some of the crucial steps were based on complex analytic
tools like the Cauchy integral formula and the Beurling-Gelfand formula for the
spectral radius. The work culminated in the dissertation [25].

Here we provide another approach, also simple, which is more algebraic and
avoids the preceding analytic techniques. It consists in a more ingenious applica~

* Mailing address: ul. Nerudova 14/1280, 274-01 Slany, Czechoslovakia.
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580 3. ZEMANEK

tion of the classical Jacobson density theorem with the recent improvement for Banach
algebras by A. M. Sinclair [18], p. 36. This makes it possible to extend the results
to, say, real Banach algebras.

Thus the non-emptiness of the spectrum and the particularly simple form of
the Jacobson density theorem for Banach algebras, which we owe, of course, to the
characterization of normed division algebras by the Frobenius and Mazur-Gelfand
theorems, are the only essential facts from the Banach algebra theory on which
we rely, It is curious that the Beurling-Gelfand formula will never be used in this
paper. In this way the actual part of the algebraic and analytic features of the subject
becomes more obvious. In the last section we have found a remarkable connection
with the Kaplansky theorem on locally algebraic operators [10], p. 41. The signifi-
cance of the concept of completeness in the sense of Banach will be demonstrated
especially in the characterization of the Jacobson radical by quasi-nilpotent per-
turbations, cf. the proof of Theorem 3.3. In reading the text, a number: of open
questions may arise, but we point out explicitly only some of them.

As we have already mentioned, the results of the present paper are true essen-
tially for both real and complex Banach algebras. Certainly, a complex algebra can
be considered as a real algebra, but we prefer to give first the proofs in the complex
case because they are often more transparent and easier. So in the first five sections
the algebras will be tacitly assumed to be over the complex field while the correspond-
ing modifications for the real case will be suggested in the last section.

Also the presence of a unit in the algebra will not be assumed in general. In
any case, whenever an algebra without unit may occur, the situation can easily be
adapted to the unitization, the irreducible representations extended to it, etc.

The results. of the first four sections formed a part of the thesis [25] and also
the last two sections are closely related to it. I would like to record here my gratitude
to the Institute of Mathematics of the Polish Academy of Sciences and, in particular,
to Professor Wiestaw Zelazko for all their help and encouragement. Some results
were also obtained during my stay at the Stefan Banach International Mathematical
Center in Warszawa in the Autumn of 1977.

1. The main theorem

We shall be considering throughout an arbitrary Banach algebra 4, mostly over
the complex field. For x in 4 we denote by o(x) the spectrum and by x|, the spectral
radius of the element x. If the algebra 4 does not have a unit, the spectrum is to be
understood with respect to the unitization A, . For real Banach algebras the spectrum
is defined with respect to the complexification [4], p. 70. The Jacobson radical of
the algebra A will be abbreviated to rad 4; recall that it is defined as the intersection
of the primitive ideals, i.e. the kernels of the irreducible representations.
For every x in 4 put
S(X) = suplx—u_lxula‘s

where » runs over the invertible elements in 4 (or, in 4, if A does not have a unit).
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The main result can simply be expressed just in terms of this function. In this con-
text, there will appear naturally also the centre modulo the radical, i.e. the set

Z(A) = {x € A: ax—xa crad4 for all a € 4}.
Clearly, Z(4) is a closed subalgebra containing radA. For semi-simple algebras
this concept coineides with the usual centre.

Before stating the main theorem let us quote a proposition which will be crucial
in the proof.

PROPOSITION 1.1. Let A be a complex Banach algebra and let 7 be an irreducible
representation of A on a complex linear space X. If &, , ..., &, are linearly independent
in X and if 1y, ..., n, are arbitrary in X, then there exists an element a in A such that
m(@)é = n; for i=1,...,n. Moreover, if n,, ..., n, are also linearly independent,
then the element a can be chosen so as to be invertible (in A, or in A, if A does not
have a unit).

Proof. The first part is the Jacobson density theorem. For the second part,
see A. M. Sinclair [18], p. 36.

Now we have got to the core of the subject. The idea of the proof below is the
counterpoint of the entire work.

THEOREM 1.2. Let A be a complex Banach algebra. Let r be a given element
in A. Then )

(i) re Z(A) if and only if s(r) < o0;

(i) reradd if and only if s(r) < o0 and |r|, = O.

Proof. The “only if” parts are obvious by considering the spectrum in the
algebra A/rad A. The point is in the reverse implications.

Suppose without loss of generality that s(r) < 1. Let x be an irreducible rep-
resentation of 4 on X. If necessary, z can be extended to be an irreducible represen-
tation of A, on X. Now it is sufficient to show that z(r) = An(1) for some complex
A. If not, there exists a vector & in X such that £ and % = z(r) & are linearly inde-
pendent. Consequently, by Proposition 1.1 there exists an invertible element a such
that w(a@)é = & and =(a)n = £+7. Then we have

w(r—a~*ra)& = n(a~Vn(ar—ra)t = n(a N = £ #0,

which means that 1 belongs to the spectrum of #(r—a~'ra). This being contained
in the spectrum of r—a~'ra, we get a contradiction.

Remark 1.3. In the above characterizations, in fact, s(*) = 0. But the formally
weaker condition s(+) < oo can practically be verified in various situations.

It is obvious from Sinclair’s argument in [18], p. 37 that the characterizations
of Theorem 1.2 remain true if in the definition of the function s we let merely u
= ¢b, where b runs over the whole of 4. v

Also, the same argument as above works if we put even s(r) = sup|r+ ru~trul,,
where 7 # 0 is a fixed number. It suffices to choose the element a in such a mannel
that z(a)& = £ and w(a)n = &— 7. This observation may be useful in some appli-
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cations. Originally we proved the result with v+ = —1 by an analytic argument, cf,
[23] or [24]. See also the proof of Lemma 5 in [20]. For this survey, the case 7
= +1 will be sufficient. However, in the real case one must be more careful, cf.
Proposition 6.1.

QuEsTION 1.4. Let D be a derivation on A4. Suppose that sup|x~'Dx|, < o,
x invertible. Does it follow that D(4) < rad 4? If D is inner, this is proved just in
the assertion (i) of Theorem 1.2.

We finish this section by listing some corollaries. Let B(X) be the algebra of
bounded linear operators on a complex Banach space X.

COROLLARY 1.5. Let C € B(X) be such that
sup{|C—T|,: T'is similar to C} < o0,
or
sup{|C+T|,: T is similar to C} < c0.
Then C is a scalar multiple of the identity on X.
Proof. Use (i) of Theorem 1.2, Remark 1.3 and the Schur lemma,
CoROLLARY 1.6. Let C € B(X) be given. Suppose there is a constant y such that
ICTl, < yICl,ITls  for all TeB(X).
Then C is a scalar multiple of the identity on X.

Proof. We shall verify, for instance, the second condition of Corollary 1.5.
Without loss of generality let |C|, < 1. Take a complex number A with {2] > |T],+
+y. Then dist (2, o(I)) > y and

A=(C+T)= (A-T)-C = (1-C(A-T)*}(4-T),
where

7ICls
dist (2, o(T))
so that 1 ¢ ¢(C+1T). This means, however, that |C+T|, <
T is similar to C.

IC(A=T) s < YIClI(A=T) Y, = <0l <1

[Tlot+y = [Cloty if

CorOLLARY 1.7. If R € B(X) is such that |R+Q)|, = 0 for all Q quasinilpotent,
then R = 0,

Proof. By (ii) of Theorem 1.2.

Remark 1.8. For semi-simple algebras the present Theorem 1.2 improves
considerably Theorem 3 of I. N. Herstein [7].

2. Spectral radius characterizations of commutativity

We say that the spectral radius is subadditive on a Banach algebra A if there exists
2 (positive) constant « such that

[x+yls < a(xla+1yle)

icm

©

PROPERTIES OF THE SPECTRAL RADIUS 583

for all x, y in 4. Similarly, the spectral radius is submultiplicative on A if

xyls < Blxllyls
for all x, y in A, with some (positive) constant 8. Clearly, if the algebra is not rad-
ical, the constants must be > 1.

It follows from Gelfand’s theory of commutative algebras that the spectrum
of elements in such algebras possesses some nice algebraic and continuity properties
(namely, subadditivity, submultiplicativity and uniform continuity). In view of the
general importance of the notion of spectrum it should be desirable to know, con-
versely, to what extent these nice properties are characteristic for commutativity.
The following theorem gives a very striking answer.

TBEOREM 2.1. Let A be a complex Banach algebra. The following four condi-
tions are equivalent:

(i) the spectral radius is subadditive on A;

(ii) the spectral radius is submultiplicative on A;

(iii) the spectral radius is uniformly continuous on A;

(iv) the algebra Afrad A is commutative.

. Of course, purely spectral characterizations of commutativity are to be expected
merely modulo the radical since in radical algebras, the spectrum being identically
zero, no further distinction between the points is possible if we take into account
only their spectral behaviour. Nevertheless this only underlines, as we shall see
throughout, the importance of the concept of the Jacobson radical. The correspond-
ing result for real Banach algebras will be given in the last section.

The simplicity of the proof of Theorem 2.1 fully corresponds to the simplicity
of its statement. Indeed, the implication (i)=> (iv) is an immediate consequence
of Theorem 1.2, assertion (i). So to complete the proof it is enough to show that

(i) implies (i) and that (iii) implies s(x) < oo for all x in A. This is done in the
two lemmas that follow.

Lemma 2.2, If the spectral radius is submultiplicative on A, then it is also sub-
additive on A. '

Proof. The idea is similar to that used in Corollary 1.6, but since the algebra 4
may have no unit, we must proceed more carefully. Let x, y be given elements in 4.
Take a complex number 4 such that

14 > |ylo+Blxlo
We shall prove that 4 ¢ o(x+y). This will mean that
[¥latBl%le < Bxls+1¥l0)-
x/A and v = y/A. Then |Jul, < 1/ <

x+yl, <

With this end in view, put u = 1 and

lol, < 1, so that we can write

1-(u+2) = (1-u)[1 - (1—u) tuo(l—v)*](1-0).
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But here
(A~ uv(l -2y, < BI(1~w) ul,lo(l—v),
<P _july ol __ Blulel, .

=lul, T=lol, S W=ARl)A—Tol) <
This estimate is correct even if the algebra 4 does not have a Unit because the fac-
tors (1—u)~*u and v(1—v)~! are both in 4, and so we are using the submultiplicati-
vity only on 4. Thus the element 1—(u--v), being represented as a product of
three invertible elements, is invertible as well. Hence 1 ¢ o(u+12), ie. 1 ¢ o(x+ )
as claimed.

Lemma 2.3. If the spectral radius is uniformly continuous on A, then there exists
a constant y such that s(x) < |x|,+y|[x[| for all x in A. )

Proof. Let £ >0 be such that |la—b|| < ¢ implies llals—1bl,] < 1. Given
arbitrary elements x # y in 4, put @ = ex//lx—y|| and b = ep/|[x—y||. Then
lla—b|| < ¢ and the result follows with y = 1/e,

Remark 2.4. Thus we have proved that both properties of the spectral radius,
subadditivity and submultiplicativity, always occur either simultaneously with o«
= p =1 (if 4/rad4 is commutative) or never with any finite constants (if 4/rad4
is non-commutative). In the complex case, also a direct proof of the implication
(i) = (ii),:quite. analogous to that of (ii) = (i), is available [17].

A characterization of such algebraic property as commutativity modulo the
radical should not depend on the (possibly non-equivalent) Banach algebra topo-
logies which the algebra 4 can share. But condition (iii) in Theorem 2.1 apparently
«does depend on the topology. However, this may be explained as follows. First, it
is well-known that the spectrum of an element in A is the same as the spectrum
of the corresponding class in 4/rad 4. Secondly, the algebra A/rad4 being semi-
simple, its topology is determined uniquely — according to the celebrated theorem
of B. E. Johnson [9] — by the algebraic structure of A alone. Therefore continuity
or uniform continuity of the spectrum or of the spectral radius on 4, which is easily
seen to be the same as that on 4/rad 4, is, in fact, an algebraic property. We have
just shown that the uniform continuity (of both the spectral radius and the spectrum)
corresponds exactly to the commutativity of the algebra modulo its radical.

It would be interesting to find the algebraic properties which correspond to
the ordinary continuity of the spectral radius or the spectrum. However, C. Apostol
[1] has constructed a Banach algebra (even a C*-algebra) in which the spectral
radius is continuous while the spectrum is discontinuous as a set-valued function
in the Hausdorff metric. Thus, in general, not all properties of the spectral radius
are 50 strong as to affect the behaviour of the holes inside the spectrum. Paper [1]
contains also other relevant suggestions concerning this problem.

" Remark 2.5. Theorem 2.1 was obtained independently by B. Aupetit [2] and
the present author [20]. Both these papers were influenced by C. Le Page [14] and

R. A. Hirschfeld and: W, Zelazko: [8], where some important particular cases were
discovered. .
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3. Relations between the radical and the kernel of the spectral radius

In the preceding section we have studied global properties of the spectral radius
on the whole algebra. In this section we shall be interested in analogous properties
concerning only the kernel of the spectral radius, i.e. the set

N={xed: |x|,=0}

of quasi-nilpotent elements in’ the algebra. This analogy we abserved first in [20],
and then developed in [19], [21] and [22]. The present approach is founded again
on the general Theorem 1.2. :

Itis well-known that N' > rad 4, but this inclusion may often be proper. A natural
characterization of algebras in which equality occurs is provided by the following
THEOREM 3.1. Let A be a Banach algebra. The following three conditions are
equivalent:
(i) x,y eN implies x+y e N;

(ii) x,y €N implies xy e N;

(iii) N = rad 4.

Proof. Clearly, (iii) implies both (i) and (ii) since the radical is a subalgebra.
The implication (i) = (iii) is an immediate consequence of Theorem 1.2, assertion
(ii).

Thus it remains to prove that (ii) implies (i). Hence suppose (ii) and take ar-
bitrary elements x,y in N. If 4 # 0, we have to show that 1 ¢ o(x+ »). Putting
u = x/% and v = y/A, it suffices to prove that 1 ¢ o(z+9). But we have

1—-(u+9) = (1-u)(1 —pg)(1-9),
where

p=(0-wy*u and g=o(1-9v)?

are in N. Thus, by (ii), also pg e N, so that 1— (u+v) is a product of three invertible
clements. Hence 1 ¢ o(u+o) as claimed. The proof is complete.

Remark 3.2. It is notable that the purely algebraic conditions (i) or (i) in
Theorem 3.1 have a topological effect, the closedness of the set N in the norm (since
the radical is always closed). It would be interesting to characterize, in general,

" the Banach algebras in which the set N is closed, or to describe its closure. Also,
from (i) or (ii) it follows already that N is a two-sided ideal (since the radical is).

The implication (i) = (ii) can be proved directly, without passing through (iii)
by an analogous argument as above with the decomposition

. l—uv = (1-w)(1+p+9)(1—2).
Note that the equivalence of (i) and (ii) in Theorem 2.1 is established directly, without
passing through commutativity, just by a more detailed quantitative investigation
of this type of decompositions, cf. the proof of Lemma 2.2.
Of course, the first two conditions in Theorem 3.1 are weakenings of the cor-
responding conditions in Theorem 2.1. These two weakenings do not imply the
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commutativity any longer but they characterize a class of algebras which lies strictly
between commutative and general Banach algebras. The spectral radius need not
be continuous in algebras of this class [15].

Theorem 3.1 gives global conditions for the set N to coincide with the radical.
We can formulate also conditions for a single element in N to belong to the radical.
The following one is not the strongest possible, but in any event it seems to be worth
mentioning.

TueoreEM 3.3. Let A be a Banach algebra. Let r be a given element in A. Then
reradd if and only if r+N < N.

Proof. This result is contained in Theorem 1.2, assertion (ii). However, we
can give even a simpler proof not using Sinclair’s remark to the Jacobson density
theorem. Let & and 7 be as in the proof of Theorem 1.2. By the classical Jacobson
density theorem we can choose an element a in 4 such that n(a)é = & and w(a)y
= £+n. If this a is invertible, we may proceed as in the proof of Theorem 1.2 to
show that 1 & o(r—a~*ra), a contradiction.

If this a is not invertible, then — because o(a) is bounded — we can take
a sufficiently large number w such that the element v = a+w will be invertible.
Then ur—ru = ar—ra, so that w(r—u~'ru)§ = a(u )& = £/(1+w); hence 1/(1+w)
belongs to o(r—u~ru), a contradiction.

Thus we conclude that 7z(r) = An(1). But as r € N, this A must be zero.

Remark 3.4. The above argument shows very well in what way completeness
in the sense of Banach is important in this circle of results. Namely, the boundedness
of spectra is just a consequence of the completeness (the Neumann series converges).

If the spectra were, say, the whole complex plane, then nothing could be said
in terms of them. Indeed, T. J. Laffey has constructed a normed (incomplete) algebra
in which the characterization of the radical by the property “r+N < N” fails, I am
indebted to M. R. F. Smyth for this information.

A characterization of elements in the radical by invertible perturbations has
been known (cf. [16] and [13]): An element rin 4 belongs to the radical if and only
if r4u is invertible whenever u is invertible. Clearly, this result is an 1mmed1ate
consequence of Theorem 3.3.

COROLLARY 3.5. Let A be a Banach algebra. Let r be a given element in A.
The following three conditions are equivalent:

() o(a+r) = o(a) for all a in A;
(i) la+r|, = |al, for all a in A;

(ili) r erad 4.

* “Remark 3.6. Theorem 1.2 relates the characterizations of the radical to the
characterizations of commutativity. It may be said that the Jacobson radical is just
the set of those elements perturbations by which leave the spectrum completely
invariant while the centre modulo the radical; a larger set, consists of exactly those
elements  perturbations by which can give rise to merely bounded changes of the
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spectrum. In other words, any element outside the centre can cause arbitrarily large
changes of the spectral radius.

A classical characterization due to Jacobson says that reradd if and only
if |ar], = 0 for all a in A. This is improved as follows.

THEOREM 3.7. Let A be a Banach algebra. Let r be a given element in A. Then
reradd if and only if |(1+4)r|, = O for all q in N.
Proof. The condition of Theorem 3.3 can easily be verified by using the de-
composition
T+a+r = (1+4a) {1+[1-(1+a)*a}r}
with g in N.

COROLLARY 3.8. Let A be a semi-simple Banach algebra. Then the closed sub-
algebra of A generated by the set N is also semi-simple.

COROLLARY 3.9. If N # 1ad A, then sums as well as products of two quasi-
nilpotent elements may have arbitrarily large spectral radii. In particular, this refers
to quasi-nilpotent operators on Banach spaces.

4. Spectral radius characterization of two-sided ideals

Let I be a closed two-sided ideal in a Banach algebra 4. Denote by o(x+1I) the
spectrum of a class x+-I in the Banach algebra 4/I and by |x+1|, the correspond-
ing spectral radius. If the original algebra 4 does not have a unit, these spectra
have to be considered with respect to 4, /7, even if A/I could have its own unit;
this convention will simplify the language but does not effect the essence of the
results which will still be expressible in terms of the spectral radii. It is thus obvious
that o(x+1I) = o(x) for all x in A.
Hence if r € I, then

(€8] ola+I) < o(a+r)

Thus the natural question arises whether, conversely, an element r in A4 satisfying
conditon (1) must belong to the ideal I. The particular case where I = rad4 was
studied in detail in the preceding section. For a general ideal, however, the answer
may be negative: the zero ideal in a non-zero radical algebra can serve as the
simplest example. A less trivial example is the ideal of compact operators relative
to the algebra of bounded operators on the Banach space L(0, 1); cf. [4], p. 135, .
and Theorem 4.2 below. Nevertheless, it turns out that there is an imiportant class
of jideals which admit this natural spectral characterization. Namely, we shall
show that, in general, the set of all elements r € 4 satisfying condition (1) coincides
with ker(hul(7)), the intersection of the primitive ideals containing I. Moreover,
we shall see that an element r € 4 satisfies (1) if and only if it satisfies merely

()] la+l|, < for all a in 4,
the corresponding inequality for the spectral radii.

for all a in 4.

la+r|,
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Thus the ideal I admits spectral characterization (that is, it coincides with the
set of all elements r € 4 satisfying condition (1) or, which is equivalent, condition
(2)) if and only if the algebra A has spectral synthesis at I ifi the sense that I = (MNP,
where P runs over the primitive ideals containing 1. In other words, this is the same
as saying that the algebra 4/I is semi-simple. This happens, for example, if 4 is
a C*-algebra with arbitrary I

In the case where I is the ideal of compact operators on a Banach space, such
characterizations have been known in terms of the so-called essential or Weyl
spectrum, cf. K. Gustafson [6]. The present results improve the earlier ones in
two respects. First, the characterization is expressed purely in terms of the spectral
radius (it does not matter what happens inside the spectral) and, secondly, they
are valid in an arbitrary Banach algebra (the nature of operators is not essential).

The point is in the case of primitive ideals with which we begin.

THEOREM 4.1. Let P be a primitive ideal of a Banach algebra A. Then an
element r € A belongs to P if and only if the inequality

la+Pl, < latr|,

holds for all ac A.

Proof. If r € P, then the inequality holds as we have already mentioned. Con-

versely, let r € A be an element that satisfies the above inequality for all a € 4.
Putting @ = —r we get |r+ P|, = 0. Moreover, if b runs over 4, we have

rls
by assumption. Thus by Theorem 1.2 (ii) (cf. also Remark 1.3) we conclude that
the class r+P belongs to rad(4/P) =0, ie. reP.

The general case easily follows from the primitive case if we recall two general
facts. First, if P = I, then o(x+P) = o(x+I). Secondly, we have the formula

o(x+I) = L}) o(x+P),

sup|r—e~tre? 4P}, = sup |—r+e fré? +P|, <

where P runs over the primitive ideals containing I.

TueoREM 4.2. Let I be a closed two-sided ideal in a Banach algebra A. Then
the set of all elements r € A satisfying the condition

latIl, < la+rl, forallain A

coincides with ker(hul(l)), the intersection of the primitive ideals containing I.
Remark 4.3. The results of this section appeared first in [24].

5. Characterizations of central idempotents

Let E= {eeA: ¢* = ¢} denote the set of idempotents in a Banach algebra A.
Theorem 1.2 provides simple characterizations of idempotents in Z(A4).

THEOREM 5.1. Let e be an idempotent in a complex Banach algebra A. The fol-
lowing four conditions are equivalent:
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() eeZ(4);

(i) sup {lefls: fe E} < o0}
(iii) sup{le—fl;: fe E} < oo,
@iv) sup{le+flo: feE} < o0;

Proof. Clearly (i) implies all the other conditions. Also (jii) implies (i) by The-
orem 1.2 and (iv) implies (i) by Remark L.3. It is thus sufficient to show that (ii)
implies (iii).

Denote by # the finite supremum in (if). Given an idempotent f it will be con-

venient to show that le—flo < (1+#)"% To this end let |4 > (1+%)"2. Then
we may write

A=(e—f) = %_— (A=-9[1+(A~ey ef (A+NT(A+S).

To prove that 4 is not in the spectrum of e—f it is enough to show that the middle
factor is invertible. We have

w

(2' e)‘ ef(l'l'f)_l (1 12 +—=3 13

_(e e e f . f
~GtrtrErtTEtel\ToEY 1") .

1 1 1 1 1 1 1
=(7 717 )(T =T )f_ 719

Since |ef], < #, we conclude that

(A~ ef(A+f) 1, <

This completes the proof. .

Now let C(4) = {x € 4: ax = xa for all @ in A} denote the usual centre

of the algebra 4. For semi-simple algebras we have C(4) = Z(4) and in this case

another equivalent condition for an idempotent e to be central is eE < E. This

characterization can be proved and generalized in a purely algebraic setting; we
refer to [27].

For (real or complex) Banach algebras idempotents in C(4) are character-

ized just as isolated points of the set E in norm topology. In the case of C*-algebras

this result has been obtained first by Y. Kato [11]. We give here a general proof.

THEOREM 5.2. Let A be a Banach algebra. An idempotent e € E belongs to the
centre C(A) if and only if e is an isolated point in the set E. In other words, the centre
of a Banach algebra meets the set of idempotents just in its isolated points.

Proof. 1t is well-known and easy to show that the distance between any two
distinct commuting idempotents is at least 1. Thus a central idempotent is certainly
isolated in the set E. Conversely, suppose that e is isolated in E. For every x in 4
the element f(x) = e+ ex—exe is an idempotent and since the mapping x> f(x)

[#/(22-1) < 1.
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is continuous and f(0) = e, we conclude that f(x) is constant. Hence ex = exe
for all x in A. Similarly, using the idempotents e+xe—exe we get that also xe = exe.
Thus e is central in 4.

For a non-central idempotent we can estimate from below its distance from
the centre. The corresponding proof relies only on the triangle inequality and so
it is valid in an arbitrary normed ring.

THROREM 5.3. Let A be a Banach algebra. If an idempotent e is not in the centre
C(A), then its distance from C(A) is at least 1[2.

Proof. Take a non-central idempotent e and consider the inner derivation
implemented by it, that is Dx = xe—ex for all x in 4. A standard application of
the triangle inequality yields that ||D|| < 2dist(e, C(4)). On the other hand, a direct
calculation shows that D3 = D. Hence ||D|| = 1 as e is not central. The two esti-
mates give the result.

We refer to [26] for additional information about the set E. In particular,
it is proved there that the set E is locally arcwise connected and the structure of its
connected components is investigated in more detail. Each component turns out
to be either a singleton or unbounded, and the distance between any two distinct
components is shown to be > 1. A link with the principal component of the group
of invertible elements is also found and a number of corollaries are listed. We point
out here only one of them: if the set E is at most countable, then E < C(4).

We conclude this section by suggesting another direction of possible further
development.

QUESTION 5.4. It may be of some interest to study spectra of products of
pon-commuting idempotents. Clearly, a finite product of idempotents is always
non-invertible. Thus in the extreme case (when the idempotents are “very non-
commuting”) these products can fill in the whole set of non-invertible elements.
It was proved by J. A. Erdos [5] that this is the case for the full matrix algebras
over a field. Thus the natural question arises to what extent this property charac-
terizes the full matrix algebras among all Banach algebras.

6. Real Banach algebras

In this section we show that most of the preceding results have a natural inter-
pretation also in real Banach algebras. Instead of the spectral radius we introduce
apother function which turns out to be more convenient for this general case.
Moreover, the results formulated in terms of that function will often be even stron-
ger than the previous ones.

Notation. Let A be a real Banach algebra. For every x in 4 put |x|, = 0 when-.

ever there are no real points in the spectrum of x, and otherwise put |x|, = sup|Al,
where A runs over the real points in the spectrum of x. Clearly, |x|, < |xl;-

If 7 is an irreducible representation of 4 on a real linear space X, we denote
by Q, the commutant of z(4) in the algebra of linear transformations on X. It is

icm

©

PROPERTIES OF THE SPECTRAL RADIUS 591
well-known that Q. is a real division algebra, cf. 4], p. 127. Consequently, Q,
is isomorphl.c to R, C or to K, the algebra of quaternions. For complex Banach
algebras Q. is always isomorphic to C. When =z is given we shall often write simply

0 for On.

For the investigation of real Banach algebras the following modification of
Proposition 1.1 is appropriate, cf. [3].

PROPOSITION 6.1. Let A be a real Banach algebra and let m be an irreducible
representation of A on a real linear space X. If &, ..., &, are Q-independent in X
and if 11, ..., M are arbitrary in X, then there exists an element a in A such that
m(@)é; = my for i =1, ..., n. Moreover, if Y is the real linear hull of &1, ..., & and
if there exists an invertible linear transformation T from Y into Y such that T? &L=
for i =1, ..., n, then the element a can be chosen so as to be invertible (in A or 4,).

Proof. Using the functional calculus it is easy to see that T? = e®, where R
is a real linear transformation from Y into Y. By the classical Jacobson density
theorem there exists a b in A such that w(b)&; = RE; fori = 1, ..., n. Now the proof
can be finished as in [18], p. 37.

In contrast to the complex case, the real situation sometimes gives rise to cer-

tain new difficulties which can be reduced to the following purely algebraic result
of I. Kaplansky.

PROPOSITION 6.2. Let T be a linear transformation on a real linear space X.
Suppose there exists an integer m such that for every & in X the vectors E TE, ...
-y T are linearly dependent. Then T is algebraic over R.

Proof. We refer the reader to [10], p. 41.
The real analogy of the main Theorem 1.2 is contained in the following two
results. For » in 4 we put, this time,
q@r) = sup [r—u"rul,,
where u runs over the invertible elements in 4 (or, in A4,). Thus g(r) < s(@r).
THEOREM 6.3. Let A be a real Banach algebra. Let r be in A such that 4(r) < co.
Then, for every irreducible representation % of A, the operator (r) is algebraic over R.

Proof. Let 7 be an irreducible representation of 4 on X. Without loss of gener-
ality assume that ¢(r) < 1. :

Suppose first that there exists a vector £ in X such that £ and 7 = m(r)& are
Q-independent. Let ¥ be the real linear hull of & and #. Define the linear operator

TonYbyTé = £and Ty = —2§~+n. Then by Proposition 6.1 there exists an invert-

ible element a such that z(a)é = & and n(a)n = &+. We finish as in the proof
of Theorem 1.2 to get a contradiction.

Thus for every £ in X the vectors & and 5 = =(r)& are Q-dependent. That
means, for every £ in X there exists an element w(é) in Q such that #(r)& = w()£.

38
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As Q is isomorphic to R, C or K, let w¥*(£) denote the natural conjugate of w(g),
Then we have
@) —wH(®) ()~ w(®)é = 0;

hence £ is annihilated by a polynomial in z2(r) with real coefficients and degree 2,
By Proposition 6.2 we conclude that (r) is-algebraic over R, as was to be proved.

THEOREM 6.4. Let A be a real Banach algebra. Let r be in 4 such that q(r) < .
Let 7 be an irreducible representation of A. If |w(r)|, = 0, then =(r) = 0.

Proof. By Theorem 6.3 we have

i o 7m(r)* = 0,

k=0

where o are real coefficients. Let 4 be the least index such that o # 0. Since
[7(r)|, = O, the operator

m

o+ Z e (r)="

k=hT1
has spectrum {w,}, hence it is invertible. It follows that
® () = 0.

Also, as in the proof of Theorem 6.3, for every £ in X there is an element w(£)
in Q such that
“ ()€ = w(b)§.
From (3) and (4) we get

. w(&E = n(r)'é = 0.

Let £ # 0 be fixed. Put S = w(£)*, an element of Q. Then Sn(a) = 7(a)S for each
a in A; hence, in particular, at the point & we have
Q) Sn(a)& = n(a)SE = 0.
But n(4)§ = X by irreducibility of z. Hence (5) gives S = 0.

As Q is isomorphic to one of the three division algebras, it does not contain
proper nilpotents. Thus we get w(&) = 0. This being true for any &, we conclude
that n(r) = 0 as claimed.

Now we can strengthen the characterizations of the Jacobson radical given
in Section 3. Let

N,= {xed: |x|, = 0},
so that N < N,. For example, we have

THEOREM 6.5. Let A be a real Banach algebra. Let r be a given guasi-nilpotent -

element in A. The following two conditions are equivalent:
() r+N c N
(ii) r erad4.

PRO ERTIES OF THE SPECTRAL RADIUS 593

Proof. An immediate consequence of Theorem 6.4.

It is now obvious that most of the other arguments given in Sections 2-4 can
also be modified in this spirit in order to extend the complex results to the real
case.

Only the characterizations of commutativity require a few words. Namely,
the algebra K of quaternions satisfies s(x) < co for every x (because the spectral
radius coincides with the norm in K) though it is not commutative. The appro-
priate analogy of Theorem 2.1 was obtained in [3], cf. Theorem 6.7 below. Here
we wish to point out that the following proposition is, in fact, sufficient for the
proof in place of Lemma 5 in [3].

PROPOSITION 6.6. Let A be a semi-simple real Banach algebra. Suppose that
every element in A is algebraic over R. Then A is finite-dimensional.

Proof. The proof can easily be deduced from the nice ideas in T. J. Laffey [12].

TueoreM 6.7. Let A be a real Banach algebra. The following conditions are
equivalent:

(i) for every irreducible representation m, the algebra n(A) is isomorphic with Q;

(ii) for every r in A we have s(r) < o0; .

(iii) for every r in A we have q(r) < 0;

(iv) the spectral radius is uniformly continuous on A;

(v) the spectral radius is subadditive on A;

(vi) the spectral radius is submultiplicative on A.

Proof. Knowing that the spectral radius coincides with the norm on R, C
and K, and that for every "x in 4 there exists an irreducible representation 7 such
that |x|, = |7(x)|,, we conclude that (i) implies all the other conditions. It is also
easy to see that each one of (iv) and (v) implies (ii) which in turn implies (iii) triv-
ially. From (vi) we get g(x+y) < B(lx|,+|yl,) as in Lemma 2.2 (cf. Lemma 3 in
[3]), so that (vi) implies (iii) also.

Hence it remains to prove that (iii) implies (i). Let = be an irreducible repre-
sentation of 4. By Theorem 6.3 we know that a(r) is real algebraic. This is true
for every r in A, and the image 7(d) is a real Banach algebra with the norm taken
over from A/n~1(0). By Proposition 6.6 we see that m(4) is finite-dimensional
over R, and hence over Q as well. By the Jacobson density theorem, 7(4) is Q-tran-
sitive, and thus m(4) must be the full matrix algebra M,(Q) for some integer n.
If n > 2, then M,(Q) contains a subalgebra isomorphic with M,(R), but on this
subalgebra we have sup|r—u=*ru), = co for

0 -1 Lo 123
r=(1 0) and u=(0 k)’ = ’ 3 3y eeny

which contradicts condition (iii). Thus 7 = 1. .
Remark 6.8. We have already mentioned that, in the complex case, the equiv- *
alence of conditions (v) and (vi) can be proved directly without passing through
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(i). This is not evident in the real case. Moreover, these properties of the spectral
radius do not extend to the complexification (even in the simplest case 4 = K),
so there is no hope of applying the complex theory (the Liouville theorem etc.).
It is therefore all the more interesting to see that these natural properties of the
spectral radius are again equivalent also in the real case. Proving this was made
possible by the algebraic approach presented in this paper.
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