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Introduction

In order to enlarge the family of L. Schwartz’s distributions, I. M. Gelfand and
G. Silov considered in [25] the followmg problem to define non-trivial locally
convex topological vector spaces Z of infinitely differentiable functions such that
(i) & is a Fréchet space or a countable inductive limit of Fréchet spaces;
(ii) the topology of & is stronger than the topology of pointwise convergence.
The elements of & are called basic functions and the elements of the dual &’ of
& are called generalized fimctions. If we “shrink” %, then %’ become larger.
The generalized functions Z” are called u/tradistributions if, roughly speaking,

- there exist partitions of the unity in 4. This establishes a “lower bound” for Z.

Several ultradistribution theories, based on non-quasianalyticity are considered and
developed by A. Beurling [6], G. Bjork [7], H. Komatsu [34}], J. L. Lions-E. Ma-
genes [41], C. Roumieu [51], [52]. L. Schwartz’s distributions and the above-
mentioned ultradistributions can be imbedded in the large family of hyperfunctions
considered by M. Sato in [54] (see [60], [61], [55], 34], [35]). :

In all the above-mentioned ultradistribution theories it is difficult to handle
differential operators of infinite order. For this reason, the structure of the ultra-
distributions with one-point support was clarified only in particular cases. More-
over, because of the restrictions required by the stability under different- usual
operations, the existing ultradistribution theories cannot be applied efficiently, for
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78 L. CIORANESCU AND L, ZSIDO

example, in functional calculus problems and in the treatment of the abstract
Cauchy problem.

In order to avoid these difficulties, we consider in this work a new ultra-
distribution theory, suggested to us by the function-theoretical tools from [43],
These ultradistributions are parametrized by entire functions w of the form

0 >

iz

(@) = 2],

@ H(l+ tk‘)
®

where t, 15, ... >0, #; < +00, O 1/f < 0.
s

For a fixed w, we can define sufficiently many differential operators of infinite
order to obtain a Peetre type theorem. This enables us to describe all w-ultra-
distributions with one-point support. -

Imposing on w a quite general regularity condition, we characterize the w-

ultradistributions among the hyperfunctions. We give also an intrinsic character-
ization of the “union” of all w-ultradistributions with “regular” .

The introduction of the w-ultradistributions is justified also by the fact that
they can be applied conveniently in the operator theory. Thus, using them, we
explain the “Levinson condition” from [43] and we construct “abstract w-spaces”,
similar to the abstract Gevrey spaces from [4].

Our main results were announced in Comptes Rendus Acad. Sci. Paris, série
A, 285 (1977), 707-710, 753-756, 855-858.

1. Entire majorants

In this section of preliminary character we expose some results concerning functions
with the module majorized by the module of some entire function of a particular
type. These results are fundamental technical tools for- the theory developed in the
next sections. .

Let f be an entire function on the angle {z e C\ {0}; « < argz < f}. For
any 0 € («, §), we write

_ 1o

hy(6) = Tim Inlftre™)|
r4c0 r

and we call k, the indicator function of f ([38], Ch. I, § 15),

We say that f'is of exponential type a < +co if a is the greatest lower bound
of all be R for which there exists a ¢, > 0 such that:

If2)] < e for all ze C\{0}, « <argz < §B.

Obviously, if f is of exponential type @ < +o0o, then sup he(®) < a.
a<f<p

Moreover, if fis of exponential type a < + oo, then by [38], Ch. I, § 16, a), its
indicator function is continuous and by [38], Ch. I, Th. 29, for any « < &' < '
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< B the exponential type of the restriction of f to {ze C\ {0}; «' < argz < §'}
is equal to sup h(6).
o' <f<f’
Using the “three line theorem™ (see [20]}, Th. VI. 10.3) it is easy to see that
if f~a = = and f is of exponential type —c0 on {ze C\ {0}; « < argz < f},
then f vanishes identically.
We recall the following notation:

In,7 = max{lnr,0}, r>0.

Lemma 1.1. Let o, f € R, f—o = w and consider an analytic function o without
zeros on {z€ C\ {0}; « < argz < B} such that

i+ B2
a= lim BROCTID  w
re>+o0 r
and

iy -1

lim sup Inln, |o(re’)|

re++cw 6 Inr

Then, for any analytic function f of finite exponential type on {z € C\ {0}; «

<argz < f} with hy (m_;}é) < a and such that fo~* has a continuous extensions T on

<2

{zeC; a < argz < B} with |7(2)} < 1 on the line argz = a or B, we have:
1y f2) < le@)l, zeC\{0}, « <argz < §.
Proof. Let ¢ > 0 be arbitrary; by the formula
9(2) = T(z)e-ze I

we define a continuous function ¢ on {z e C; a < argz < 8} which is analytical
on {zeC\ {0}; « < argz < f} and such that

lp(@] = [v(z)) <1 for argz= a or f.
Since

. Injp(re'@+Pi?)
lim —/—

r—+ow r

lim
r—-+m

. i@+B)2
ln]cp(re: +5)2)| Shf( a+ﬂ)_

we have
sup |p(re'@+P?)| < 4+ 0.
r=0

On the other hand, if we choose b such that

maxj Lim sup l—nh—l‘“lg—(’ewzl:l—,l}<b<2,
rto a<o<f Inr
there exists a sequence 0 <r; <r, < ...,r,— +00, such that
o@Dt < e, zeC\{0}, «<argz <p,|z|=r, for some n.
Consequently there exists a constant ¢ > 0 such that

lp(2)| < ce®*, zeC, a<argz<f, |z|=r,, for some n.
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80 1. CIORANESCU AND L. ZSIDO

Applying the Phragmén-Lindeldf principle (see [38], Ch. I, Th. 21) to ¢ restricted
to {z€C; x < argz < (+f)/2} respectively to {zeC; (a+h)/2 < argz < B}, we
conclude that ¢ is bounded. Again, by the Phragmén-Lindelsf principle it follows
that for any ze C\ {0}, « < argz < §, we have successively

eI <1, (@< (@) < e*e(2)I.

Since ¢ > O is arbitrary, (1.1) results. m

We remark that there exist deeper results than the above theorem, for which
we refer the reader to [37], Lemma 2, and [38], Ch. IX, § 4, Lemma 1.

By the classical Liouville theorem any entire function of exponential type < 0
vanishes identically.

Next we consider an entire function of exponential type zero, which plays
a fundamental role in this work.

8|z
el

0
DermviTioN L Let 4, f5, ... > 0 be such that D, 1/t < +oo; we define the
k=1

entire function wgy by

wa® =[] (1 + —)

k=1
For any integer n > 1 we have

n o0

3 In(1+zl/t) izl Y, 1/t »

fm Blew®@l g A A g TR .
2] >0 2] et 12 [zl —+c0 |z| o I
so that wy,; is of exponential type zero. Moreovef,
lim In]wgy(—ir)|

r—++o

exists and is equal to 0. We also remark that
|ogy(@)] = logyRe2)| > 1, zeC, Imz<O.

We recall that for any cntxre function f we can define another entire function
f by the formula

f@) =f@.

[=-]
THEOREM 1.2. Let t;, ty, ... >0 be such that . 1/t, < +o,a,beR and
k=1

¢ > 0. If f is a non-identically zero entire function of finite exponential type such that
h(~7j2) < a, he(m2) < b and

L) < clogg()l, teR,
then a+b> 0 apd
ce="™zwua(2), zeCl, Imz<O,
) < {ce,,m,l “
ouy(2), zeC,Imz > 0.

icm
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Proof. Define the entire function ¢ by
Q(z) = ce""w{,,)(z).

Then
lim 111!9(—1"‘)1
res 400 r
exists and is equal to a and
i6y]|—1
lim  sup Inln, |o(re®)|

reto —n<f<0 Inr
exists and is equal to 1. By Lemma 1.1 it follows that
@) < lo(@)] = ce~ ™o,y (2)], z€C,Imz< 0.
Further we remark that A7(—=/2) < b and that
IF0) < clogy®l, teR.
By a similar reasoning to the above we get
2] < ce”?™|wyy(2)l, zeC, Imz<0,

1f2) < ce™Dyy(2)l, zeC, Imz>0.

Finally, we suppose that a+5 < 0; then we can find a de R such thata < d
and d+b < 0. Consider the entire function g defined by

g(2) = e7f(z).

that is

Then .
ce=m =gy (2)],

< zeC, Imz
lg(@) < ce(“b)lmzla{"}(z)’ ,

zeC, Imz

<0,
=20
Since wy, is of exponential type zero and d—a >0, d+b <0, it follows that g
is bounded on any set of the form .

{zeC; nf2—e< w2+e}u{zeC; —nf2—e<argz < —m[2+6}
where 0 < & < /2. By the Phragmén-Lindelof principle it follows that g is bounded
and by the classical Liouville theorem we infer that g is constant. Since lim 1gGr)

r++o

gargz <

= 0, g vanishes identically, in contradiction to our hypothesis on f. m

Having established how inequalities are preserved by analytical extension, we
next look for situations in which inequalities are preserved by derivation. In this
direction the strongest result is given by the following theorem of B.Ya. Levin
(see [37], Th. 4.5 and Th, 4.6, or [38], Ch. IX, §4, Th. 11 and Th. 12):

THEOREM 1.3. Let o be an entire function of exponential type a < +© without
zeros in {z € C;Imz < O} and such that hy(n/2) < hy(—7/2).

If f is an entire function of exponential type < a such that

AL < le®)l, teR,
then for each integer n > 0 we have
IfM] < [e™®)], -teR.

6 Banach Center t. VIII
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82 1. CIORANESCU AND L. ZSIDO

A consequence of this theorem is the following result of S. N. Bernstein (see
[5D:

COROLLARY 1.4. Let f be an entire function of exponential type a < +ow and

> 0 such that .
If) <e,. teR.
Then for any integer n> 0 ’
If®™@) < a", teR.

Next we shall characterize situations in which the module of a function is
majorized on the real line by the module of a certain wy,; or by a transform of
the module of wy,, which was considered by E. Borel and which we call the Borel
transform of Jag,l-

For this purpose we need the following result on convergent series (compare
with [32], Satz 80 and [S1], Ch. II, Section 1, Lemma 1):

o

Levva 1.5. () If @y, a5, ... 20, Y, @ < +00, then a,— O and there exist
k=1

o0
by, bay... >0, X by < -0, with axfb, — 0.
k=1

. L
Gy If ayz a2 ... 20, > @, < +oo, then ka.— 0 and there exist b,
- k=1

bz ..>0, zbk<+oo, with a/b; — 0.
=1
& 1 1
(m) Ifa,>2a,23a:2 ... > O,kZ @, < +c0, then (1+—2«+ o+ —,—(—)kak-—f
=1 g

[+:]
= 0 and there exist by = 2by > 3by = ... >0, ., by < +o0 with a/b. — 0.
k=1

Proof.-(i) This is well known; for example we can take
b O e (CTRR JUNPE N L
L Vel if

(ii) Let.& > 0 then there exists an #, such that ), 4, <

n>ng
&/2 whenever k > k,. For every k > k,, we bave
&

a, >0,
a = 0.
/2 and there exists

a k, > n, such that n,a, <

(e=m)a < D, a < D 0 <ef2;
n=ng-+1 n>ng
$0O
ka, < ef24n.a, <

Consequently, ka,é-» 0.

o0
Define ¢;, ¢;, .. > O,kE ¢ < +00, by
=1 .

Then G = k(ap—ai41).

o«
a, = Ec,,/n.

n=k

icm

@-ULTRADISTRIBUTIONS 83

By (i) there exist dy,d,, ... >0, k21 dy < 4+, and ¢ /d, - 0. Taking

b, = du/n,

n=k

. o
it is easy to venfy that b, > b, > ... > 0, Z b, < + o0 and /b, — 0.
=1 ;

(iii) Let & > 0; then there exists an , such that 3, a, < &/2 and by (ii) there
+1n)kay < o2

exists a k, > n, such that (1+1/2+ .. £/2 whenever k > k,. On the

other hand, for k > k, we have

s Y e Tncs:

n>ng

1,
n+1 7

hence
(1+l+ < E i1t o+ ke <
7+ )k 5+ zt et a < &.
Consequently, (1+1/2+ ... +1/k)ka, — 0.

o0
?0’2 ¢ < 40 by
k=1

Define ¢y, €3, ..-

: g1 1)
¢ = (1+7+ +7€)[ka,,—(k+1)ak,,,].

Then
L) S
= .
kL THI2+ o +1/n
. o«
By (i) there exist d,, d,, ... 2 < +o0 with ¢/d, — 0. If we put
S
kT TR AP a1 1t
kL T+I24 .+ 10
o0
we get by > 2b, > 3by = ... > 0, Z b, <+ and q /b, —0. m

The following result is a combmatlon of [30], Th. 1, and [51], Ch. II, Sectmn 1,
Lemma 2:

THEOREM 1.6. For any f: [1, + ) — [1, +c0) the following statements are
equivalent:

6*
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84 L. CIORANESCU AND L. ZSIDO

@) f is bounded on every compact subset of [1, +o0) and
w In( sup 1))

15t
t2

dt < +00;

3 1/t < +o0 and ¢ > 0 such that

(ii) there exist 0 <1t << ..., 2

.
csup ———7
o ThG

fH < te[l, +o0);

00 . o
(ili) there exist ty, 13, ... >0, Zl 1/t < 4+ and ¢ > 0 such that
k=

fi0) < tefl, +0).

cim(fk)(t)[ 3 .
Proof. (i) = (ii). Let us define g: {1, +o0)~ [1, +0) by

2 41
- -1 ' dr .
o = ({ (g fonar)e § (g SO
Then
2
fiH) < (S (lsup f(s))dr)g(t), te[l, +0).
1 1<ssr

Moreover, g is continuous, strictly increasing, g(1) = l,tlil}-l g(t) = +oo and
“ b4 00

dt < +00.

§ ln;gz(t)

For every integer n > 1 we define a, € [1, +0c0) by the equation glay) = e

then we have
- + 00 +x
”a“l =(n—1)S _’lz_dtg S lnff’) t, for n>1.

Since a, — +co, it follows that n/a, - 0. On the other hand, for each n> 1 we

have

kg1

s ZM i _zd,ﬁll.ﬁg"l_n.@ga.m.‘

icm
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Hence

©

Ing(t)

oo
1 1

—_— —+ S dt < +o00.
e as Y

Since the sequence {l/a;} is decreasing, by Lemma 1.5 (ii) there exist 0 <1,

k=1

0
<t <., 9 1/t < +co, such that
k=il

1,
lim —%-
koo Qi

=0.

Let t € [l, 4+ c0); there exists a unique 7 > 1 such that a, <

© () < glagss) =

t < @y,.1. We have

and
t* " a; ...a
Sup—- > > 1 LI
k1 ly by - g

Hence for each te[l1, + o)

t el
£(1) < sup .
n2t Y a
sup
ka1 b e B
Since #/a; — 0, we have
" et
supH—" < 400,
et o) %

and so, for t€[1, +0) we get

< (S ( sup f(s)) dr) (sup l__[ )sup

P

(ii) = (iii). This statement results from the obvious inequality °

sup
k=1t

S lowy ()], tefl, +00)..

(iii) = (i). We get this last imp]ication from the computations

S Inloug (@1, _ 1i§" (”‘tl‘) ‘
1 1 .
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86 - I CIORANESCU AND L. ZSIDO
Let #;,%,, ... >0 be such that 3 1/t < +oo; then for f defined by
k=1
o0
70 = out=i0 = T [1+-1).
k=1 k
we have R
t
+ o 0+ 111(1-{—-—) 0 (e .
S lnf(t).dt = Z S ,n_._zi_d;—_- Z[]n(u._l_)_,_ EM],
12 t 1 1,
i k=1 1 *=1
hence

+o0 1 Y 1
o BRacd o
e k

k=1

N In lnt

Consequently ¢ = ogy(—it) = T1 (1+¢/#) satisfies the equivalent conditions from
k=1 )

Theorem 1.6 if and only if

L +00.

e

k=1

Next we give a similar result to the above, concerning a refined estimation. For
this purpose we need the following

Levma 1.7. Let 0 < & < 1,2 < 13/3 <

Functions a: [0, +00) ~ [1, + ), Bz (0, +0) > [1, +0) deﬁped by

oft) = 1+Z >

Then « is submultiplicative, (0, +00) 3t — B(t)'V* is decreasing and

0
. 3 1/t < +o0 and consider the
K21

B(t) = supa(s)"".
s=t

k & 2
12 max{l, sup———t——}S o) < B(E) < 4max{1 (sup @9 ) } £ > 0.
k1 by b =1 bt
Moreover
K 2
(1.3) male, sup——-iw} < oDl < 3max{l (sup——(ﬂg———-) }, t>0.
1 st fo by PR

Proof. Denote a, = 1 and a; = 1 [ty ..
increasing, for any p, ¢ > 0 we have

(p+q

" p

. t, k > 1. Since the sequence {/k} is

)“H-q < a,4,-

icm
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Hence for all ¢, s€ [0, 4+ o0),

«©

Z a,tPa,st = a(t)a(s),

=0p+g=Fk

oft+s) =

k
)aktpsq <
k=0p+g=k

x

that is « is submultiplicative.

It is clear that (0; +00)3t— B = sup a(s)* is decreasmg Let t > 0;

then, for every s > ¢, there exist an integer p > l and 0
and by the submultiplicativity of e« it follows that

a(s)E = alpt+r)Ps < altPra(r)i <

< r < tsuch that s = pt+r

a(t) ac(r) a(t)?.
Thus

B(t) < a(2)?,

and using the estimations

max {1, sup i } <at)=1+ 2‘2“ (Zt) < 2max {1, sup—(zL)k—},
k>1 1t t,

. ty ...
1 o1 k=1

we easily obtain (1.2).

Further, for each 2 >0 we denote by n(4) the number of all # with #, < 4
and write

N(s) = lnmax{l, sup——ik———«}, s> 0.
k=1 U .- It

Since {#} is increasing, for s > 0 we have:

»n(s) s s V :
s s _ "n(d)
N(s) = max{O supZ].n——} Zl at - ‘Sln-—a—dn(}.)——(S——l——d}..
N(S)
By Theorem 1.6 S ds < +c0 and by the above relation between n(4) and
1
N,
T o T ds\m T NGs)
n s\ n n s .
| 5 ar= S(S s—z)T‘“= S(S ‘“)sz \S g ds< +oo.
1 1 A 1 1 1
Hence lim N(ZS) =0.
sot+ §

Indeed, otherwise there would exist ¢ >0 and 1<
with N(s;)/s; > & for all j, so that
-
2 N (Sj)
J=t

+oo o 255
XS
E

=1 s
n(4)

<s2<s3< ...,

lim

Similarly,
B o |
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(For the above facts concerning n(4) and N(A) we refer the reader to [45],
1.8; see also [34], §§3,4.)
Consequently, by partial integration we obtain for all £ > 0:
“+o0

In|wg,y (0] = % S ln(1+ p) dn(%)
0

+o0 +oo
L) S sN(s)
=* S B+ di= 2 )@+ @
' N T s
2 5 __ 2gup . S 5
<2t N(t)§ GEToE ds+2t S:;I‘) s TR ds

R

1
N(s) r?
= 2N(’)S (1+ 2)2 dr+2ti‘;€, s S Wdr

2, sup MO N(s)

1 T
= —2—N(t)+ 3

But using the submultiplicativity of «, we have

t In2+N(4t
sup YO N(s) < sup Ina(s) - sup 1n a(s) < Ina(2t) < In2+ ( ),
szt S s>t 1gs <2 s t t
50
, 1., T2, . .
Injogy()] < 7—N(t)+ (In2+N(41)) <In3+2N(4t), t>0,
that is '
@\
gy < Smax{ ,{f};}? A , t>0.

On the other hand, it is obvious that

K
max{l’ sup ““t—"“} < Iw{lk)(t)l) t> 01
ka1l b b
and thus (1.3) is proved. &
The following result extends [30], Th. 2:

TyeoreM 1.8. For any f: [1, +0) = [1, +0) the following statements are
equivalent:

+ In(sup f(s)"*)

0] Sullaf(s)”’ < 40 and \ — 2
&

7 dt < +o0;
1
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o0
(ii) there exist 0 < t; < ,/2< K/3<...., Z 1/tx < +o0 and ¢ > O such that
k=1

f(t) < esup ¢ , te[l, +o0);
kxl b1 b

(iii) there exists a Lebesgue measurable submultiplicative function o: [0 +00) >

- [1, +0), bounded on each compact subset of [0, + o) and with S lna(t) dt
i
< +o00, and ¢ > 0 such that

J(t) < ca(t), tell, +00);

.

o0
(iv) there exist 0 <t S LR2<t/3< ., 3, 1/t < +o0 and ¢ >0 such
, k=1

that
() < clogy @],
Proof. (i) = (ii). Define g: [0, + o) =+ [1, +00) by
8(0) = f.‘:ﬁ. ‘}f(s)"‘, t>0.

te[l, +o0).

Then (0, +o0) 3 t+— g(t)”* is decreasing; in particular it is Lebesgue measurable
and hence g is also Lebesgue measurable.
For any 0 <¢< 5 < +0c0 we have

- gtV < g(5)' N < g()',
so that

g(t+5) < g()¢r9" = g(s)'g(s) <
Thus g is submultiplicative. Since g(z) <

8(0)g(s)-
(sulz Sf(s)*)', g is bounded on each com- = -
=

pact subset of [0, + o).
By our assumptions on f; we have

.
S Ingm dt < + 00,
1
and obviously f(1) < g(2), te[1, + ).
For every integer k > 2, we have
Ing(k
L22® D8O -1, m;
t
hence
© I (k) w k In +0o0
n t
Z 0 g+ Y | 225041 = 1ngr) + { ne®) L 4w,
k= k=2k—1 1 !
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It is easy to verify that the sequence decreases, so that

{k 1n[<k+1)g(k)]}
kZ

by applying Lemma 1.5(jii) with .

_ InfCe+ 1)g(k)]
k2

it follows that there exist 0 <t < 1,2 < t3/3<

fm 1, 20 D8 _

ko0

0
. 2 1/t < 400, such that
k=1

Write ¢ = sup (s+Dg e, +co) and let ¢ € [a%, +c0). Then there exists
an integer n > 1 such that
nlna? < In[(t+1Dg()] < (n+1)Ina®.

v

If 1 < k < nand t = k(p+6), where p > 0 is an integer and 0 < 6 < 1, then

by the submultiplicativity of g
(t+Dg®) < [(k+ Dg(R)FIO+DgON* <
So we have
In[(t+1)g(®)] In[(k+1)g(k)] klna® In[(k+Dgk)]  In[(t+1)g(®)]
P K ST % T @
and we obtain

[(k-+Dg(k)I*a*,

In[(t+ Dg@] _ Inl(k+De(]
2t = k )
1t follows that

11[ ln[(k+k1)g(k)] 5 ( In[(t+ Dg(®)] ) S (nlna )

e 2t t
Thus
su # > v
o hoh O fo
_ (H k2 )(H In[(k+Dg ()] )i
il tnf(k+Dg®)] N 4] k n!
( ) (nlna)’
3 tkln[(k+1)g(t)] n!
Consequently
0] Ttk De] \_ n!  n
fk < (L]; k? (nlna)" a
sup
kxt Ppee B

a*t In[(k+1)g(k)]
k*Ina '

n
<o]]

k=1

icm°®
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We conclude that writing

a’tn[(k+1)g(k)]
= t ryw
¢ = max 1,Z?pa-g(s) a* sup H k%lna <+
we have

tk
csup ——————,
k=1 t

te[l, + ).
L by

fy<g <

(ii) = (iii). This follows immediately by using Lemma 1.7 and Theorem 1.6.

(iii) = (i). Fixt > 1; for each s > #, there exist an integerp > land 0 < r < ¢
such that s = pf+r and we have

F¥e < (14 apt-+r)s < (L+ ) a()Ba( < (1+6) aft).
Hence
sup f(5)* < (L +c)a(s)® < +o
s=1
and
+ In(sup f(s)*) +2 +o
s In(l1+c¢ In a(t
;;2 dt< S (,z ) dt+2 S tz( ) 4.
1 H t

Clearly (ii) = (iv).
Finally, assume that (iv) is satisfied. Then by Lemma 1.7 there exists a d > 0
such that

M <d (sup (4t) ), te[l, +00).

o0
Consider the sequence 0 < 5; < 5/2 < 53/3< ..., 2, 1/5; < +0o defined by
k=1
k t
Sk=F'—§—, —1)<k<2p‘
Then
k
fiy<dsip—t—, tell, +w).
k=1 Sp ... 8

Hence (iv) = (ii). =

COROLLARY 1.9. Let #;,t5,... >0, 3. 1/t, < +00; then the following state-
=1

ments are equivalent:

o0
@ Y% < too;
=k
(i) [1, +00) 3t — wyyy(—it) satisfies the equivalent conditions from Theorem
1.6;

(i) [1, +00) 3 # = wyy(—if) satisfies the equivalent conditions from Theorem
1.8. : .
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Proof. (i) < (ii). This equivalence is proved in the remark after Theorem 1.6.

1/s
(ii) <> (iii). Since for any k the function s ~ (1 + —t_) is decreasing, we have
k

Sup gy (— i) = wyy(—in, t>0.
2

Hence the conditions (i) of Theorem 1.6 and Theorem 1.8 are equivalent. m
Let us now assume additionally that f; <, < .. By Lemma L5(i),
lim (k/t) = O, so that the set {k; k > #} is finite and we have
k=

0

Z Ink Z lnk lnt,,
k=1 b k>t tx>1
On the other hand, for k > 2 we have either # < k?, that is
Int, <2 Ink ,
b 19
or 4 > k?, that is
Int, _ ., Ink.
WS 15
" hence
o0
Z Int, ZZ lnk ZZ Ink )
I

k=2

Hence condition (i) from the above corollary is equivalent to

]

DermNiTioN T1, Let 7: [0, +00) = [1, +) be a Lebesgue measurable func-
tion, bounded on each compact subset of [0, +c0) and such that lim Int(®)
-+

= 0. We call the Borel transform of © the function Tgee: (0, +00) = {1, +0)
defined by

+00 + 0

Tﬂorel(t) =t S 'r(ts)e"ds = S ’U(S)E_'mds.
0 H ]

. o0
We remark that if v can be extended to an entire function z —» y, cz* of
K=0

exponential type zero, then Tp,e can be extended to the entire function z —»
- kz k! ¢, z2**1 (for more details see [38], Ch. I, § 20 and [18], 5 Kapitel, § 5).
=0

Concerning the Borel transform we next give a result extending [27], Lemma 1:

icm
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THEOREM 1.10. For any f: [1, +©) — [e, +©) the following statements are
equivalent:

(i) f is bounded on each compact subset of [1, + ) and

+m lnln( sup f(s))

'
st’f - dt < +00;

(ii) there exist 0 < t, < L2 < /3 <.

TMB

l/rk < +ow and ¢ >0 such
that

1<

F et
C sy , te[l, +o0);
k;ll) t.o L )

(iii) there exists a Lebesgue measurable submultiplicative function ec: [0, + 00) —
Z na(t)
2

.
— [e, + @), bounded on each compact subset of [0, +co) and with S
1

dt

< o and ¢ > 0 such that

f(t) < Cporel s te [1, +w);

o
(iv) there exist 0 < t; < t,[2< /35 ..., Z 1/t < + o0 and ¢ > 0 such that
=1

f (t) < c]w(lk}luo“l(t),
Proof. (i) = (ii). Define g: [1, +0) — [e, +©) by

te[l, + o0).

t+1

2 '
sty = e(S(lsup f(S))dr)—xt S (lsug 1s))dr.
1 <s<r t <s<r

Then

2
o< (§ (sup f(s))dr) g(t), el +).

Moreover, g is continuous, strictly increasing, g(s) = e, limg(z) = +oo and
t—od0 ,

-i'w]n]
S -—’:zi@dt< +00.
i

For each integer n > 1 we define a, € [1, +) by g(a,) = €*; then

+00
Inn 1 g lnlng(t)
a, = Inn S 7‘“ < ) 12 dt
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hence Inn -5 0. On the other hand,
X 1 a1
e e LR Tt
n+1 Fe2 k k+1 Y
hence

Z In(1+1/(k=1)) < too.

a
k= &

In(1+1/(k—1))

Since the sequence {k 2 } is decreasing, by Lemma 1.5(iii), there
k k=2

exist 0 < t; < L2 B3 <.

st

l/t,c < +o0, such that
lim tkln(l+1/(k—1)) —0
k400 ay

Let te[1, +); there exists an n > 1 such that a, < ¢ < @,4,. Then g(t)
< g(@y4r) = €+ and

kgk+t S nl" >n!a1...a,,

sk“;}I fionty =t oty t ety
Consequently
n
g et,
kit eﬂ kay
sup =
k=1 i ...t
Since
ety _ . tIn(1+1/(k—1)) . 1 S,
ka, ay In(1+1/(k—1))*
we have
sup % < 4o
LE Sy kak

Hence writing
2 n
et
= sup f(s))dr| esu -k
(] Gsup spar) esuo TT 25
we conclude that

11
FOES csup—k’—t~—-, te[l, +o0).
kx1 I1 . Y
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(ii) = (i). For any 1 > 0 we denote by n(1) the number of all #,/k with #/k
< A. Then for each > ¢

k
[ 1R+ Y
In (sup ———k ) = sup ( 2 lnp—t)+lnt
k=1 Y .. k>1 L
=
n{t)

= (Z In —p£)+lnt < n(t)ln—t—-Hnt;
o ty ty

hence it is enough to prove that

o

153

dt < +00.

But by Lemma 1.5(iii),

klnk_» - 0, so that
4

v lnn(t) o el lnn(t)
[, 5

t ti/k

0

2 — k
_Z( k+l)1nk=zln(1+1/(k D n4
e~ T T

k=2

(ii) = (iii). By Theorem 1.8 there exists an « satisfying the assumptions from
(iii) and b > 0 such that

sup

< ba(r), rel0, +00).
k>1 t1

Let te[1, +); then for each k >1
o0

e %ds < bt S o(ts)e~5ds = bagger(t);
0

ki t+§° (ts)*

tooo b Jotek
hence
& Jlge+1
Sup < bopgra(t)-
k>1 t1 - by

The implication (iii) = (iv) is an immediate consequence of the corresponding
implication from Theorem 1.8.
. o0
(iv) = (ii). By Theorem 1.8 there exist 0 < s, < 5,/2<83/3< ..., kzl 1/se
< +o0 and b > 0 such that
3
Jwpy (M) < bmax{l sup (r/2) }, ref0, +o).
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" Then for each ¢ & [l, + ),

+ o0
oolaura) = 1§ 1o s)e=ds
V]
e
< bt S ( Z (ts/2) )e“‘ds
0 = 5
-
fek+1 k1
< bmax{t, sup L2 }< bsysup kit ..
k=t 8100 S kzl Sg .- Sg

We remark that condition (i) from Theorem 1.10 appears in several topics of
the theory of analytic functions, in the harmonic analysis (see [39], [27]) and in
the operator theory (see [43]); in [43] it is called the “Levinson condition™.

[->]
COROLLARY 1.11. Let t;,t5,... >0, 3. 1/t, < +00; then the following state-
k=1

ments are equivalent:
Int,
@ Z~5 < +o;
k
(ii) the Borel transform of [0, + )3t = wyy(—1it) satisfies the equivalent
conditions from Theorem 1.10.

Proof. Let f be the Borel transform of the function [0, +00) 3 ¢t = w,y(—if).
Assume that f satisfies the equivalent conditions from Theorem 1.10; then

4
there exist 0 < 5 <5nR”s35..., Z 1/s, < +o0 and ¢ > 0 such that
k=1

ket
() € esup -y t€[8, +00).
k1 Sp .00 S

o0 o0
Let wpg(—iz) = 3, ¢,2"; then f(z) = . n!¢,z"** and thus for each n 2 1
n=0 n=0 [}

we - get

' k (s, /n)*

Sup ———

ne < S el ss o on
" (s,,/n)"'“ (Sn/n)" §1 oo Sp ’
that is
1
s e Sq o Sp
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Consequently, for all ¢#e [0, + )

O —if) = Zz- (2 < 28upck(21)"

k=0

2t)*
< 2(1+c)maxll, il;,g 51( )s } < 2(1+0)wgy(21)].
k

E <+

Conversely, if the above condition is satisfied, then by Corollary 1.9, there

o]
exist 0 <8, < 5,/2< §3/3< ..., 2. 1/8, < +c0, and ¢ > 0 such that
k=1

oy (—ir) < clog@)], rel0, +©),
hence
f(t) clw‘:ﬂlBorel(t)f t>0.m

We shall give further a new version of a result of N. Sjsberg ([59], Th. III);
in the proof we shall use the techniques of Y. Domar ([19]) as well as the idea of
0. I Inozemdev and V. A. Mar&enko ([30]), used also in the proof of Theorem 1.6.

Let f: [1, + ) — [1, +00) be a strictly increasing continuous function such
that f(1) = 1, limf(#) = +oc0 and .

to+t00

S ‘“f(‘) dt < +oo.
. 1
We define the sequence 1 = of < of < ..., By
fled) =1, k=1,
Then, by a reasc;ning similar to that used in the proof of Thsp;cm 1.6, we have

<]
IS
k
k=1
Let Q = C be open; we say that u: 2 — R is subharmonic if
(i) u is a Borel function; )

(ii)  is bounded on every compact subset of £2;
(iii) if z€ Q and r > 0 are such that {£e C; [f—z| < r} = Q, then

2n

1 ‘_, ;
u-(z) < s S) u(z+re'®)do.

We note that in the usual definition of subharmonic functions, u is assumed
to be upper semi-continuous (see [49]).

7 Banach Center t. VIII
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If u: £ - R is subharmonic and z, r are as in (iii), then

r2m

1
u() < 7§ { uteeeodtdp = — [ uerae,

00 |&~z|<r

where d& is the Lebesgue measure on C.

THEOREM 1.12. Let f: [1, +00) — [1, +0) be a strictly increasing continuous
Sfunction such that f(1) = 1, limf(¢) = + oo and
. ter 00

0

S In (t)

2 dt < +oo0.

Then for any ac (0, +o0], any subharmonic function u: {ze C;|Rez| < a, |Imz|
< 1} R with

u(z) gf(mlTl), zeC, [Rez <a, 0 # |Imz| < 1

and any integer k > 1 with

we have
u(z) < max{e*, f(2)}

8e

0
. 1
for ze C, with |Rez| < a——n—;‘zg—, Imz| < 1.

Proof. If z€C, |Rez| < a, 1/2 < |[Imz| < 1, then

w0 < f( ) <70

[Imz|

+
o s e 1
Hence, it is enough to show that for ze C, |Rez| < a——%—zt?, Jimz| < %,
=k %p

we have
u(z) < e~
8 -+ 00 1
. . . e
Assuming the contrary, there exists a z, e C, with |Rez,| < a——ﬂ—Z?,
p=k P

[Imzo| < % and such that
u(z,) > e~
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. . . oo
We note that the set K = {5 €C; [E—z) < ie—Z——lT} is compact and con-
T o=k %

tained in {£eC;|Ref] < q, [Imé| < 1.

Next we shall prove that there exists a z, € C, |z, —z,] < —8—8- . —lf- such that
T o
u(z,) > &+, )
Indeed, assuming the contrary and denoting

8 1 :
p={ecciiri < “;f‘;{} e res <, me < El{"}
8¢ 1
D, = {E €CilE—zl < - ’E}\Dls
we should have _
u(f) < et feDy,
1
u(f) Sf(m) <f(a{) = ek—l, £ eD,,
which implies :
’ 8¢ 1\-2
weosw(Tog) | wea
If—zolsg‘i-%{

- ‘n:"l<£e—-~l—)-2( fu@as+ § uerae) '

Dy D2 b

-2
w1 (S?e . —;—f-) (¢*+'meas (Dy)+ €~ *meas(D,))
k

-2
S AU AT R AR

of [\Taf [\ of

N

1 1
= e"(-i—+—e—) < e,

in contradiction to the fact that u(z,) > €.
By induction, we find a sequence z,, z,, 25, ... in C, such that for any integer
q=0 '
8e 1

Izq+1'—'zq| <—-
T ofg

] u(zq+1) > et

Since all z,, ¢ > 0, belong to the compact set K, it follows that u is not bounded
on K, in contradiction to the subharmonicity of u. =
Using the above theorem, we can prove a result of N. Levinson ([39], Th. XLIII):

7=
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COROLLARY 1.13. Let g: [I, +00) — [8, -+c0) be an increasing function such

that
oo )
Sl"—’izi@dt< +00.

Then for every ¢ > 0 there exists a ¢z, > 0 such that for any a & (0, +co] and any
analytic function @: {z € C;|Rez| < a, [Imz| < 1} = C with

1 . Tz
1D(2)| § g(m), 2eC, |Rez| <a, 0 # |Imz] <1,

we have v v
|D(2)| € ¢g,e, z€C, |Rez| <a—e, |Imz|<1.
. N‘)'
Proof. By Theorem 1.6 there exist 0 <, < £, < ... < +czo,kZl 1/8, < +00
and ¢ > 0 such that
In(1+g(t)?) < clogy®i, tell, +o0).

Let us write f = wy,| and choose an integral k > 1 such that

+ 0
8 Z ! < mi s}
= Frs oc{, S
Next we define u: {zeC;|Rez| < a, [Imz[< 1} - R by

u() = en(1+10@)1).

Since u is subharmonic (see for example [1], Ch. 6.4.1, Exercise(2), by Theorem
1.11 we have

u(z) < max{e*, f(2):},

Hence our statement holds for

z €C, |Rez| <a—g,|Imz| < 1.

1
Cge = 2O

We end this section thh an improved version of J. Korner’s “Zetlegungsatz”
(135), p. 19).

THEOREM 1.14. Let ag,a; > 0,a,,85, ... 0 be such that the sequence

{1841 }x51 is decreasing and converges to 0, and let X be a.Banach space. Then

Sor each X-valued analytic function on {z € C;|z| < 1} satisfying

©

uf(z);u<Z‘-ak(1-1zt)-*. 2 <1
=1 N

icm
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there exists a sequence fy, fa, ..., of X-valued analytic Sunctions on {z € C; |z| <1}
such that ’ ’

00
1) = ;Mz), Izl <1
and

IA@N < L (4e“°+“‘)<1 —l2)*F, < Lk 1

Proof. Let us consxdcr ‘a decreasing continuous function 0: [0, +0) »
— [0, +00) such that

ag4a a
B=—0"" % .
o(l) = —- P k>1
Fix an integer # > 1. Since the function [0, + )55 — g(s) s/(n+s5) is conti-
nuous,
1 . s
o(l)————=21 —_,__1—> 0 and :-l.lf:o (g(s)— n+s)= -1,

theré exists an 1 < 8, < +0o0 such that

ols) = n+s

Let k, be thé integer part of s,, that is k, < s,, <
= n/(n+s,). Then k, > 1,0 <r, <1 and

k.+1,and letr, = 1—p(s,)

ag+a, . g a +a a,
DT T o ok > 0(s) > ol +1) = 0T0L, Jhart
@ Q-1 L A,
that is
B S B B U .
atay, a, \ (-m)< ao+a; a1’
Consequently
N N a; 'Y [ap+a
> adt-ry =Z(_——a > ) (———°a ) (1)
k=1 k=1 vooTH

17

a ag+a

<o sup (———- aa-ry
Ao k=1 a

acta; _ )
= g, Su I I . 1-r)t
lkzrl) ( a al—l( ra)
A +
= | l B0t . A .yt .
=a 1=1 ( a ay (=ra) )

ke
Y a, (W"_"i’flﬁ) “A=r) e,

as
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e m\"
Using the Stirling formula m! = }/2rm (e—) efnll2m 0 < 6, < 1, we obtain - .

k
ap+a \" [ n+s, \Fr
a n
k" s,
1 "

o0

~,.Za,c(l Pk (1+%)"%.

k=1

k+1\ a ao+ay \ !H—k fen
<11 " RciR 0T % Ny
\( S ) 4 a,,,,( ay ) "k, )

< ekatl.
ao

k,
a a Jp— kn
1 akn( D:;al) 1/27"‘» olls (n-: ) .

K
ea, ag+a, \ " (n+kn
< kn(“e—“"“al ) ( " )
2 2
<N, (4e——“°+“1) ("J’k).
ao = a1 ) n
Let f(z) = 2 ea2", with ¢y, ¢1, ... €X, |z] < 1. By the Cauchy integral for-
mula, for n = 1 we get .
=]
2
lledi < _inf r—"Vak(l—z) et Y g (l-r)
O<r<l dmenad e
= k=1 '
]
ea1 Z“k (4e a,,+a1) (n+k).
do n
k=1
As |leoll = [|AO)]| < Z}ak, we conclude that for any n > O there exists
a d,eX, ||d,]| €1, such that
0
ea, Z ao-!-aJl (n+k d
ay no )"

k=1

Finally, for each k> 1 we define

ap+a n+k
J&l—i) Z( Jar, el <.

n=90

@)= 22, (4e
o
Using the equality
Sy .
. 2 et = ey

it is easy to verify that the sequence Jis fz,.

.., satisfies the statements of the
theorem. m

icm

- then @ can be extended to an entire function of exponential type
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2. w-ultradifferentiable functions

=]
Let t;,t;,... >0, t; < 40 be such that Z 1/t < +o0. In the whole of this
k=1

section we shall denote by w the entire function wg,;.
For each ¢ e L'(R) we denote by ¢ its Fourier transform, defined by

+0o0

#0) = 5 | w1,
-
We remark that if @ € L(R) then the inversion formula holds, that is, ¢ is
almost everywhere equal to the inverse Fourier transform of @:

4o

o) = § de)edr.

-

We remark moreover that if ¢ has compact support and if we put d = sup ]tl,
tesuppy

< d, which we
also denote by ¢.

DrriNiTioN ITI We say that a continuous complex function ¢ on R with
compact support is w-ultradifferentiable if for any L >0 and any integer n > 1

P2a(9) = sup [p(D)e(Le)] < +0.

For —co < a < b < +00, we denote by D,[a, b] the vector space of all w-ultra-
differentiable functions with the support contained in [a, b] and we put
Dy = U D,[a,b].
—m<a<b<4w

We consider on every 9,[a, b] the locally convex topology defined by the semi-
norms p¢,, L >0, n> 1, integer, and we endow 2, with the inductive limit
topology of the space 2,[a, b).

If @ is a continuous complex function on R with compact support, L >0
and n > 1 an integer, then we write

+ oo

2.0 = § 16y

PROPOSITION 2.1. Let ¢ be a continuous complex function on R with compact
support. Then for any L > 0 and any integer n > 1.we have

@10

a9 < L,nu(?’)

(2.2) P2(9) < sup |tgga(p)-
tesupp @

€
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Proof. Indeed

+ 0 +o
A L2\ L2\
ata(P) < S ‘P(‘)( ) o(Ley** dt < S‘(1+ 7 ) dt-pE nsalp);

hence (2.1) results.

If g7 (@) = + 0, then (2.2) is obvious; so let us suppose that ¢f,(®) < +o.
Then f defined by

/@) = § $(Da(Liyds
o

is an entire function of exponential type < d = sup [¢| and
tesupp @

f) < qta(p), teR.
Using Corollary 1.4, we obtain ‘

1PO(Lety| = |f'®) < d-q.(9), teR.m

We remark that this proposition is essentially proved in [43], Ch. I, § 1.

By Proposition 2.1 a continuous complex function ¢ on R with a compact
support belongs to 9, if and only if ¢¢,,(¢) < +co for all L, n, and the topology
of each 9,[a,b] is defined by the seminorms gg,,.

COROLLARY 2.2. If ¢,y € D, then gy c D, and
924(P¥) < Gren(@)ara(y), L >0,n > 1 integer.
If pe D, then p D, and
PLn(® = PEa(®), L >0, n> 1 integer.

- Proof Let ¢, 9€9,. Then oy is contmuous, has a compact support and
79 = p =, Since

M ( 2u? )(1 2v?

1} ]

), u,veR, k>1,
we have
lo(u+9)] < ]w(;/iu)’ Iw(;/ﬁv)l, u,veR.

Hence

42..(pw) = .Sw ‘(Tj &(vt——r)@(r)dr)w(Lt)n dt

4+ +®

< S S|&(t-—r)v}:(r)w(l/iL(t—r))"w(l/iLr)"ldrdt

-0 ~00

= @30 ().
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Further, since é(r) = :}J(— t), t€ R and |o{w)] = |o(—u)|, u € R, for every g€ D,
we have:

Pia(p) = sUp [~ DaLi| = sup [§(~(~LiY| = Pa(r)- m

By Corollary 2.2, for any —o0 <a <b < +0, P,[a, b] is an involutive
algebra for pointwise multiplication and complex conjugation. Moreover, the multi-
plication and the conjugation are continuous. ’

Similar statements are true also for Z,,.

An important tool to handle w-ultradifferentiable functions consists in the
following Paley—Wiener type theorem (compare with {15], Proposition 1.3):

THEOREM 2.3. Let —o0 < a < b < + and let f be an entire function. Then
the following statements. are equivalent:

(i) the restriction of f to R is the Fourier transform of some function from
D,]a, b];

(ii) f is of finite exponential type, h,(— 7/2) < —a, hy(w/2) < b and for each

L >0 and each integer n > 1

+00

. S }f(t)w(Lt)"ldt < +w;

(i) f is of finite exponential type, hy(—7[2) < —a, hy(nj2) < b and for each
L >0 and integer n > 1
sup [f()ex(Lt)'] < +o0;
teR

(iv) for each L > 0 and integer n > 1
. = SUP | FE)o( L] < + 00
R

and

3

ay Jo(Lz)| "™, Imz< 0
>0.

<

lf(Z)' \{ aL‘-|5(Lz)l—neblmr, Imz
Proof. (i) = (ii). Direct verification shows that f is of finite exponential typ

and h(—m/2) < —a, h(m/2) < b. By Proposition 2.1, for every L >0 and in-

teger n > 1, we have ’

+0

{ 1fe@irdt < +o.

(if) = (iii). Let L > 0 and let n > 1 be an integer. It is clear that .

g = | [Qo(Lyds, zeC
0
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is an entire function of finite exponential type and
+0

[ 1e@iat < +eo.

-0

sup |g(1)] <
teR

By Corollary 1.4 it follows that ‘
sup | f(t)w(L1)"| = sup |g'(1) < +co.
teR teR

(iii) = (iv). This follows by applying Theorem 1.2,
(iv) = (i). For any te R

§ ) ‘1+ )

hence ¢+ f(t) belongs to L'(R). So we can define a continuous complex function
@ on R by

oy,2 < +00,

+ 00

o) = § firyevdr.
. -0
Suppose that s < a; for any 7€ R and r >0
t2
f(t—ir) (1 +t_§) < ay,e”";

hence, applying the Cauchy integral theorem, we have for each r > 0

+co +®
o) = § fe—inete-msar = e { flr—iryesdy;
—co —c0
hence
+.00 2 ~1
lp(s)] < e oy pe7 " S (1+-‘-—) dt = oy, -t €E"OT,
— 00

Letting r — -+ oo we get p(s) = 0; hence suppp < [a, +00). Similarly we can prove
that suppp < (—o0; 8], so that finally we get suppy < [a, b). m
As usual, we define the support function Hy of a compact set X < R by

Hg(t) = sup (rt), teR.
. . rek .
Then the equivalent conditions from Theorem 2.3 are also equivalent to
(V) for each L > 0 and integer n > 1, there is a constant ¢ > 0 such that
1f(2)] < clo(LRez)|~meHraplima)  z e,
(v) = (ii).
LemMa 2.4. 9, contains a non-identically zero function.
Proof. Consider the enitre function 7 defined by

=Ll - [ v

k, m=

namely (jii) =

icm
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We have
© : am41 o 4t om
o = |TTo (TF) - Hw(ﬁ) [@nl, teR
m=1 i m=2
and .
lw()] < [7( 1], teR.

0
By Lemma 1.5(i), there exist r(, 75, ... >0, ¥ 1/r, < +o0, such that
k=1

. T
lim % =
ko tk

0

-3 5

7
n=0

is an entire function of exponential type w/2.
We define the entire function f by the formula

o= 22 2m
ﬁ Sln~2—— 14— 32my2

22
Vl + gz 3Zmr2

Let us remark that

81n(1r/2) Vi+z?
T Yir2

L (/2 (1422
T @nD)!

f2) =

kym=1

-1:2— and for each

o«
Then f is of entire exponential type < % >

=1 3""1: k=1 I
L >0 and integer n > 1
sup [fB) (L] < sup LfHz@Ly”™ < sup [f(Bz(aLe)|
te
— @ =
< I+ — z
m t
= sup ————4—21— Sln£]/1+—3~m— < +o00.
teR kym=1 1+ 2 tk

32mt2

By Theorem 2.3, the restriction of fto R is the Fourier transform of some function
p €9,. Since f(0) = 1, ¢ is non-identically zero. =

In the proof of Lemma 2.4 the construction of 7 is inspired by an argument
from [35], p. 38, and for the construction of f we adapted the remark at the end of
[30], attributed to S. N. Bernstein.

TuroreM 2.5. If K = D = R, K compact, D open, then there exists a 9 €92,
such that .

0<g¢<l, o@@)=1 for sekK, supppc<=D.

Proof. Let 0 < & < inf{{A—p|: A€ K, u¢ D} and S= {ueR;|A—p| < &2

for some A€ K}. Denote by y5 the characteristic function of S.
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. + 00
By Lemma 2.4 and Corollary 2.2 there exists 2 0 € 9,0 = 0, § 0(s)ds = 1.
-0

Leta = sup [A} and define a function o by
Aesupp b

2a 2a
’I})(S) == ——-8——0 (—‘8— S).
. +
Tt is easy to verify that v € 9,[—¢/2, /2], v > 0, S p(s)ds = 1. Put
-0
@ = Lsxy.

Then ¢ is continuous and for any se R
+ 00

. @(s) = S 1s(s—r)p(r)dr = Séwp(r)dr.

+ o

Hence o(s)>0 and @(s)< § wp(dr=1. Since s—8 o [—¢/2, £/2] for

se Kand (s—8)n[—¢/2, &/2] = 0for s ¢ {ueR;|A~p| < s fora certain A K},
it follows that @(s) =1 for s € K and suppgp c D,
Finally, for each L > 0 and integer n > 1, we have

pinlp) =2n sup Ixs(t)w(t)w(Lt)"l 2nemeas(S)pR.a(y) < +oo,

so that p €2, =
Using Theorem 2.5 and Corollary 2. 2 we show by standard arguments

COROLLARY 2.6. IfK < R is compact, Dy, ..., D, Rarcopenand K < U D,
r=1

then there exist @y, ..., ¢ € D, such that

@2 0, < k<m,
supptp,‘ S Dk, 1<k<m,

m

Z%(s) =1forsek.

k=

We are looking further for a description of 9, without using the Fourier
transform.

- DeFINITION IV. For every mtegers nz1and k>

2 n
of the coefficient of z2* in the power series expansion of n (1 —{~~—~t )
i
Hence
a'ﬁ"l = 1:

ol 1 e
agy = | k=1,
, AR t./l;

1< o<

agh is the square root
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and
= > @y @) a>1kzo0
ky+...+kn=k .
Clearly

" ar"tl, nx1,k=0
It is easy to see that for each integer n > 1

supapti* < [o(t)'] < V2sup apn|y 24, teR.
k>0 k>0

If @ is an infinitely differentiable complex function on R with a compact sup-
port, L >0 and n>> 1 is an integer, then we write

72.4(p} = sup (L*ag" sup | g®(s)]).
k=0 seR

PROPOSITION 2.7. For any infinitely differentiable complex function @ on R with
compact support and for any L > 0 and integer n > 1 we have

(2.3) 2.9 < q2..(9),
1 o
(2.49) ‘ PEa(®) S — sup (A=mryzia(9)-
4, peesupp @
Proof. If ¢¢,(¢) < + oo, then for any k£ > 0 and s€ R we have
+ 00
Lrag"g®(s)| = Lrap* | § (it)p(1)eds .
—_
+ o0 +

< § po@izd < § 190o@ydt = a2.@),

which proves (2.3).
Further, let t€ R; for any k> 0 we get

~ 1
PO = gD@) < 5— sup ()--#)S“P lp® (),
TC 1, pesuppe
hence

[B(LOY] < [H()]2 5up o™ V2L

=2 sup (V2L)kag" (1) ]
20

1
< — sup (A—p)ryzLa(9).

T j,uesuppp
Thus also the second mequahty of (2.4) is proved. m
Let ¢ € 9,,; since ¢ — itp(z) belongs to L!'(R) and for s5;, 55,53 € R, 51 <5
we have
+ 0

S I sup et~ v,

LIRS £ 41

+00
?’(52)::’(31) - S i!&?(t)ei'h ds

- -

i tfollows that ¢ is differentiable. Moreover, it is easy to verify that ¢’ € 2,.
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Inductively, it follows that @ i? infinitely differentiable and that ¢® € 9,, for has only real zeros, say ¢¥, ..., t5 ., ,. But it is easy to verify that this implies for

all k= 1. : al 1< k<n-1
By Proposition 2.7, an infinitely differentiable complex function @ on R with

compact support belongs to D, if and only if ré.(@) < +co for all L,n, and the neyz _ ! = By A
topology of each 9,a, b] is defined by the semi-norms rz, .. (ktepy? = (k=D tepz,) (kD dekty (Ge=tetzs) r; ()72 > 0.

This remark enables us to define w-ultradifferentiability for functions with arbi-
trary support.

110 " L CIORANESCU AND L. ZSIDG wULTRADE OTIONS 11

¢

—k+1

By letting ¢ — 0 and then n — oo, our statement follows. m

DEFINITION V. Let —0 < @ < b < +o0; we say that an infinitely differen- COROLLARY 2.9. For each integer n> 1,
tiable complex function ¢ on (4, b) is w-ultradifferentiable if for any compact mz s
K < (a,b), any L > 0 and any integer n> 1 2.5 (ap™)? > aply-aply, k=13
e K(p) = sup Lkap™ sup lp®(s)]) < + 0. 2N gon
L (e ) @.6) 2J3n<+m
We denote the vector space of all w-ultradifferentiable functions on (a, b) by k=1
&.(a, b) and we consider on &,(a, b) the locally convex topology defined by the . o . " .
semi-norms r2’%, compact K < (a, b), L > 0, and integer n > 1. Proof. Inequality (2.5) results immediately from the above proposition, taking
Denote &,(—, +00) simply by &,. b =t7% n(p—D) <k < np. )
By Proposition 2.7, 9,, < &, and if @ belongs to a certain £.(a, b) and has In order to prove (2.6), we remark that by Theorem 1.6 there exist 0 < s;

compact support, then ¢ € Z,,.
In order to study the spaces &,(a, b), we need the following result, essentially
due to I Schur (see [56], § 1, Hilfssatz I, or [38], Ch. VIII, § 2, Lemma 3):

<8 <. Z 1/, < +00 and ¢ > 0 such that

m
le"(®)] < esup——— ! —, te [s, +c0).
PROPOSITION 2.8. l’fbl,bz, ...€R, Z b < +c0 and m31 St -oe Sm .
For every integer ¥ > 1 we have

Ul
=1, = . b .b, k>l

" (sl 4 (5™ c
1< <) e < < U = .
then frees % G T () el Sy S Sp oo Sk
(kle)® 2 ((k=1)lep1)((k+Dlexrs), k> 1. Using the classical inequality of T. Carleman (see [45], Lemma 1.8.VI, or [48],
Proof. Fix an integer 2> 1 and £ > 0, write for each 1 <k <n Ch. XVI, §§ 4, 5, 6), we get
e = b" lf bk # 0’ - ag”" = ,a‘i’m ap" 1k
* e if b=0 Z o < Z 2z " awE,
and put o1 kot T=1' 0 -
' o0 o0
e L - n,e n,E
=1, ¢ j‘<,..2<jk<nbj‘ bR 1<k<n. = Z(a'ié'")”" < CZ(sl sy
Then the polynomial k=1 k=1
n n [-9]
Puil@) = Z)C"""zzm = [T a+bwa < ceZsi‘ < +c0. ®m
m= m=1

has only real zeros. Hence, by Rolle’s theorem, for each integer 1 < k < n-—1,

the polynomial We are now able to prove

PROPOSITION 2.10. Let —0o <a<b< +o0. If g,peduia,b), then oy

Pl-1(7) = m! e mektl € é,(a, b) and )
ne (2) = (*—v-—m_k_l_l), etz
© omeRe : Q@7 ey < X (@), K< (a,b) compact, L>0,n>1.
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If e &5(a, b), then G e 8,(a,b) and
(2.8) reX@) = %), K< (a,b) compact, L >0, integer n > 1.’

Proof. Let ¢,y e &,(a,b); then gy is infinitely differentiable. Using Cor-
oflary 2.9, it is easy to see that
. . atu,n amn > atg,n. a?.n p— ai).n , m s k ,

so that for s € K,

k
o) <Y (4] el

m=0

N

i( ) (2L)k o (@3 K@)

m=0

1
Lha - T3L, SIS n(y)-

Consequently
2% (pp) < 8@

The proof of (2.8) is immediate. m

By this proposition, &,(a, b) is an involutive algebra for pointwise multipli-
cation and complex conjugation. Moreover, the multiplication and the conjugation
are continuous. ’

By Proposition 2.10, Proposition 2.7 and Theorem 2.5, @ complex function
@ on (a, b) belongs to &,(a, b) if and only if oy € D,, for every w € D,, with suppyp
< (a, b) and the topology of &€.,(a, b) is the weakest locally convex topology for which
all mappings

d’m(a;b)a<p-><py)egw, veD,, suppyc(a,b)
are continuous.
Moreover, it is easy to see that U D,lc, d) is dense in £,(a, b).

a<c<d<b
Since for ¢ed,(a,b) and ye P, with suppy < (a,b), we have o'y
= (pp)'— gy, it follows that &,(a, b) is stable under the derivation operator.
DerINITION VI. Let @ be a complex function on (@, b). We say that ¢ is
o-ultradifferentiable in s e (a, b) if for a certain & > 0, (s—¢, s+¢€) < (a, b) and
the restriction of ¢ to (s—¢, s+¢) belongs to &,(s—e, s+¢).

It is obvious that ¢ € &,,(a, b) if and only if ¢ is w-ultradifferentiable in each
s €(a,b).

Denote by o/(a, b) the vector space of all complex functions on (a, b) which
have an analytical extension on a complex neighborhood of (a, b).

Lemma 2.11. For —o0 < a < b < +o0 we have
A(a,b) = &,(a,b).

.@-ULTRADISTRIBUTIONS 113

Proof. Let pef(a,b) and K = (a,b) compact, L >0, integer n> 1.
By the Cauchy integral formula, there exists a d > 0 such that

lgP(@) < d*k)l, k>1,seK.

"By Corollary 2.9 and Lemma 1.5(ii) .
alﬂ,ﬂ
lim m —/— = 0;
M+ 0 a:'f.1
thus
¢ = sup d*k! Lrap® = sup H (dLm__ﬁ) < 4.
k=1 i1 -1
We have
c
lp®(s) < T > k>1,sek;
hence

¥2:K(p) < max {sup lp(s)], ¢} < + 0. m
scK '

In particular, for z e C, the function s — e* belongs to &,.
LEMMA 2.12. Let —o0 <a<b <+ and @ eD,Ja,bl. Writing for any

integer p 2 0
P 2r
2n A 27 P ms
7(9) = b an)(b—am ¢ » SER,

m=~p

we have
lim rgf® (p—g@,) =0, L>0,integer n>1.
P+

Proof. Let y € D,[a, b]. Define the function 6 on R by

b—a b+a
0(s)=1p(—2?s+ 3 )
Then 0 € 9,,[—=, ©). By a classical result on Fourier series (see for example [63],

Section 13.25) we have

+ 00
8(s) = Z cne'™, sel-m 7,
+7 B
where ¢,, = — S 6(w)e~"™'du and the series on the right side of the equality con-

verges uuiformly on [—m, n]. Hence y, — v uniformly on [a, b] when p - + .

Further, let & > 0 be an integer; it is easy to see that for each integer p we have)
(@™), = (¢,)®, and applying the above reasoning to y = ¢®), we get (p)® — ¢*
uniformly on {[a, ], when p > +co.

8 Banach Center t. VIIX
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Finally, let L > 0, n > 1 and p > 0 integers; for every integer £ > 0, p’ > p
and for s e [a, b], we have

Ltap" (o~ o)O) < 5

< 2
“b—a

2 2 "
2 lils2em) ol 52z m)
Im|>p
2 -2
(L b—a‘"‘)

fi(b—a)®
Foa Pinsa® Z o=

2 -~
< m}’f.wz(q’) >__J ®

fm|>p

Letting p’ - +c0, we obtain
12(b—a)?
e —pp) < p 2.n42(9) Z Tb—a)’ +4n’L*m?

and this implies our statement. m

THEOREM 2.13. Let —~o0 < a <b < +w. Then the linear combinations of
the functions (a, b) 3 s —» €', e R, are dense in 8,(a, b).
Proof. Let peé,(a,b), K< (a,b) compact, n> 1 an integer and choose

a <c¢ <d <b such that K < (¢, d). ) '
By Theorem 2.5 there exists a y € D,[c, d] such that p(s) =1 for s in a neigh-
bourhood of K and by the above lemma there are ;e C, 4, €R,j = —p,...,0,...,p,

such that
rgLea (w— Z cje”") <.
lilse
So

K (p— D ceh) < K (p—py)+reses (WMUX ge)<e. m
<

lilsp

Next we shall study the spaces &, and &, as topological spaces.
LEMMA 2.14. Let —o0 <a <b < +o0. Then ‘the topology of PD,la,b] is
defined by the semi-norms
n
m)w(L 2n m)
b—a

9 i @(bZﬂ

me=-—o0

, L>0,nz1integer.
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Proof. Using the notation from Lemma 2.12, we have
12.0(9) < 12 =g +Hrel N p,)
~f 2r 27 ¥
plaZemfoleszem]

+00
Letting p — + 00 and using Lemma 2.11, we obtain

2
<EEp—gt o Y
2 + 00 2 2 u
714 A T T
<%= mgw “”(b—a '”)“’(L b—a ’”) :

e

m=—~w

On the other hand,

40
Z ’(;)(Vbzfa m)w(L sza m)"
N fib—a)?
< ( zw A(b—ay T4 Lim? )p‘i...+z(¢)- .
THBOREM 2.15. -The spaces
D,la,b], —w<a<b< +m,

&,(‘a‘,b), —oga<b< +w,

are nuclear Fréchet spaces.

Proof. The verification of the fact that the above spaces are Fréchet uses stan-
dard arguments, so we restrict ourselves to the verification of nuclearity.

Let —0 <a<b < +00. It is easy to see that the semi-norms on 9,[a, 5]
defined in Lemma 2.14 are quasi-nuclear in the sense of the terminology of [22],
§27, 1.10. By Lemma 2.14 and [22], § 27, 1.10 follows the nuclearity of 2,[a, b].

Nextlet —o0 < @ < b < +0. Since the topology on &,(a, b) is the weakest
locally convex.topology such that all the mappings

éu@;b)ap > pyeF,le,dl, yed,c,dl, a<c<d<b,
are continuous and since ,[e, d] are nuclear, by [22], § 27, 1.10, it follows that
&,(a, b) is nuclear. m

We remark that by the general theory of locally convex vector spaces the
fundamental properties from Theorem 2.15 imply further topological properties
for the spaces 9,[a, b], &,(a, b) and also for Z,,.

For example, by [22], § 24, 3.1, 9., is complete; by [22], § 23, 5.3, 9, is bar-
relled and bornologic; by 122, § 27, 2.8, 9,, is nuclear; by [22), § 27, 3.1 an.d [22],
§24,2.2, 9, is Montel.

&, is also complete; by [22], § 10, 1.2, &, is barrelled; by [22], § 11, 4.1, &,
is bornologic; &, is nuclear; by [22], § 27, 3.1, .8, is Montel.

We end this section with a treatment of w-ultradifferential operators.

8
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DerNiTION VIL By an w-ultradifferential operator on 9, we mean any linear
operator T: 9, - 9, such that

v supp(Ty) < suppy,
TuEoREM 2.16. Any w-ultradifferential operator on 2, is continuous and can
be extended to a continuous linear operator from &, in &,.
Proof. Let T be an o-ultradifferential operator on 2. We_shall verify first
that, for each bounded complex Borel function v on R, the linear functional T,
defined on 9, by = - o

+ w0

S (To)s)p(s)ds

PpED,.

T, (9) =

is continuous. We say that T,, is continuous in r € R if there exists an ¢ > 0 such
that the restriction of T, to @ [r—¢, r-+¢] is continuous. By Corollaries 2.6 and
2.2, T, is continuous if and only if it is continuous in each r & R.

Let us write

A= {reR; T, is not continuous in r for a certain p}.
Suppose that the intersection of ./ with a certain compact subset of R is infi-
nite. Then there exists a sequence {[a,, b,]}n>1 of mutually disjoint compact inter-
o0
vals U [a,, b)) = [a, B] for a certain —c0 <a <b < +o0 and a sequence {p,}
n=1

1 for all », such that for each n the func-

of complex Borel functions on R, [¢,| <
tional T, is non-continuous on 2,14, b..
_ Hence there exist gy € D, [0, b,] such that

Tv,(?’u) =2 pi n(‘Pn)

Denote’ by ys the characteristic function of § « R. The series Z «p,, converges

to a certain ¢ in 9,[a, b], and if we put Y= Z Ylambs}¥ns WE . gEL
. n=1

Lolz| § @Ewes-| | @

[@n,bn] RN\ {an,bu)
00
> 27— { [(Ty)s)ids,
-0

which is 1mposs1blc Thus the intersection of 4 with each compact subset of R is
finite.

Let r € R. Then there exists an & > 0 such that [r—e, r+ €] contains at most
an clement from /. Suppose that there exists an ro € fr—¢, r+5]n4 and 1et 1
be an arbitrary bounded complex Borel function on R.

The linear functionals Tt -y, _ . »041pve 1€ CODtinUOUS o1t Dylr—¢, r+e] and

T'u"x[rn—l[n,rn-f-l/nl)'l‘(q’) g Tw(‘P), ¢E@w[V g, r+s].
B=>G

icm
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By Theorem 2.14 and by the Banach-Steinhaus theorem (see [22], § 10, 2.2) it
follows that T, is continuous on 2,,[r—e¢, r+¢], in contradiction with the fact that
[r—e,r+elnd #0.

We conclude that each 7, is continuous. Hence if —c0 <a <b < +00,

@, = @in D,Ma, b] and T'(p) — 0 in 9,,[a, b}, then for all bounded complex Borel
functions ¢ on R we have

§ 00p(ds =1im | Te)v()ds = § Te)p()ds

and we get 0 = T(p). »

Further, by the closed graph theorem (see [22], § 7, 2.3) it follows that 2,,[a, b]
3 ¢ > T(p) € D,la, b] is continuous; since —c0 < a <b < +oo are arbitrary,
we deduce that T'is continuous.

Finally, if @,y €2, and ¢(s) = p(s) for s in a certain open set D < R, then
(Te)(s) = (Ty)(s) for s € D, Hence if n € &,, and {p,} is a sequence in P, such that
@a(s) = 1 for se(—n,n), then the sequence {I(p,n)} converges pointwise to
a certain P() € €, which is independent of the choice of {p,}.

1t is easy to verify that P: &, — &, is a continuous linear operator which obvi-
ously extends 7. m )

‘We remark that in the first part of the proof of the present theorem we used
an idea from [47].

By Theorem 2.16 we have a single notion of an w-ultradifferential operator
which acts on 2, or on &,.

COROLLARY 2.17. Let T be an o-ultradifferential operator on 8., so € R and
g €&, such that 9™ (so) =0 for all k > 0. Then (T@)®(ssy=0 for all k> 0.

Proof. Define the functions ¢,, ¢, on R by
Sg,

(S), 0, s=
2:(s) = { 0, P2(8) ={q)(s), 5§ < So.

By our hypothesis on ¢, ¢;, 9. €8,. For each ¢ >0 and ¢p€é&,, we put 7,9
= ¢(* —¢); then 7,p, €48, and supp7,¢, < [so+¢, +00), so that suppT(z.9,)
clso+e, +0). Hence (T(7,9))®(s0) =0 for all ¢>0 and k> 0. Since
]inoa'r,t;o1 = @, in &,, by Theorem 2.16 it follows that Iirr(n,T(r,zpl) = Tp, in &,.

Consequently, (Tp,)®(so,) = 0 for all k> 0
Similarly, (Tp,)*®(so) = 0 for all k > 0. Thus
(T)*(s0) = (Tp1)P(s0)+(Tp2)P(s0) = 0,

By Corollary 2.17, if T is an w-ultradifferential operator, then (T@)(So),
(T) (So)s .., depend only on @(so), ¢'(So), ..., for all p €&, and 5o € R.
Next we give a method of constructing w-ultradifferential operators.

§ 2 So,
5§ < So;

kz0. =
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Let f be an entire function of exponential type O such that there exist L, > 0,
an integer 7, > 1 and ¢, > 0 with
IfGD) < colo(Zotyl, teR.
If —0o <a<b< +o and p € D,[a, b], then by Theorem 2.3, R> t— fi) ¢(t)
is the Fourier transform of some function from 2,[e, 5], which we denote by
RS

f(D)g. Then f(D): 9, D, defined by (f(D)g)(t) = f(it)¢(t) is a linear oper-
" ator.

If ¢ €9, and s¢suppe, then by Corollaries 2.6 and 2.2, there exist —co
<a <b <s<a,<b, <+ and ¢, € D,la;, b,], 9, € Dola,, by] such that
® = @;+¢,. Hence the support of f(D)p = f(D)g, +f(D)p, does not contain s.

It follows that f(D) is an w-ultradifferential operator. We remark moreover

that the continuity of f(D) results directly from the definition, without the use of
Theorem 2.16.

The following result shows how f is determined by the action of f(D) on &,:
PROPOSITION 2.18. Let f be an entire function of exponential typé 0 such that
for a certain Ly > 0, an integer ny > 1 and a ¢ >0

1fGA] < colw(Lot)™|, teR.
Then

f@) = e==(f(D)e*)(s),
Proof. Let ze C and s R be arbitrary.
Using Theorem 1.2, it is easy to see that for every t€ R

Iflt+2)] < eow(—iLolRez|)"e|w (Lo(t+Imz) )|
< coo(—iLoRez|)s|w(y 2 LoImz)"| [w(}/2Lo )|
Let us define the entire function g, by the formula
g0 = f(C+zg—f(2)

zeC,s€eR.

, 0#£feC.

By the above estimation we can consider the o-ultradifferential operator g,(D).
) By Theorem 2.5 we can choose a ¢ €D, such that ¢(r) = 1 for r in some

neighbourhood of 5. Then ¢'(r) = 0 for r in some neighbourhood of s; hence

(g,(D)zp')(s) = 0. Thus, using the inversion formula, we get ’

f2) = (2.D)¢' ) +1(D) p(s)
= S &:(iN@'(1) e dt+ f(z) T P(r)edt
= S (flit+2)—f(2))p(1) edt+ +Sw @) p()edr

= { flt+D)p(e)erdr.

-~
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By the Cauchy integral theorem we obtain

s = 2§ sinpterinen

+o A .
= e S Sir)(ge)(2) e dt

= e~ *[f(D)(pe*)(s)-
Since p(r)e*” = ¢ for r in some neighbourhood of s, we conclude that
@) = e =(f(D)e*)(s). m

DEerINITION VIII. We define &, as the vector space of all functions g: RxC —
- C which satisfy the following conditions:

(i) g is continuous;

(ii) for each se R the function g(s, +) is entire and of exponential type 0;

(iii) for each t€ R, g(+,it) e &, and for every compact K« R,L >0 and
integer n > 1, there exist an L, > 0, an integer 1, > 1 and a ¢, > 0 with

2K (e(-, 1) < colo(Lotyel, teR.

If g €%, then, by the above considerations, for every s€ R we can define the
w-ultradifferential operator g(s, D). Further we remark that, for every ¢ € &,,
we can define a function g(-, D)p by the formula:

(g(-, DY) = (gls, DIp)(s),

We shall prove that g(-, D) is an o-ultradifferential operator and that every o-
ultradifferential operator is of this form. For this purpose we need some lemmas.

seR.

LeMMA 2.19. For any L > 0, integer n > 1 and a > 0, there exists an cp . > 0
such that for every s € R and integer k > 0, we have

r‘i’:?‘"“’q (( : "s)k) < cL,n.a(ae)k-

In particular, for every se R and ze C

o0 zk
Z(s~3) _ —_— e — )k
€ = et (=9
k=0

where the series on the right side converges in &,,.
Proof. Since o is an entire function of exponential type 0, for any L >0,
integer # > 1 and a > 0, there exists a ¢, > 0 such that
l ( Lz )"
wl ==
a

< cpnae®, zeC.
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So for every se R and integer k > 0, we have

k-p

( Lk )’I
w P——
a
LemmA 2.20. Let T be an w-ultradifferential operator. Then for any L >0,

integer n > 1, —0 <a < b < +co and ¢ > 0 there exist an Lo > 0, an integer
ne =1 and a co >0 such that

PEEITY) < carEls; o),

Proof. By Theorem 2.16, there exist an L' > 0, an integer n’ >
K' = R and a ¢’ > 0 such that
2 (Ty) < riki(e),
On the other hand, by Theorem 2.5 there exists a g, € @,,{2—¢, b+¢] such that
@o(r) = 1 for r in some neighbourhood of {a, b].
Let ¢ €&, be arbitrary. Since ¢ and @,¢ coincide on some neighbourhood
of [a, b], the same holds also for Ty and for T(peg), so that

125 Ty) = gl (T(gep)) < 12590 p).
But supp(po¢) = [¢—e, b+¢], so that using Proposition 2.9, we get
2 (Tp) < CrP T (Po @) S i@ 5E ).
We conclude that, denoting L, = 2L, ng = n’ and ¢, = ¢'rfarr,n (@o), We have
128 (Tp) < eorfla s>+ p),

We shall next prove our main result concerning w-ultradifferential operators,
extending some results of J. Peetre ([47]) and E. Albrecht ([2]).

THEOREM 2.21. If g €9, then the formula
(e(- DYp)() = (g(s, DYg)(s),
defines an w-ultradifferential operator g(-, D) and we have
g(s,2) = e"*(g(+, D)e*)(s), seR,zeC.
Conversely, if T is an w-ultradifferential operator, then the formula
g(s,2) = e~ *(Te*)(s), seR,zeC,
defines a function g €%, and we have
T= g(-, D).

Proof. Let ge ¥, and fix a certain ¢ € 9,. By the inversion formula, for
every se R

k!
PR =9 < w=pr*

Lk\?
< a* sup a‘,’?”'(—— <d
0<gpsk a

5.
sup LFap™"
O0<psk

< crna(ae). w

QEE,.

1, a compact

peES,.

pEf, B

ped,, SER,

(g( s D)g)(s) = S g(s D)q)(t) & dt = Sm 8(s, i g(t)e*dt;

Y -0
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so g(+, D) is a continuous function. Clearly,

supp (g(+, D)g) = suppg.
By Theorem 2.5 there exists a ¢o € 9, such that go(s) = 1 for s esuppe,
so that for every s R we have

+o

T390 = § 0a (e, DIg)( s
=2%_S _S Po(8)g(s, i) () e~ ~Ddtds

400 //\\
= | @og(-,iD)r—1)p()dt.

-0

Further, let L > 0 and integer n > 1 be arbitrary; since g €%, there exist an
L, > 0, an integer ny > 1 and a ¢; > 0 such that

255720 (g( -, if) ) < colo(Lot)l,

Using Propositions 2.7 and 2.9, we get for every r,te R

teR.

I‘Pog( ")("—0‘1’(‘)”(”)"1
w(Lr)*
< Pyaea(pog(,it)) p() o 2LG-D) |
< % sup (A= )i (pog(, i) )| (D) 2Lt
4,p€supp go
< —71:' ES:EP (A=) riea(@o)ritn ™™ (g( s it))l@?(t)w(Vth)"l
< }1? sup  (A—p)r&e.a(@o)|p(Ho(max {Lo, Y2L} )"+
A,pEsupp Po
Denoting
L, = max{L,, 2L}, ny=no+n and ¢ = &L sup  (A—w)rg.a(o)s
[LESUDPD Po
we infer that
+o0

2.(e(-, D)p) < sup { lpog(-, r =) PN (LrYdl < 1° 42, (9) < +00-

We conclude that g(-, D) & 9,,. Thus g(-, D) is an w-ultradifferential operator
and the formula
g(s,2) = e~*(g(+, D)e=)(s)

seR,zeC,
is an immediate consequence of Propostion 2.18. ’
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Now let T be an w-uitradifferential operator and consider the function g:
R x C s C defined by
g(s, z) = e =(Te™)(s)-
Let b > 0 be arbitrary; by Theorem 2.16 there exist @ >0, L > 0, integer
> 1 and ¢ > 0 such that

sup. I(T@ ©<

se[—b,

afk g, @edb,.

Ifer,,>0isasin Lemma 2.19, then for every s € [~ b, b] and z € C we have

(T ) @) < ergif=((- ) <
(Te)6) = Y 2 (T ©-

k=0

e ma(ae), k= 0 integer,

So for every sq,5€[—b,b] and 2z,,z€C

[(Te") (s0) — (Te=)(s)|
< [(Te*) (50) —(Tezo) (s)] + | (Te*o") () — (Te=) (s)|

2 ik k
< 1T so)- Ty @1+ Y =L (1 1)) 0
k=0

|2k —2*| (ae)*

< T s = (T O ety Y 021D

k=0

We conclude that RxC> (s,2) -
continuous.

Let s € R be fixed; by Lemma 2.19 we have for every ze C

(Te* )(s) is continuous, and hence g is

2 k
g5, = ) 2 (T(C =) ),

k=0

where the series on the right side converges. By Lemma 2.20, for every & > O there
exist L, > 0, intéger n, > 1 and ¢, > 0 such that

(Tp) () < ergf==**+(g),
Choosing ¢z, x,> 0 as in Lemma 2.19, we get for every integer k > 0
(T =) (6)] < rtl=s+((- =) < cocrym (o)

Hence €3z g(s, 2) is an entire function and for every z € C we have

QPEE,.

0

lgs, 2)| < Zlk— € Crpmee(80)F = C,Cp, €.

k=0

Since ¢ > 0 is arbitrary, we conclude that Cs z+»>g(s, 2) is of exponential type 0.
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It is clear that g(-,it) € &,, for every ze€ R. Finally, let K < R be com-
pact, L > 0 and integer n > 1. By Theorem 2.16 there exist compact K’ = R,
L’ >0, an integer n’ > 1 and a ¢’ > 0 such that

28 (Tp) < crEki(y),
By Proposition 2.9, for every e R we have
rL n (g( s lt)) = rZL ,,(E‘“ )rZL n( Te" )
5 (e YK (")
¢’ (sup(2LY ap"[t|¥) (sup(L'YaP ™[t [F)
k=0 k=0
< cloLt)\w(L'tYy"|.
Denoting L, = max{2L, L'}, no = n+n’ and ¢, =
2 (g(+, 1)) < colw(Lot)™l,
In conclusion, g €%,. By the definition of g and by Proposition 2.18, for every
zeC and s € R we have

(Te™)(s) = e**gls, 2) =

PEE,.

//\

¢’, we conclude that
teR.

(g(s, D)e=)(s) = (g(-, D)e*)(),

so that
Te* = g(+,D)e*, zeC.
Now using Theorems 2.12 and 2.16, we obtain
T=g(,D). m

By the above theorem, the mapping
%,58—8(",D)
is an isomorphism between the vector space ¥, and the vector space of all w-ultra-
differential operators.
COROLLARY 2.22. If g €%, then
og 08
€%,
o5’ 8z
Proof. We define the o-ultradifferential operator T' by
Tp= (¢(-,D)p), ¢E€Po.
By Theorem 2.21,

gls,2) = e~ =(g(-, seR, zeC,

D)e*)(s),

and so

—aﬁ (s,2) = e~=(Te™)(s)—zg(s,2), se€R,zeC.
Again by Theorem 2.21, dg/ds€%,,.

Next we consider the w-ultradifferential operator S = g(-, D)Mult, where
Mult is defined by

(Multp)(s) = sp(s), ¢€Ds,,s€eR.
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Since

—Z% (s, 2) = e~*(Se*)(s)—sg(s,2), S€R,zeC,

by Theorem 2.21, 0g/ds € %,
DermviTioN IX. Let g € %,. The functions ¢f: R - C, k > 0, defined by

0

g(s,2) = ) ci(9)z5 seR, z€C,

k=0
are called the coefficients of the w-ultradifferential operator g(+, D).
Using Corollary 2.22, we get
,_ 1 %
k= Rl 2k
It is easy to see that the o-ultradifferential operators with constant coef-
ficients are exactly those of the form f(D), where fis an entire function of expo-
nential type zero such that for a certain L, > 0 an integer n, > 1 and a ¢, > 0
|0 < colo(Lot)?], teR.
If fis as above and g €%, then R xC5 (s, z) = g(s, 2)f(z) belongs to ¥, and
(g (-, D) = g(+, D) f(D).

Indeed, by Theorem 2.21, (gf) (-, D) and g(-, D) o f(D) coincide on the functions
e*, z e C; hence by applying Theorems 2.12 and 2.16, the above assertion follows.

In particular, if f; (D) and f>(D) are w-ultradifferential operators with constant
coefficients, then

(-,0€6a, k=0

(f12)(D) = f1(D) o f2(D) = fo(D) « f(D).

DermviTioN X. For integer n> 1 and k > 0 we define ¢*" as the coefficient
of ¥ in the power series expansion of w(—iz)".

Hence .
cpt=1,
1
Pt = R k>1,
his<ik 2 PURRAS [
and
Pt = Z el e, nxl, k0.
kit tkn=k
It is clear that we have
(2.9) agt LRt nx1, k> 0.

PROPOSITION 2.23. Let g€ 9, and let ¢§,k > 0, be the coefficients of g(*, D).
Then for any compact K < R, any L > 0 and any integer n > 1 there exist an
Ly >0, an integer no > 1 and a ¢y > 0 such that

(210) Lin (C’) coLocy™", k=0.
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Proof. Let p > 0 be an integer and let s € K. Then

i
LPas 73;5- teR.

(s, it)“ < colo(Lot)™,

or . . . .
By Corollary 2.22, —335 (s, +) is an entire function of exponential type 0, so that by

Theorém 1.3, for every integer k > 0 we have

Lp“?’”‘l Frred (S it)| < coLEl(@™)®(Lot)l, teR.
Hence for all k > 0 we have
LPa3"|(cf)P(s)| = LPap" — kl 6s"6t“ == (5, )l
< coL§— |(w"")""(0)| = coLfcp™

Since p > 0 and se K are arbitrary, (2.10) results. =

Proposition 2.23 gives a necessary condition in order that a sequence {eehso0
< &, form the coefficient of some w-ultradifferential operator. Next we shall
give also a sufficient condition.

PROPOSITION 2.24. Let {c }xs0 = & be a sequence such that for every compact
K c R, every L >0 and integer n > 1, there are an Ly >0, an integer no > 1

and a ¢ > O such that
R CHES k=0.

Then g: RxC — C defined by

coLbap™,

w©

gls,2) = Y a7,

k=0

seR, zeC,

belongs to 4., and

©

g(-, D) = Z‘,ckn*,,
=0

where the series on the right side converge in the space Z(&.,), endowed w1th the
topology of the uniform convergence on the bounded subsets of €. e

Proof. Let K = R be compact, let L > 0 and let n > > 1 be an integer. By our
assumptions, there exist an Lo > 0, an integer n, > 1 and a ¢ >_0 with '

() < k> 0.

Denoting L, = max{2L,, 2L} 1y = ny-+n, and using Proposmon 2.9 and the quite
evident inequality

coLbap™,

3 2 ’ o I "
amaPr < abiE, n\n' 2 L K, K20
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we have for every ¢ € £, and integer £ > 0
12:X(c, D* ) < 3 (car3 X (p®)
< co L ag " sup [2L)Pay " sup lp+P(5)]]
230

<co2"‘sup[L’i“’ak+psup I«p”‘”’(s)l] 274K ().
>0

[-2]
It follows that for every ¢ € &, the series Z ¢ D*@ converges in &, to a certain
k=0

Ty € 8,. Clearly, T is an w-ulﬁadiﬂerential operator, and so by Theorem 2.15 it
is continuous. For every compact K = R, L > 0 and integer n > 1, we have

2
an T¢_ chDk'P) < coz—p+1rL,K (Sl'): p 2 Os @ Edg,‘,,
k=0

where L; >0, n, >
So

> 1 and ¢, > 0 are as above.

«©

T= Z ¢, D¥

k=0

where the series on the right side converges in the linear space of all continuous
linear mappings on &,, #(6.), endowed with the topology of the uniform con-
vergence on the bounded subsets of &,.

Moreover, for every ze C and s € R we have

(Te*)(s) = Z ()%™ = g(s, z)e*
=0
that is,

8(s,2) = e~ *(Te*)(s).
Now by Theorem 220, we get g€%,.and T =g(*, D). m
In particular, if {¢}x»0 = &, is such that for every compact K < R the

o0
functions ¢, vanish on K for k sufficiently large, then (s,z)— Y ci(s)z* belongs
k=0

o0
to 4, and the corresponding w-ultradifferential operator is Z ¢ D"
k=0

Finally we shall characterize the situation in which all w-ultradifferential
operators can be approximated in a suitable way by “w-ultradifferential operators
of finite degree”.

THEOREM 2.25. The following statements concerning w are equivalent:

(D) there exist an Lo > 0, an integer ng > 1 and a ¢o > 0 such that
(~it) < clo(Lot)o], t>0;
(i) there exist an L, > 0, an integer ny 21 and a ¢, >0 such that

gt < Liapt, k> 0;
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(iii) there exist an L, > 0, an integer n, > 1 and a ¢, > 0 such that
kz0,n>1;

(iv) for every w-ultradifferential operator T, denoting by c; the coefficients of
T, we have

et < ey Ly apems,

T= Z ¢ D¥
k=0
where the series on the right side converges in the space ¥(£.), endowed with the
topology of the uniform convergence on the bounded subsets of &.,.
Proof. (i) = (iii). For all integers n > 1, k > 1, we have
(l/— L am nno) (’
®

a,nn
ag21°

. am o )
V2Loazm

<o (1/2L a‘"’"‘ﬂ)

nng

a® ’lllo
ai”
( 1/2am nnn

tumtu wnnn P
< ]/fc" ( V 21,;0:10 ) supay’ '"'a( “1”0)

p20

a2

O)kmax{l supI_[ (awnu .

F?l

=y2 c0(|/2 Lo)k(
By Corollary 2.9,

max{l supH( ::::

=l

wlm

agmme )}
nn,
ag™e
o

k
m""

[ SR °).

a‘;ﬂ"‘u k a‘,“”"‘o ’

ago )}— fI a‘:""a .
)= Ly e
o < YT (Y ILo) apme.

So (iii) is satisfied for L, = 1/ 2 Lo, ny =mn, and ¢, = ]/fco. The implication
(iii) = (iv) is an immediate consequence of Propositions 2.22 and 2.23.

(iv) = (ii). By (iv) we have

hence

00
w(—iD) = Y D%,

k=0
where the series on the right side converges in the topology of the uniform con-
vergence on the bounded subsets of &,. Hence the sequence {cf**D*}y50 converges
to 0-in the same topology.

1t follows that, if we denote by Fj the linear functional £, 3 @ > c§ 1g00(0),

the sequence {F;}i»o converges to O in the strong topology of the dual space of
&.. Then, by Theorem 2.15 and by [9], Ch. IV, § 2, Theorem 1, there exist compact
KcR, an L, >0, an integer n, > 1 and a ¢; > 0 such that

2p®(0)] = [Fulp)l < eir2K (9, k=0, peda.
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Applying this inequality for ¢ = e, we get for every te R, k>0

i< ey S“PLl agmt|?.

For k =0 and ¢ = 0 the above mequahty gives
@t < oy L3ag™,

and for k > 1, by Corollary 2.9, we have:
a®m k a‘,?'"i p
ot (~L-—"‘1—;T) < supa';,’-"(-ﬁ%l)

p=0
ag™™
supn( -

pz1 g1

= clmax{
so that
@l < e  Lkapm.
(i) = (i). For every t > 0 we have

o—ify = S 2k 11 < 2sup e (21)F
= k20

< 2¢qsupap™(2L 1 < 2¢q|@(2L, 1)
k=0
so (i) is satisfied for Ly, = 2L,, np = n, and ¢, = 2¢;. W
DeriNITION XI. We say that o satisfies the strong non-quasianalyticity con-
dition if the equivalent conditions from Theorem 2.25 are fulfilled.

If w satisfies the strong non-quasianalyticity condition, then by Corollary 1.9

i Ink
[

k=1

@11

< +c0.

So if t;, =1 and # = k(lnk)’, k>2,1 <e<2, thenz_w‘——~ = +c0; hence

ok
oy, does not satisfy the strong non-quasmnalynclty condition.

In spite of the fact that not every o satisfies the strong non-quasianalyticity
condition, we shall prove in the next section that every w-ultradifferential operator
for arbitrary o can be approximated by “w-ultradifferential operators of finite
degree” in the topology of the uniform convergence on the bounded subsets of &,.

3. w-ultradistributions

@
Let t,,t,,... >0, #;, < 4+ be such that Z 1/t, < +o0; also in this section we
=1

shall denote wy,; simply by .
For —o0 € a<b< +w we put

Dofa,b) =
and endow 9,(a, b) with the inductive limit topology.

U

a<e<d<b

Dole,d]
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DeFINITION XII. By w-ultradistributions on (a, b) we mean the elements of the
strong dual of D,(a, b) denoted by 2,(a, b).

By [22], §24, 2.2, and [22], § 26, 2.1, D.(a, b) is the pro_lective Inmt of the
strong dual spaces 2,[c, dl,a<c<d<b.

By Theorem 2.15 and [22], §23, 5.3, Pa(a, b) is bornologic, and hence by
[22], §13, 2.2, D.(a, b) is complete; moreover, by Theorem 2.15, [22], § 27, 3.1,
[22], §23,°5.3, and [22], § 24, 2.2, D,(a,b) is Montel, so that by [22], §22, 2.7,
2.(a, b) is also Montel; in particular, 2,(a, b) is barrelled. .

Further, by Theorem 2.15, [22], § 24, 3.1, and [22], §27, 2.8, Du(a, b) is
complete and nuclear, so that by a theorem of L. Schwartz (see [57] or [29], Ch. III,
§1) 9.(a, b) is bornologic;. finally, by Theorem 2.15 and [22], § 27.3.3, for any
a < ¢ < d < b the strong dual space of 9D,(c, d] is miclear, so that by [22], § 27,
2.2, 9.(a, b) is nuclear. ‘

In conclusion, 2o (a, b) is complete, barrelled, bornologic, nuclear and Montel,

Let g € &u(a, b) and Fe Di,(a, b); then the functional 2,(a,b) sy~ Flpy)
belongs to Z,(a, b) and we denote it by F. It is easy to verify that &.{asb)x
xDofa, b) o (¢, E)> oF € Dofa, b) is a separately continuous bilinear mapping
Since &.(a, b) and 2.(a, b) are barrelled, by [9], Ch. II, § 4, Proposition 6, this
mapping is hypocontinuous.

If Fe Li,(a, b), then the functional D.(a, b)2 ¢+ qu(s)F(s)ds belongs to
D.(a, b) and we denote it again by F. Hence we have
Qm(a, b)(; é',,,(a, b) S Lloc(a: b)C gm(aa b)

where the inclusions are. continuous and with a dense range, as.can. easily be
verified by using the Hahn-Banach Theorem and -the fact that: Da(a, b):is Montel,

Let —o<a<c<d<b< +ow; then the inclusion mappings Du(c,d) G
G Du(a, b) is continuous, and hence its dual mapping Du(a, b) = Du(c, d) is well
defined and continuous. We denote the image of F € Qa,(a b) in @,,(c d) by F| l(c,
and call it the restriction of F to (¢, d).

Using Corollary 2.6, it is easy to see that the w-ultradlstnbutzons w;th the
restriction mappings form a sheaf on R. Namely, if — < a < b< 4+, {(an b)}er
is a family of open subintervals of (a, b) such that (a, b) = U (a,,b) and F,

€ D.(a,, b), t€I, are such that F,|(a,, b)n(a,, b.) = Fl(a, b,)n(a,,, b,) whenever
(a,, B)(ay, b,) # @, then there exists a unique Fe Du(a,b) satxsfymg F](a,, ,)
= F, for all te L
Let —coga<bg
< (a,b), is deﬁned by:
5 ¢ supp F <> there exists an & > 0, (s—a s+¢) < (a, b) such that .
Fl(s—&; s+é}=0. e

< +w and Fe2, (a, b), then the support ~of F, suppF

9 Banach Center t. VIII
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‘Tt is clear that suppF is a closed subset of (a,b) and that if ¢ € 9,(a, b),
supppnsuppF = @, then F(p) = 0

PROPOSITION 3.1. Let —c0 € a < b < +0. Each element of D.(a,b) with
compact support can be extended to a continuous linear functional on & .(a, b). Con-
versely, the restriction of any continuous linear functional on £.(a, b) to D.(a,b)
is an element of D.(a,b) with compact support.

Proof. Let F e 9,(a, b) with compact support. By Theorem 2.5, there exists
a @ € Du(a, b) such that @(s) = 1 for s in some neighbourhood of suppF. Then
F = @F and the desired extension of F is £,(a, b) 5 v+ F(py).

Conversely, let G be a continuous linear functional on &.(a, b). Then there
exist compact K < (a,b), L > 0, integer n > 1, and ¢ > 0, such that

IG(p) < crtX(p), g@edu(a,b).

Hence the restriction F of G to 2,(a, b) belongs to P,(a, b) and suppF c K, m
- Leét us denote by €u(a, b) the strong dual space of &.(a, b). By Proposition 3.1
the elements of &,(a, b) can be identified with w-ultradistributions with compact
support on (a, b). Using Theorem 2.15, it is easy to verify that §'(a, b) is complete,
barrelled, bornologic, nuclear and Montel.
- We have D.(a, b) G £.(a, b) where the inclusion is continuous and with
a dense range.
We shall denote Zo(—0, +0) and &u(—0, + o) briefly by 2, and &,
respectively. ’
Let Fe &,; then the Fourier transform F of F is defined, as usual, by

F@) = —2¥F(e“"), teR.

Using Lemma 2.18, it is easy to see that F can be extended to an entire func-
tion, denoted also by F, such that

F(z) = -Z%F(e‘“"), zeC.

By Theorem 2.13, an w-ultradistribution with compact support is uniquely de-
termined by its Fourier transform.
The following technical result is similar to that from [43], Ch. I, Lemma 1.1.6:
LemMA 3.2. Let L > 0 and let n > 1 be integer. If fe L'(R) is such that
+o0

§ fnéma@eyrar = o,

-0
then f vanishes almost everywhere.
Proof. Denote

9ED,,

# = {plo(L-)"; peDo}.

By Theorem 2.3 # is contained in the involutive algebra C,(R) of all continu-
ous complex functions on R which vanish at oo,
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As w(—iLD) is an w-ultradifferential operator with constant coefficients, for
every ¢y, ¢z € 9o, we have

——— T —
F1 1oL W"ps - (L - )" = [w(—ILDY'p ]+ [w(—iLDY'p,]|l(L - 1"
and for every ¢ € 2, 7 -
Plo(L P = o(= (@)~

Hence # is an mvolutwe subalgebra of Cy(R).
Let t,, t; € R be such that p(z,) = p(t,) for all pe . ’I’hen

+0 .
§ e@le o) —e " oLt)?]ds = 0, ¢eD,.
By using Theorem 2.5, it follows that
e (L) = e~ S o(L)}?", seR.

In particular, for s = 0, we have |w(Lt;)]*" = lo(Lt,)*", so that
8_“"_,’;’ e-i:,.l‘, 5 GR.
Consequently, #, = £,.
Applying the Stone-Weierstrass theorem, we can conclude that # is uniformly
dense in Co(R).
By our hypothesis on f, for every v € # we have

+o

S S@yp(eydt =

But then the. above equahty holds for every-y € Co(R), and hence f vamshes almost
everywhere [

Next we prove a Paley~Wiener type theorem for w-ultradistributions “with
compact support: )

THEOREM 3.3. Let —o0 <a < b < + oo and let f be an entire function. Then
the following statements are equivalent:

(i) the restriction of f to R is the Fourier transform of a .certain F e €., with
suppF < [a,B];

(i) fis of finite exponential type, he(~w[2) <
L >0 and integer n > 1 such that

. 4o

| 0@ Idt < +oo;

-

—a, he(f2) < b and there exist

=

(iii) fis of finite exponential type, h,(—fc/2)
L >0 and integer'n > 1 such that

S\;Plf(t)w(Lt)-"[ < +00;

—a, ke(nf2) < b and there exist
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v) there exist'L > O and integer 1 > 1 such that
c = sup[f(o(Lt)™ " < +o0
teR

ce™z(o(LzY], Imz <0,
=) < {ce“‘“‘[m(Lz)"l, Imz > 0.
Proof. (i) = (iii). By the continuity of F there exist L > 0, integer n >
d > 0 such that

1 and

IF@)| < dps-1,.(9), v €Dula—1, b+1].

Let 0 < & < 1 be arbitrary. By Theorem 2.5, there exists a ¢ € Dula—e, b+¢],
such that g(s)='1'for s in a ne1ghbourhood of suppF. Then for each z€ C we
have

foy= ) = al?r(qaeﬁ“-),
so that, using Theorem 2.3, we have

@)l < %sup 1601+ Vo2 LeY
teR
d R |
e t+ilmz)o (272 L(t— "
57 5P 1$(t+iImz)o (2-1L(t—~Re2) )|

d. .
< 570 SUP [p(t+iImz)w(Lt)"||w(LRez)|
T teR

d .
< ~2—ﬂ—pn,,(qv) eHrs=s,b+elmd)| (L Rez)"|

Consequently, fis of finife exponential type and sup| f(t)w(Lt)‘*l‘ < + 00, Since
teR )
0 < & <.1 is arbitrary, it follows alse that S

h(—7/2)< ~a and h(n/2)<b
(iii) = (ii). Clearly; .- ‘

§ s sar< {1+ Z2) - sup oz < +oo.

—o

(ii) = (i). We define a linear functional F on &, by the formula’
+o0 o

2n § fnp(- 0,

V—o0

F(g) = 9Dy,

Then
+o0

2 § OO "1dt - pon(@) - €Dy

-0

IF(p) <

so that Fe 9.
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. Let ¢ €2,, suppp < [b+e, +0) for a certain &> 0. By Theorem 2.3,
C3 2z f(2)P(—2) is an entire function of finite exponential type, .

" hpep=o(®[2) < he(mf2)+ha(~7)2) < b+ (—b—8) = —¢
and for every L' > 0 and integer n’ > 1
+oo :
§ 1/ #(-no@1yar
+0o0 ) . .
< | @ty "dt - sup i~ DLty (L1 < o.

By applying again Theorem 2.3, it follows that there exists a !pEQ,,, suppy
< (—o0, —¢], 'such that

1@D¥(-2) = $@), zeC.
Thus ‘

.+

n S $(0)dt = 2mp(0)= 0

Flg) =

Consequently, suppF < (— 0, b}. Ana.logously we can prove that: suppF < {a, 4+ o0),
so that suppF < [a, b].

Further, let ¢ € 2, be arbitrary. By Theorem 2.5, there exists a y € 2,, such
that w(s) =1 for s in a neighbourhood of [a, b] and for s € —suppe. By the
P]a.ncherel fdtmu]a, for each r ER we have

L +® +©

: S -0t = = | prep(~ ~9ds.
‘ 1 400 - .
= 5= §emenp(-9as = b0,
so that we get
+ o0 400
§ Fiaa= 2§ Fgemrpar
o 4w
= { § mopa-nanaa
“+oo

| s

Using Lemma 3.2, we conclude that F f.
Finally, the equivalence (iii) < (iv) is a consequence of Corollary 1.2. m
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It is easy to see that the equivale‘nt conditions from'Theorem ’3.-3 aré also
equivalent to s S
(v) there exist L > 0 and integer n =
a ¢, >0 with

-1 such that for each & >0 there exlsts

1)l < zeC.

Moreover, we formulate the following inversion formula: .

¢, eflia-ebreimnlg(L Rez)"|,

COROLLARY 3.4. For any Fe&., we have

F(p) =12n S F(t)«p(— .
-0
Praof By the proof of implication (ii) = (1) from Theorem 3 3, we can: deﬁne
an w-ultradistribution G € &, by the formula
@
6(p) = 2r § FO)p(-nds,

—00

® € Doy

and we have G = £, Hence F=G. u
_ Further; let.f be-an entire function of exponential type 0 such that for a certain
Lo > 0, an integer n, > 1 and a ¢, > 0, we have
|f(it)} € eolo(Lot)™], teR.

Then the entire function z — f(—2) satisfies the same conditions, and S0 we can
consider the w-ultradifferential operator with constant coefficients f(—D). By
Theorem 2.16, it acts continuously on %, and on &,, and hence we can consider
its dual mappings on Z,, and on &, respectively. Using the Plancherel formula, it
is easy to verify that these dual mappings coincide with f(D) on 9,,. Consequently,
(D) can be extended to continuous linear mappings on 9, and on &, respectively.
We denote these extensions also by f(D).

It is clear that

suppf(D)F < suppF, Fe2,,.

Thus, if Fe &, then f(D)Fe& and ‘using Corollary 3.4 and Lemma 3.2, we
easily obtain

f(D)F(t) = f(it)F(_t), teR.
We are now able to characterize w-ultradistributions with one-point support:
THEOREM 3.5. Let 5, € R and Fe 9D, suppF < {so}. Then the formula
@3.0) f@) = ewF(~iz), zeC,

defines an entire function f of exponential type 0 such that for a certain L, > 0, an
integer no = 1 and a ¢, >0
G0 < colw(otyel, teR, i
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and we have
F = 2mf(D)3,,
where 0., is the Dirac measure in So.

Proof. By Theorem 3.3 there exist an L, > 0, an integer ny >
such that

landac, >0

coe™? |w(Loz)"|,

F)l < { — fmz < 9,
coe™ '"]a)(Loz)”o{,

Imz>0

Hence the function f, defined by (3.1), is an entire function of exponential type 0
and

[fnl <

Since for every t& R we have

Colw(Lot)™|, teR.

SBYB.,(6) = F B, (5) = 5 FO),

it follows that
F = 2nf(D)6,,. m
In particular, if Fe 9, is such that suppF < {0}, then
F = 22F(~iD)é,.
Just as for distributions [17] (for other references see [12], Ch. I, § 4), we have
the following
DeriNITION XTI A one-parameter family {F;}sez of w-ultradistributions is
composable if for every ¢ € 9,, the function R > s — F,(p) belongs to Z.,.
All linear continuous mappings in #(Z,) can be described in terms of com-
posable one-parameter families of w-ultradistributions.
PROPOSITION 3.6. For every composable family F = {F,};cr = 9., the formula

(Ts9)(s) = F(p),
defines a continuous linear operator Ts: Do~ 9D, and the mapping F — Ty is
a bijection between all composable one-pa ter families of w-ultradistributions and
all continuous linear operators.

Proof. Let # = {F,}ser = 2., be 2 composable family; then it is.obvious that
Ts: Dy — D, is a linear operator.

Let {g,} = 9, be such that ¢, » 0 and Ts@, — ¢ in D. Then for every
s € R we have .

9€D,, SER,

$(s) = lim (Ty ) (s) = lim Fy(gs) = 0,
now nooo

so that y = 0.
Consequently, the graph of Ty is closed. By a theorem of A. Grothendieck
(see for example [21], Theorem 6.7.1) we conclude that Ty is continuous..:: i
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Moreover, it is clear that the mapping & — T is injective. On the other
hand, if T: 2, — 2, is an arbitrary ligear continuous operator, then, considering
the adjoint operator I": 9 — 9., and defining

T,= T'6;,€D., SER,
we have
Fs(q’) = 6s(T‘P) = (T?’)(S)a (pﬁ@,,,, seR,
so that # = {F,}r is a composable family: of w-ultradistributions and I"' = Ts.

Hence the surjectivity of & — T is proved. m
Next we charactérize o-ultradifferential operators in terms of composable one-

parameter families of w-ultradistributions:

ProPOSITION 3.7. Let F = {Fi}ser © Dube a composable famzly Then T,- is
an o-ultradifferential operator if and only if

suppF, = {s}, sc<R.
Proof. Clearly, if for every s € R, suppF; {s}, then T's is an e-ultradifferen-
tial operator.
Conversely, assume that T"is an w-ultradifferential operator. It is easy to
verify that the adjoint operator Ty: D, — 9D, satisfies the condition
supp(TsF) = suppF, Fe3,,.
Since .F, = Ty d,, for every s € R; it follows that
suppF, < {s}, seR. m
We remark that a function g €%, and the composable family {Fs}er <. Do
corresponding to the operator g(- , D) are connected via the Fourier transformation:
g(s, 2) = 2ne=F(iz), seR, zeC.

‘We shall formulate further the result announced at the end of § 2: namely,
even when the strong non-quasianalyticity condition for the function o fails, every
w-ultradlﬁ'erentxal operator T can be “locally” developed in a series of the form

T= 2 d,,wk(D), where d,,d,, ... €8, and w, are pa.rtlcular w-ultradifferential
operators with constant coefficients. This will allow us to approximate T in %(£.)
by “w-ultradifferential operators of finite degree”.

DeFNtTION XIV. For any L >0 and any integer n > 1, we denote by F5*
the vector space of all entire functions f of exponential type O for whzch Rat—
- f{t)w(Lt)~" belongs to L*(R), endowed with the scalar product

“+

(ﬁlfz)“ S AR (L) dt, fufz e FLm.

The norm correspondmg to the above scalar product will be denoted by |l I8
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LemMa 3.8. For any L >0 and any integer n > 1, F5" is a Hilbert space.

Proof. Let {filks: be a Cauchy sequence in #5" Then the sequence
{fro(L*)""}r>1 converges in L?(R) to a certain g.

For every k > 0, fyw(L-)~""* belongs to L'(R), and so by Theorem 3.3 there
exists an F € &,, supp(Fy) = {0}, such that f; = fk. On the other hand, we can
define a linear functional F on 2, by

+20

F(g) = 2n | g®o(Liyp(—0dt, ped,.

Using Corollary 3.4, for any k> 0 and ¢ € D, wWe get:

+om
F)—Fy(@)| = 25| | [8)~flDa(Leylo@Leyd(—odt

< 2nllg—fioL M zwilol  Yollem
< 2nllg—fio(@ - Y "l [PEA(P)4Z (@] .
Hence the sequence {Fj}i»1 is convergent in 9. and its limit is F. Consequently
Fe 2, and suppF < {0}.
Let us denote = F By Theorem 3.3, f is an entire function of exponential
type 0 and by Corollary 3.4

+oo

Fg)=2n S SN0, 9.

By using Lemma 3.2, it follows that f = gw(L-)" Thus fe FL and fy —» fin
FL' om

In the study of the space #5" we shall need the following Cauchy type integral
formula:

Lemma 3.9, Let g: {z € C;Imz < 0} — C be continuous, analytical and of ex-
ponential type 0 on {ze C;Imz <0}, such that R> ti g(t) belongs to L*(R).
" Then, for each integer p > 0,

+ o0
p! S &(t)
P (z) = — A 0.
£P°(z) 3 ) G dt, zeC,Imz<

Proof. Let & > 0 be arbitrary. We define a continuous function g, on {z € C;
Imz < 0} by the formula

8(2) = la S g(z+s)ds.
[

1t is clear that g, is analytical and of exponential type 0 on {z & C;Imz < 0}. Since

suplg.0)] < (S &) ({ie+oras)” < 7};—(? s
0 —a0
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by the Phragmén-Lindelsf principle ([38], Ch. I, Th. 22) it follows that

50 <~ (+Sm gPds) 2, Imz <0.
We have also .
T isora = L §§( et o < | e
—w 30 Ao

and thus R >t g,(t) belongs to L2(R).
By using [20], Lemma XI.3.1, it is easy to verify that lim g, = g in I*(R).
0<s-10

On the other hand, lim g®(z) = g¥)(z) for every integer p > 0 and ze C,
0<e-0
Im:z < 0. Hence it suffices to prove our statement under the additional assumption

c= sup |g(z)| < +oo.
0

Imzg

Let p > 0 be an integer and ze C, Imz < 0.
For any 6 > 0, denoting

}g(w) , weC, Imw S’O,
i—ow

and using the Cauchy integral formula, for each r > |z|, we get

Gs(w) =

r

1 P! { Gi(®)
» N [
P+ S s
¢ ig(re") !
P e | gy ep!
R _S e Yo L P e

T

Consequently, for every é >0

+ o0
! G;(t)
2(z) = — P L
GPE) = ~ 5 S Gyt
-
Letting 6 — 0, we obtain our statement. m

Let L > 0 and let n > 1 be an integer; for any integer k > 1 we write

rhn = 'T”, n(p—1) < k < np.
Then

©

w(Lzy = H (]+—£;—), zeC.
k

k=1
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Following V. Gurarii ([28]), we can define in #L™" the sequence {wf"}i»1 by the
formula

Lo(z) = et (E+ire?) ... (z+irf) o
oF"(2) = ]/ r©  (z—irk™ ... (z—irk") (z—irk™) o"(L2).

The next lemma was established in [28], § 2, in a more general context:

LemMMa 3.10. For any L > 0 and any integer n > 1, the sequence {wf™}is1 is
an orthonormal basis in FE5".

Proof. A simple computation shows that {wf*"}xx1 is an orthonormal sequence
in #L". We need only to prove that if fe F5" is such that

(flofms"=0, k=1,

then f vanishes identically.
For simplicity we shall denote rf** simply by r,. Using Lemma 3.9, we have

S f(=ir)
dt = —2m 1/7:1" o(—iLry °

L.mL,n __ ?_-Hn f(t) 1
0= (florma" = ]/?1' _S oty 14

o«

so that f(—ir,) = 0. Consequently we can define f; € 5" by the formula

£i@) =12

Using again Lemma 3.9 as above to compute (f;|w%™)5", we find that f{—ir,) = 0,
Hence we can similarly define f, € F5* by

z—iry

—, zeC, z# —iry.
z+iry

z—ir (z—ir)(z—iry)
H@ = HOIE = I S ey

By induction we conclude that for every integer kX > 1 we can define fi € FL" by

z€eC, z# ~iry, —irs.

k .
z~ir, . .
fi(2) =f(2)g z+ir: , zeC, z# —ir, ..., —iry.
Then the formula
g(z) = —fi , z€eC, z# —iry, —iry, ...,
w(Lz)"

defines an entire function g. By [38], Ch. I, Corollary to Theorem 12, g is of ex-
ponential type 0. Further, as R szt g(z) belongs to L*(R), the formula

h) = §eeras, zec,
0
defines an entire function % of exponential type 0, which is bounded on the real
axis. Using the Phragmén-Lindelsf principle ([38], Ch. 1, Th. 22), we infer that &
is constant and this successively implies ¢ =0 and f=0. =
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We shall now give a weighted approximation result (compare with [28], § 3):
LemMA 3.11. Let L > 0, let n > 1 be an integer, fe F5" and
d = (flop™s, k> 1.

Then for any mteger m> 1 and any t € R, we have

ros }_,dkwt CEFE=) (S| " (D ohs) oo
m k>1

In particular

. HOEPWAZLO)!
it Te@yl

Proof. For every integer k> 1 and t & R we have
rgn

g (B = —- tz+(r

e lo(Lt)?"| < rlL,,, lo(Lt)?"].

Consequently, for every integer m > 1 and te R, we have

6 Dot <(Yiar]” (3 oror] -

< S (5] .

0
In particular, the series . dywi™" converges uniformly on each compact subset of
£=1

R. By Lemma 3.10, its limit is f and our statement results from (3.2). m
Letge%,, L > 0and let n > 1 be an integer. For any integer k > 1, we can
choose S = {1, ..., k} such that

t # 1 for pLpi €S, pi#p, and  {rf"ipeS) = {F" 1< p<k}
Then there exist uniquely determined constants ak,eCk=1, pes,1
< g < k, such that

(t—irk™) ... (t—irk™)

(t+irp™ .. (t+n‘f_"1)(t+1r"") ZZ (t+zr“)4 » k=1, 1eR.

DEFINITION XV. The functions d”"‘ R C, k> 1, defined by

dgton(s) = —2iy/ mrkn Z 2 (q ' (s, i Yo (L - )Y@~ —irkmy

PeS, q=

are called the (L, n)-weighted coefficients of the w-ultradifferential operator g(- , D).
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By Corollary 2.21, we have
ditrneéd,, kx=1.

The above “artificial” definition becomes more natural if we observe that if
se R is such that g(s,i+) e #L*, then, by Lemma 3.9,

Lofey re” g(s, it) 1
ag* (S’—]/ ZZ S oG

pES: g=1

fs L e W
= w(Lt)"l/ P (R = 2 S CHE R Y e 20

Hence
(3.3) dgtr = (g(s,iMwk")E", k> 1 integer.
The equality (3.3) will play an important role in what follows. However, the “arti-
ficial” Definition XV of the functions d*L'" has the advantage of allowing us to
define them even for g(s, i) ¢ 5" and to verify easily that dfL" € &,,.

It is clear that the (L, n)-weighted coefficients of an w-ultradifferential operator
with constant coefficients are also constant.

LemMA 3.12. Let ge%,, —0 <a<b <+, L>0and let n>1 be an
integer. If L, > 0, an integer ng > 1 and ¢, > 0 are such that

3.4 rpleB(g(-, i) < colo(Lot)™|, teR,

then for every integé} mz=1 and te R we have

1?5 10— Y dgreiopenei(n)

- 1\ rot1
<6 To ZW lo(Lo t)"e+1].
k>m

Proof. Let p > 0 be a fixed integer. By Corollary 2.21, -6—7 eg It is clear

P
that the (Lo, no+1)-weighted coefficients of Ll’a}’,""——gyf are
L’a:'"(di'l‘""°+1)(p)’ k>1.

Let s € [a, b] be also fixed. By (3.4), we have

: Leapn =% (5,11) < coloLotyel,  teR,

so that for k> 1 we have
. g Lomo+3
LPagn(dtemet )P (s) = (L'a’;’"' 25 (s,i- )|‘0£‘"‘"°+1|\'
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Using Lemma 3.11, we get for any integer m > 1 and re R
Lpgeen org L.,.nn+1(t‘)\
%\ 5s?
k=1
1 - LgsMo+1 1 12
€ —= L’a""" (s RN ( L_,*,Ln—u—) lo(Lot)*?|
]/TC k>m

<_7(S l@(Lot)” ﬂdt (Z TremerT ) lo(Lo o+
+00 1 172 "
C L2t2 1 .
< 1/% (_Sw(l+ ) dt) (;W) Jw(LotYo*!|
12
i A7 W
k>m

Since p > 0 and s € [a, b] are arbitrary, the statement follows.
We can now give our first approximation result:

PROPOSITION 3.13. Let g%, —0 <a<b< +w, >0, L>0 and let
n =1 be an integer. If Ly > 0, an integer n, > 1 and cq > 0 are such that
rafezdre (g(-,it)) < colw(Lotyl, teR,

then there exists a ¢ > 0 depending only on b—a, &, L, n, Lo, no, such that for every
integer m > 1 and ¢ € &, we have

TFZ,E:"'” (g( ., D)(p — z d{-Lo-"n‘l'l wf""‘"“(—-iD)go)

k=1
< 1 @,[a—2,
< €€ ‘r,’,‘h“"'_":r 1’4mx{1. Lo}.n+n°+3(¢)
k>m

Proof. By Theorem 2.5, there are ¢, 8 € @, such that p(s) = 1 for s € [—¢/4,
b—a+ef4], suppy < [—&/2,b—a+e/2], 8(s) =1 for se [—~3e/4, b—a-+3e/4],
supp 6 c [—¢,b—a+¢].

For every s, € R, we can define y, ,0,, € 9, by the formula

Vs,(8) = p(s—s0), 0, (s) = O(s—s05), sER.
Then rZ,,.(ys,) and r2,,.(8,,) depend only on y, L', n" and on 6, L', n', respectively.

Let m > 1 be an integer and ¢ € £,,. Defining g,, €%, by

8m(s, 2) = g(s,2)— Z dfLometi(ppfomotl(~iz), seR, zeC,
k=1 :
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we have
gn(*, D)= g(+,D)— Zd‘ Lomot 1 gyfar "°+‘(—:D)g
k=1
By Proposition 2.7
P25 (gl s DYP) < 12 (@ * » DY) < q2n (8ml - D) ().

A computation similar to that at the beginning of the proof of Theorem 2.21 shows
us that

— +m/\ S
gl DYepd @) = | bugnl,iD-DGE0)dL, reR.
Hence
12k (g,.( -, D)g)

+00 40 e~

< § | 16gnC iD=l (O lo(Lry| dedr
+0 oo o _

< § (§ g D00/ ILe—0) | w21
+00

= § 63n(ugal- . i0)ovao (/L) dr.

By Propositions 2.1, 2.7 and 2.10, for eirery te R

qY3L. (olgm( lt)) szL ni2 (ongm( » "))

t
< %(b_a+25)ﬁL.n+2 (eagm( “s lt))

t
< fl(b_a +26)arni 2 OITEE (S’m( “ it)) -

On the other hand, by Lemma 3.12, for every 7 € R, we have

*;;— 1 1/2
V(Y] tatzores.
° k>m k

[n-z b+:] (gm(

yit))< ¢
Hence, if we write

, ot T

¢ = -a+20maO ) 1
we get

. 1 T o172
a3 (6agn(* 1)) < Coc'(z m) lw(Lot)*Y|, teR.
k

k>m
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Consequently
1 1/2
gt (g,,,( -, D) tp) < € C'(Z r—),:mf) qgnx{)IEL.Lu}.n+no+1(‘Pon) .
k>m

Again by Propositions 2.1, 2.7 and 2.10
q:-x{yEL,Lo},n+n.,+1(‘P0a)

—2.b
(b —a-+ 8)"max{4L 2¢/3Lo} n+na+3(wa)rmn[:(4el. ;1/21;.,} n+nu+3(¢),

so that writing

c=c _(b A+ E)rax{aL,2y3L}, n+n,,+3(T/4')

we conclude that
1 1/2
M (ga( -, DYg) < CoC(Z ”,?L-’ﬁ‘) P e, 3(9) . m
k
k>m

Let Z(£,) be the space of all linear continuous operators on &,, endowed
with the topology of the uniform convergence on the bounded subsets of &,,. Then,
by the above proposition, the space of all w-ultradifferential operators is the closure
of

n

{Zc,‘w,‘ "(—iD); L > 0, n,m > 1 integers, ¢;, ..., Cm e&m}
=
in Z(€.). Moreover, we obtain the following

COROLLARY 3.14. Let f be an entire function of exponential type O such that
for a certain Ly > 0, an integer ny > 1 and a ¢ >0
3.5 [fIN] < colo(Lot)™l, teR.

Then for any —o <a<b < +o, ¢ >0, L >0 and integer n > 1, there
exist ¢ > O depending only on b—a, €, L, n, Ly, ny, such that for every integer m > 1
and peé,

M fDYp— Y dfrettafrers (~iD)o)
k=1

1 1/2 ‘
< ¢oC ( 2 W) ":n[x:x(if’l.a) ning+3(#)-
m

In particular, if f satisfies (3.5), then
o0

fD) = ‘de,%...nﬂwfm,.ﬁ.l(_i D),

=1

where the series on the right side con;’ergeS'in L(8a).
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Let L>0 and let n > 1 be an integer. For any integers / > k >
the polynomial wf:} by the formula

rgn (z+irk™) ! iz
L) — k| k=1 2
m.,(z)_‘/ : (z——lr,,_l)(z—ir,';-")JIJ‘:(l-*- er)

LemMA 3.15. Let L > 0 and let n> 1 be an integer. Then for any integers
I>k>1 and any te R, we have

(6  lopr)—o0I < 1/~—max 2 s} (}2 ,,",)/ lo(Zy.

Proof. Let I > k> 1 be integers and ¢ & R. For convenience we denote rkn
simply by r,. It is clear that we have
1j2
| e —

1 we define

(z+iry™)
(z—irk™) ...

wbn(t)—oki®) | ( "
o(Lty 1~ \n(t2+rd)

If Jt| > (Zl 1/r,) 7, then
P>

o o)y (5"

(X1 /r,,)"m, then
>l

If [t <

- : it gEi l ity I it
() P IT(er)  T1 ()

p>1 l<q<p I<g<p
1/3
<iy<(dg
7' >
>l p >1 »

so that finally we get

i MO R 0) ‘ l/
T e@n Ty «

1/3
>
Consequently (3.6) holds. =
We are now able to give our second approximation result, namely to ap-
proximate every w-ultradifferential operator with “e-ultradifferential operators of
finite degree”.

PROPOSITION 3.16. Let ge¥,, —o <a<b < +w, £¢>0, L >0 and let
> 1 be an integer. If Ly > 0, an integer no > 1 and ¢, > 1 are such, that

4L‘:-':2b+e](g( > lt)) cO]w(LDt)Ml:

10 Banach Center t. VII1

teR,
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then there exists a d > 0 depending only onb—a, ¢, L, n, Lo, no, such that for every
integers [>m> 1 and €&,

a b3 (g( D)tp—ng an"n‘i'lwl'o "n+1(_1D)(p)

1 3 J[a~&,b+. .
c°d [(2 r’-o ot 1 +m ZT,%T""*’-‘— rwmn:{L L,} Pning+3(0).

k>

Proof. By Theorem 2.5 there exists a y € D, e, b—a+e] such that p(s) =

for s in some neighbourhood of [0, b—a+&]. If we denote ,,(f) = w(t—50), 5
€ R, r. o (yps) depends only on ¢, L', n'.

- Let I> k> 1 be integers and ¢ € €,,. By Propositions 2.10, 2.7 and 2.1,
we have

rf'.ﬁ“'b](di’l"”"”lwf"‘"““(—iD)q)—di'["’"“’*‘a)i‘fi"”‘(—iD)(p)
‘, "°+1(——iD) (Wa) dg LD”"’“(L){‘“}"""'I(—iD)((p'(p,))
< rLeR(dg Lomo 1) e (ot {(—iD) (py.) —wfn ™ (—iD) (py.)

- "wa .[4, b](dﬂ-Lo WMo+ 1ey

t .
< ;‘,j PEEIAE Tt ) P o[ ™ 1(~1D) (D)
For any integer p > 0 and s € [a, ]
14
(Lyray” Zf 15840 (g( -, i0) < colw(Lot)™, teR,
and so
I(2LyPag " (dgoms+ YD (s)]
a Lg,ng+1
= ((ZL)PG‘;’" Lﬂ n°+1|)
Losng+1 el 1/2
= l](ZL)Pa‘,’;'" < Co( S Iw(Lot)‘zldt)
-
+o _ 172 —
L%t’) 2 T,
< = —.
< C°(_Sw(1+ g %) =~V
Hence '
g raga(gELonstly < oY/ oL |
i . - o

On the other hand, by Lemma 3.15 and by Propositions 2.7 and 2.10, -
. 1?31,,»:4-; ([“{f“’f"f”'l —opy "“Tl]("lD)(Wa))

T 1\
Z’W} (2 -rﬁ) DBaxaL, Lo}, n+no+ 3(PWa)
R 7>l P .

—max{
T
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e 1 1 1\ .
< (b-a+29 )/ —max)2, Eey Z | TR, Lo menor 3(P0) X
p>l p

X Té”é:ﬂﬁfo) n+10+3(P) -

Denoting

L owty w1 1 1 ’
¢ = _fo T:- =y (b—a +25)l/;:~max {2,5‘;113 W} Pmax(Z, Lo nano+ 3 (¥,

we conclude that-

(3_7) rf:g"'b](df'l‘“’"""'lw’{"’"""'1(—iD)qJ—.-d{'I‘“""*‘lw,'gfi"""'l(—iD)@)

; 1 1/3 -
< Cot (Z—,—+) r%::&i:f.ms(@-
. >l L4
Finzil]y,‘ let ¢ > O be as in the statement of Proposition 3.13. Then, by using
Proposition 3.13 and the inequality (3.7), we obtain our statement for d
= max{c,c’}. m
From the above proposmon we 1mmcdxately get

TeeoreM 3.17. The linear subspace of Z£(£..), formed by all w-ultradifferential
operators, is the closure of

m = 0 integer, coy -5 c,,,'eg,,}.
k=0

In particular, the linear subspace of P(8.), formed by all o-ultradifferential operators
with constant coefficients, is the closure of

{i ¢, D¥; m 2.0 integer, o, ..., c,,,e C}. o
k=0 : ' -

.Using Theorems 3.5 and 3.17, we immediately obtain
COROLLARY 3.18. The linear subspace of &% formed by all w—ultradzstnbutwns

with the support in {0} is the closure of

{Y c,do’, m=> 0 integer, Co, -5 Cm eAC}v.

k=0

”

We note that, by using the Hahn-Banach theorem, the above statement results
also from Corollary 2.17.

‘We end our considerations on w-ultradxﬁerentlal operators with the remark
that such an operator T can be extended to a continuous linear mapping 2, — 2.,
if and, only if its-adjoint 7" invariates 9,. As we have seen, this holds for example
for w-ultradifferential operators with constant coefficients, but there exist also larger
classes of “extendable” co-ultradifferential operators. We do not insist here on this
problem. -

10*
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Further, we shall give a local structure theorem for w—ultradlstnbunons, anal-
ogous to [34], Theorem 10.3. S

Trrorem 3.19. Let & be a bounded subset of @, and ~0 <a <b < 4w,
Then there exist L >0, integer n> 1 and ¢ > 0 such that for each Fe® there
exists a continuous complex function G on R such that sug |G(s)I < ¢ and

: . SE.

Fla,py = 0(=iD)"Gla,p)-
Proof. Since Z,, is barrelled and @ is equicontinuous, there exist L > 0,
integer n > 1 and ¢ > 0 such that
lF(‘P)l < csup 1@(t)eo(— Lty
{=J
Let Fed; by the Hahn-Banach theorem and by the Riesz-Kakutani rep-

resentation theorem, there exists a bounded regular measure 4 on R,.|lull < ¢
such that |

Fe®, peD,la,b].

+00

§ 6O a(-Leydu@®, peBala,b]. .

=00

F(p) =

Denoting by G the Fourier transform of g, for each ¢ 69;.,,[('1,' b], we have
P AN o

TN
§ (2GLDY9)(O)dp(r)

F(p)

+ o

| (@(LDYp)5)G(s)ds = («(~LDYG) (). -

Since the inclusion %,(a, ) = 9,[a, b] is continuous, we conclude that

Fl(a.b) = m(—'iLD)"GI(a.b)- a

I

We end this section by remarking that.sometimes it is convenient to change
@ into a “better” ong, without changing 9,,. For this purpose we give the following

= o
THEOREM 3.20.-Let 1, t5,... >0, t; < 400, 2. 1/t < +c0 and ry, s, ...
k=1 .

0 . o X
>0, r < +o0, Z Lfry < 4+ 0. Then thé following statements are equivalent:

@) Q_M < @"’('k)’ .
N (11) 9,“{’ c 9,,,{'}, where the inclusion is continuous and has a dense range,
(iii) &, <&

“{t} iy
(V) Gayy < Euy,ys where the inch

is ¢ and has a dense range;
) there exist an Ly > 0, an integer no

logry(D)]

2landac,>0 wiih
teR;

< colwgy(Lot)l,

icm
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(vi) there exist an L, > 0, an integer n; > 1 and a ¢, > 0 with

akm{"}' e Liagt™, k= 0;

(vii) there exist an L, > 0, an integer n, > 1 and a ¢, > 0 with

AP < e L5agO0™,  n> 1, k> 0.

Proof. (i) = (iii). Let ¢ Eof,,,{u} be arbitrary, K « R compact, L >0 and
n > 1 integer. By Theorem 3.5 there exists a p € Diugyy such that p(s) = 1 for s in
some neighbourhood of K.

Then gy € 9'"{:*} c 9,.(,} c é’a,(,k)

7 X(g) = r7ra¥(gy) < +o0.

Since, K, L,n are arbitrary, it follows that lp € #m{,}
Since J,M and &,,( vy 8Te Fréchet spaces, by the usual closed graph theorem

the inclusion ‘”{u} c 6’,,,{“} is continuous. By Theorem 2.13 it has also a dense

, so that

range. _
(iv) = (ii). By Proposition 2.7, for any —w <a<b < +o0 we have
@.M[a, b < .‘B.{,;)[a, ), where the inclusion is continuous. Hence D,

€ Dy, and the inclusion is continuous.
On the other hand, if ¢ € D, then there exists a net {v.} = €y, Which
converges in &,,,h} to @; so, choosing y € Dangyy such that p(s) = 1 for s in some
neighbourhood of suppe, we have {yy.} = 2., and py, (p in 9,
9,,,(‘) is dense in @ i
Obvmusly, (i) = (1) and so we conclude that (1) <> (ii) < (iii) < (iv).
(iv) = (v). The restriction of wy(—iD,d to & belongs to &, , and so by

Theorem 3.3 there exist an L, > 0, an integer n, > m(hld and & ¢ > (: {’sx}lch that
W(@0gg(—iD) 8¢) (e < cologa(Lot)™l, teR.
Since for every te R
(0py(—iD) 85 ) (e™*) = (w(,k}(tD)e‘" )(©0) = (D),
the assertion (v) follows.

(v) = (vii). For all integers n> 1, k> 1, by a computation similar to that
from the proof of the implication (i) = (ii) in Theorem 2.24, we get

g Hence

2L, aony "o k
a;;mr"s( -

Dffy)s M0
a4

. Mg L \M
" a9
e ZLOa:{u)"'"?

By o

s}

20:("‘)' nng

2Loa"t ™ \¥

@y At
a



GUEST


150 I. CIORANESCU AND L. ZSIDO

. @ep 1, Mo 4 O} \ P
< 2} ( Mf}_) sup gty (_.a_kg'i)__.)
=

Ot R
k— t p>0 a,

= VI &2 Lofaenr™.
Hence (vii) is satisfied with L, = /2 Lo, 1, = 1, and c; = y/2¢o.
(vii) = (vi). For every t€ R we have

e (@) < V'z“sug a7 o7
P>
<VY2¢ sup @y ™| l/ 7 L? < V2 cloyly2 Lot

so that (v) results for Ly = 2L,, o = n; and ¢, = 1/— [
(v) = (i). This implication follows directly from Definition 2.1. m
We remark that if the equivalent statements of Theorem 3.19 are fulfilled, then
.@;{ cg, . and &, ,c &, ., where the inclusions are continuous and
i} {ti} ®{re} {ti} .
have dense ranges. :

4. w-ultradxstubutlon semi-groups and the abstract Cauchy problem

In the whole of. this section 0 < #; < st < 400, Z 1/t < +o0, will

be fixed and wg,y will be denoted simply by w.

Let X be a fixed Banach space. -

For —o0 <a<b < +0 we denote by .?(@w(a b); X) the vector space
of all continuous linear mappings Z.(a; b)— X endowed with the topology of
the uniform convergence on the bounded subsets of 2,(a, b).

Analogously, one can define the locally convex linear space .2 (£,(a, b); X).

Most of the results of the preceeding section can be extended to the X-valued
o-ultradistribution defined above.

‘So, 'if ped.(a,b) and Fe £(2,(a,b);X), then the mapping D,(a, b)
3 yi> F(py) belongs to £(2,(a, b);X) and we denote it by pF.

If F: (a,b) — X is a continuous mapping, then Z,(a, b)s p— S o(s) F(s)ds

belongs to £(D,(a, b); X) and we denote it also by F.

If Fe & (Qa,(a, b);X), then there exists a smallest closed subset S of (a, b)
such that ¢ € 9,(a, b), Snsuppyp = & => lf‘(qo) = 0, -called the support of F and
denoted by suppF.

We remark further that there exists a correspondence between 2 (&,(a, b); X)
and the elements of £(2,(a, b); X) with a compact support, analogous to that
established in Proposition 3.1 for scalar-valued w-ultradistributions.

For ¢ € 2, we put

. o

9@ = 2npliz) = | e“g(t)d, ec.
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Then, by Theorem 2.3, for —o0 <a<b <+, geP,la, b] and for every
L >0 and integer n > 1, we have
2np? W(p) lo(iLz)|"e"Re7, Rez< 0,
@D 701 < fprr” Cerer, Rews
: 272 W(9) lo(—iLz)|~"e? Rez > 0.
If Fe #(€,;X), suppF < [a, b], then, writing
F(5) = 2nF(iz) = F(e),  z€C, ,
and using similar arguments to those used in the proof of Theorem 3.3, we infer
that there exist L, ¢ > 0 and integer n» > 1 such that \
w F clo(iLz)|"e®e%, Rez< 0,
@2 F@I < clo(—iLD)Pe™, Rez 0
In the whole of this section we shall write
= {9 €9,; suppy = (0, +x)}.
DerINITION XVI. We say that a -closed linear operator 4 in X satisfies the
condition C,, or that 4 € (C,), if there are «, f§, ¢, > 0 and an integer n, > 1
such that the resolvent R(z; 4) = (z—A4)~! € £(X) exists for z in the domain

(4.3) Ayop = |z€C;Rez > alnjw([Imzl)|+5)
and satisfies
(4.4) |IR(z; DIl < colo(—i)|™, z€Ayqp.

We denote by I, , 5 the boundary of A, oriented from the lower to the
upper half plane.

LemMa 4.1. If Ae(C,) and «, B, co,np are as in Definition XVI, then the
integral in the formula

@.5) 8p) =5 | FOR@ AL, ped,,
Tu,a.p :
converges in the norm-topology of Z(X) and defines an w—ult{'adistribution &
€ %(2,; £(X)) with the properties
(@) suppé <= [0, +o0);
(i) (@)X < D(4) for all p € D,,;
(iii) &' — A& = Sply, &' —8A = doIpy-
Proof. Let —o0 <a <b < +00. By (4.1) and by the evident inequality
lo(z])] € lw(—iz)l, Rez >0,
we have for every ¢ € 9,[a, b], L > 0, integer n > 1 and z€ [, ap
PR ;5 A < 27co Pt o(@)eo(—iLz)|~meHemlotimal +8Y g —iz)["
< 2o €2 (@) Jo(—iL2)| 77w (—izZ)P+me,
Hence, taking L = 1 and n > ba+n,+2, we get for all g € 9, [a, b} and z el 6

@@ R(z; A)| < 2meoep? a(g) I —iz)| =%
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Consequently, the integral in (4.5) converges in the norm-topology of £(X) and
le@il <{ § coelo(=iz)|=2dIz) p2.u(e),

w,&,8

We conclude that & is a well-defined w-ultradistribution from #(2,; £(X)).

Let p € 9,,, suppp < (—c0,0). Then by (4.1) the analytic function 4,,,
5 z+» p(2) R(z; A) is O(|z|~?) at 00, and so by the Cauchy integral theorem & (¢) =
Consequently, (i) is satisfied.

Using the closedness of 4, it is easy to see that for every ¢ € 2, we have
&(@)X < D(A4) and
(4.6)
Hence also (ii) holds.

Finally, for every p € 9,

(&'—A48)(9) = 4’(—<P')—Aé‘(¢)

S #(2)(z— AR (z; A)dz
To .8

( 2ri

m.a 8
thus &' — A€ = d, 1. Using this fact and (4.6), we obtain also
—EA = 6plpyy. m
‘We shall now prove a converse of the above lemma:

9 €Dyla, b].

S(p)A = AZ(p).

2

~(’Z)dl) Iy = do(@)Ix;

LeMMA 4.2, Let A be a closed linear operator in X. If there exists an &
€ 2(9.; £L(X))satisfying the conditions (i), (ii), (iii) from Lemma 4.1, then A  (C,).

Proof. By Theorem 2.5 there exists a y € 9,, such that p(s) = L for s e [-1, 1].
For every z € C we define y, € 9, by

p(s) = e p(s), seR.
By the first equality in (iii), we have
E'(p)—A8(y,) = y(0)Iy, zeC.
Since &'(yz) = &(—y;) = 26(p.)—E(e™*y) and p.(0) = 1, we get
z—A)E(p.) = Ix+E(e*y), zeC.
Using the second equality in (iii), we deduce similarly that

E(,) (z—A) = Ip gy +8(e>y), zeC.
Hence if
47 lleEe )l < 4,
then R(z; A) € £(X) exists and -

R(z; 4) = E@pIIx+E(e ™y’ )]‘

icm
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so that
4.38) [IR(z; Al < &yl 2 1€ =p)IF < 2{l€Cyl.
k=0

Further, we remark that
8e*y) = W& (™) = WE(-2),

where supp (y'€) is compact and contained in {1, +c0). By (4.2), there exist an
L'y ac >0 and an integer »’ > 1 such that

lle(e=i

zeC,

< ¢lo(—iL'z)"e"R*°?, Rez > 0.
Since

lo(—iz)} <
for every & > 0 there exists a ¢, > 0 such that for Rezé 0
lo(—iL'2)|" < ¢, e oL Imz])|* < e"‘”lw(llmzi)]“")z"'.
<, we get

w(—iRez) |w(Imz])j, Rez >0,

Taking & =

1 - ’
18 =9I < cerppe” = " lo(|[Imz[)| &7,

Hence (4.7) holds whenever Rez > 0 and

Rez > 0.

1
ceipe” 2 om0 < 4,

that is,
Rez = 2(L)*n'Injo(/Imz()| +2In(2c'cy5)-
Consequently, for
=2(L)?n, B = max{0,2In(2¢'cy)},
R(z; A) e Z(X) exists for ze A, q5.

_ Finally
8y = w&)(e™) = wd (-2, zeC,
where supp(w&) is compact and contained in [0, + o). Again, by (4.2), there exist
an L”, a ¢ > 0 and an integer n”/ > 1 such that

18I < ¢“lo(~IL"A < ¢l =iz,

Hence by (4.8), taking

Rez > 0.

co = 2", ne= (L'Yn",

we get
[IR(z; DIl <
With regard to the class (C,), we recall the following definition:

DerNITION XVII. Let A be a linear operator in X and x, € X. By a solution
of the abstract Cauchy problem, denoted briefly by (ACP), for (4, Xo) we under-

colw(—iz)|™, z€d,qap- W
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stand -2 continuous fanction u: [0, +00) —» X which is strongly differentiable
on (0, +o0) and satisfies

u(0) = Xo,
u(t) eD(A), ()= Au(t), t>0.
If A € (C,) then we have the following uniqueness result for the (ACP):
LeMMA 4.3. Let A € (C,) and xo € X. Then the (ACP) has at most one solution
Sor (4, xo).

Proof. Since R(t; A) € £(X) exists for t e [ty, +0), where f, is some real
number, and

fim

-+

IR DIl o
our statement is an immediate consequence of [42], Theorem 1. m

Using the above lemmas, we can infer

TueoreM 4.4. Let A be a closed linear operator in X. Then A € (C,) if and only
if there exists an & € £(9,,; £ (X)) satisfying the properties:

(i) suppé < [0, +0);

(i) £(p)X = D(A) for all pe D,,;

(iii) &' — A6 = doIx, &'—8A = 8y Incay.
Moreover, if Ae(C,) then the above three conditions define a unique &
€ L (D,; L(X)), given by the formula

1
K0 = | BORG: Az peD,,

Fm.ﬂaﬂ

where a, B > O are as in Definition XV1 and the integral on the right side converges
in the norm-topology of £(X). '

Proof. Let &, F € £(9.; £(X)) be such that (i), (ii), (iii) hold for each of
them. We write 4 = &§—%. Then

supp¥ < [0, + ),
4 (@)X < D(4) foral gpeg,,
¥ —A9 = 0.

Let ¢ € 2, and x € X be arbitrary. We take a real number #, > 0 such that
suppp < (—co, f;) and we define u: [0, +0) -+ X by

u(t) = g('ﬂ_,n lP)x,

wl.xere, as usual, 7.p € P, re R, is defined by (v, ¢)(s) = ¢(s—r), se€ R. Then
u is continuous and strongly differentiable on (0, +0), and for every ¢ > 0 we have

W(1t) =G (~(7mg, @))% = ¥ (7, @)x = Au(2).

t>0,
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Since supp(z_.,¢) = —fo+suppp < (—co, 0), we have also
u(0) = (v_,,p)x = 0.

Consequently, « is a solution of the (ACP) for (4, 0) and thus by Lemma 4.3 u=0.
In particular,

4(p)x = u(te) = 0.

We conclude that 4 = 0, that is § = &.

Using the uniqueness result proved above and Lemmas 4.1 and 4.2, we obtain
the theorem. =

We remark that a closed linear operator 4 in X satisfies the condition C, if
and only if there are «, > 0 such that R(z; 4) € £(X) exists for z €d,.q5and
for every £ > 0 there exist a ¢, > 0 and an integer n, > 1 with

IR(z; DIl < clo(—ile™,  ze€dyap.

Indeed, if A4 satisfies the above condition, then a similar reasoning to that used
in the proof of Lemma 4.1 shows us that there exists an & € S’(@m; 2(X)) satis-
fying the conditions (i), (ii), (iii) from Theorem 4.4.

Dermnrrion XVIIL Let A € (C,); then the w-ultradistribution & € .?(@m; £ (X))
defined by the conditions (i), (ii), (iii) from Theorem 4.4 is called the w-ultradistri-
bution semi-group generated by A.

We recall that distribution semi-groups were defined by J. L. Lions in [40] and
their generators were characterized by C. Foias in a particular case ([23]) and by
J. Chazarain in the general case ([11]). In [11] J. Chazarain considered in the frame
of the existing ultradistribution theories also ultradistribution semi-groups and
he also characterized their generators. Theorem 4.4 extends Chazarain’s results.

The “semi-group property” of w-ultradistribution semi-groups consists in the
following one:

PRrOPOSITION 4.5. If & is an o-ultradistribution semi-group, then

E(pxy) = E@EW),

Proof. Let A €(C,) be the generator of &. By (4.5), the proof is a routine
exercise in the functional calculus theory; since we shall use similar arguments
several times, we give the proof in detail.

Let @, p € 29. Using the formulas

e, peD;.

£ =5 | FORG Az,

Pm.lx.ﬁ

€(1p)=7:“f S PARQ; A)dA

Tyl
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and the resolvent equation, we infer that

B
s@EW) = o | FORE A)[ 4 | X dl] dz+
0,8, mu.ﬁ-{—l ’
, 1 (z)
gy | POORG: A)[Zm | & ]“
Toap+1 To.up

Since suppe, suppy < (0, +00), by (4.1) and by the Cauchy integral formula
we get

1 z)

. S D 43 = 5@, zelap,
I'm,u,3+1
1 #(2) ,

o | Bazz0 deliop,

'rm.a,ﬁ
so that finally we obtain

S FEPR(; A)dz = E(pxy). w
rm.m,ﬁ
For every & € £(2,; 4(X)) we put
Ne={xeX;&(p)x =0 for all p D2},

E@EW) = 5

n
Re = {Z &(@)x;; n > 1 integer, ¢, €95, x; EX}.
J=1

DErFINITION XIX. We say that an co-ultradistribution semi-group is regular
if #s = {0} and Z¢ = X. We denote by (CZ) the class of all operators from (Cy)
which generate regular w-ultradistribution semi-groups. ‘

We note that if 4 e (C2) then A4 is densely defined, because D(4) > ZAe.
However, in general, there exist densely defined operators in (C,) which do not
belong to (CY), as the following example, due to D. Voiculescu, shows.

Let us assume that ¢, < f, < ... < +00 and let H be an infinite-dimensional
separable Hilbert space with an orthonormal basis {e,}_w<n<so: We define
the weighted shift T e £ (H) by

1
Te,,=————e,,+1, n?O,
tn+1 .
1
Te, = €1, n<O0.
t—n+1

It is easy to verify that T is injective and has a dense range, so we can consider the
densely defined closed linear operator 4 = T-1, Since

. 1
TH| = >
I ooty k=1,
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R(z; A) € £(H) exists for every z € C and it is given by the formula

©

R(z; A) = — Y T,
k=0
Hence
R <Y < (Y D oga, zec.
T—0 k+1 = k

In particular

0
irees Ay < (Y )l Rez >0,
k=1 'k
so that 4 € (C,). On the other hand, denoting by & the w-ultradistribution semi-
group generated by A and using (4.5), (4.1) and the Cauchy integral theorem, we
can easily see that supp&. = {0}, so that
Ne=H, Re=1{0}.
Consequently, 4 ¢ (C3).
The following result shows that the class (CJ) is large enough:
PROPOSITION 4.6. Let A be a densely defined closed linear operator in X such
that for some «, B, a co > 0 and an integer ny > 1, R(z; A) € Z(X) exists whenever
z€ A, and satisfies ’

IR(z; DIl < co(l+1zly>, z€dpus-
Then A e (CJ).
Proof. Tt is obvious that 4 € (C,).
Let x € D(A™*2) be arbitrary. Then
no+1
4.9) R(z; A)x = Z z7I14ix 427" 2R(z; D)A™F3x, z€A,qp-
J=0

Further, let {g;}x=1 = 22 be a sequence such that g, — J, in &., (for example,
+00 N
choosing some ¢, € 23, ¢, 20, S @ (s)ds = 1, we can take @(s)= ke,(ks),
-
s € R). Then
F)9—0,j>1
uniformly on the bounded subsets of C.
By (4.1), for each integer k > 1, & is analytical and O(jz|~?) at 0 in C\Au.0.85
hence by the Cauchy integral formula
1
2mi

55,,;—-»1 and

S 5Dz Axdz = (FIOO) A%, 0<j<no+l.

Lo,
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Using (4.9), we get for all k> 1

- mo+l

ol . . 1 "
Bpdx = ) GIPO x| BETTIRE A A .
j=o

@,%,8

Letting k — +00, we deduce that

S z7"%"2R(z; A) A"t *xdz.

To,a,p

. 1
,}1510 E()x = X+5r

Since zi»z~™~2R(z; A)A™+2x is apalytical and O(jz|™%) at o0 in A, its
integral along T, «,5 vanishes. So

lim &(p)x = x.
k> +o0

‘We conclude that %, is dense in D(4™*2). Since A is densely defined and its
resolvent set is not empty, D(4™*?) is dense in X, and so Re=X.

Similar arguments show that #e« is X-dense in X*, where £* is the w-ultra-
distribution semi-group generated by A*. Since 4 ¢ is the annihilator of Z« in X,
it follows that /¢ = {0}. m

For operators in (C3) the abstract Cauchy problem has a unique solution
for a dense set of initial conditions. Namely, if 4 € (CJ) and & is the w-ultradistri-
bution semi-group generated by 4, then, by condition (iii) from Theorem 4.4, for
every x € X and ¢ € 92 the function [0, +00) 3t &(7,¢)x is a solution of the
(ACP) for (4, &(¢)x). Hence, if xo € ¢, then the (ACP) has a solution for (4, xo)
and by Lemma 4.3 this solution is unique. -

We shall give later a more precise result, restricting ourselves now to the
following extension of a result of R. Beals from [3]:

COROLLARY 4.7. Let A be a densely defined closed linear éperator in X such that

for an increasin,g; Sfunction f: [0, +00) = [1, +00) with +sw t~2In f(t)dt < + o0,
¢o > 0 and an integer ny > 1, R(z; A) € L(X) exists for z in ;he region

4y = {zeC; Rez > In f(|Imz)}
and satisfies the estimation

IR(z; DIl < co(1+]z])™,

Then there exists a dense linear subspace & in X such that the (ACP) has a unique
solution for (A, x,) whenever xy e &.

zed,.

. ]
Proof. By Theorem 1.6 there exist 0 < t, < f, < ... < +00, 3. 1/ty < + 00,
k=1
and ¢ > 1 such that, writing & = w,;, we have

) < clo@), e, +w).
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Hence R(z; 4) € L(X) exists-for ze A, 1,1.. and
[IR(z; DIl < eo(1+1z{)"™,
By Proposition 4.6, it follows that 4 € (CJ).
Finally, by the remarks preceding the corollary, denoting by & the w-ultra-
distribution semi-group generated by A4, we can take # = Z¢. u
‘We remark thatin [3] R. Beals proved the above statement for f = e¥, where
y: [0, + 00) = [0, +00) is continuous and concave and satisfies

z2€A, 1,1men

+o

lim p(t) = +oo, § t2p(0dt < +oo0.
1

t—+oo

lim t~'p(t) = 0,
t>+-c0

If v is as above, then it is increasing. Indeed, for 0 < s < ¢ < r we have
r=0p(E)+(E—5)p@) < r—9)p(),
so that, dividing by r and letting r — +00, we get
w(s) < »(0)-.

Hence Corollary 4.7 extends Beals’ result.

The following technical lemma is essential for our further considerations:

Lemma 4.8. Let 0 <r; <r,<..,r < +oo, klelrk < +00. Then for
any 0 >0,0 < B <ry, and 0 <& <1, there exists agc > 0 such that

lopg(iz)] > dogg(lzDff

Jor Rez < alnjoy,y(Imz))|+ 8.

Proof. For convenience, we denote wg,; simply by 7. Let us write 2 = {z eC,

Rez < «lnjzr(|Imz))|+B}. As Q is simply connected and z > (iz) does not vanish
on £, there exists an analytic function f on £ such that ’

gD = 1(iz), zef. N
Then
(4.10) IO = |1(iz)], zef
and
T N1
@4.11) ro=15 ; . zel.
We put 2, = {zef; Rez <0} and , = {ze2; Rez > 0}.

It is easy to see that for every z €
7(i2)] > |(lzD)] > |=(zDl
Next we shall prove that

(4.12) lim

@) = 0.

zey
{Imz{—+ 400
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Indeed, for any integer po > 1 and z € 2,, we have

7o) < Z = P o

P>po

Mmz{ * &/ (|z[>+7 ~2r,Rez)

Do alnlr(llmz[)|+ﬂ) 1

|Imz| {Imz|
so that
—— 1
Im |f@I< E —.
zefd; T,
[Imz|-»F o P>po

Since po > 1 is arbitrary, we obtain (4.12).

Let 8 > O be arbitrary; by (4.12) there is a constant d; > 0 such that [f*(2)| < ¢

whenever z € 2, and [Imz| > d,. Hence for ze£2,, {Imz| > d;, we have
Ref(ilmz)—Ref(2) < | (iImz)—f(2)|
= ] i ro dz] < Rez < adln|z(/Imzl)|+B3.

[iImz, z]

By (4.10) it follows that

|z(|Im z))] !

W < e”]‘r(([mz})r‘”, z E.Qz, IIsz = dl
hence )
(4.13) 22| € e Pr(limz)[1-*, zeQ,, [Imz] >4,

On the other hand, for any y > 1, there is a constant d, > 0 such that

aln|z(t)| +8\*
) teR, lt| > d,

Thus for ze 2,, |Imz| > d, and integer k > 1, we have

Imz \*\" Imz\*
I+l—1 ) = 1+y
b Y

2 2 2
ol ol
k

{Imz| b

y>(l+

Consequently, we obtain
4.14) [t(lmz))| > w2, ze®,, Imz|>d

Using (4.13) and (4.14), we conclude that, for every 0 < 8 < a~* and y > 1,

there exists 2 d > 0 such that

[T(i2)] > ePlz(z))/d-rr, ze0,, |Imz| >d
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Choosing 0 < 8 < (1—¢)/e and 9 = (1—ad)/e > 1, we infer that for ze 2,
with |[Imz| large enough
|2(i2)] = e Pa-arg(|z[)"
Now our statement is immediate. u
We shall next define “abstract w-spaces”, similarly to the abstract Gevrey
spaces of R. Beals from [4] and to the abstract Beurling spaces of I. Ciorinescu
from [14]. For this purpose, we prove a lemma, inspired by the techniques used
in [14], § 3.
For every y > 0 we define the entire function w, by the formula
1+ (iz/y)
o (z2) = (@) | | %
’ E 1+ (iz/t);
LemMma 4.9. Let A € (CQ), «, B, ¢q > 0 and let ny = 1 be an integer as in Defi-
nition XV1, let & be the w-ultradistribution semi-group generated by A and let y > B.
Then for each integer n > 2n,+6 we conclude that
(i) the integral in the formula
1 —n(7 -
B,.= P S w;"(iz)R(z; A)dz
o0,
converges in the norm-topology of ¥(X) and B, does not depend on the choice of
a, B, co and ny;
(i) for every pe 29
B,,,& (0}(—iD)p) = &(w}(—iD)p)B,,, = E(¢);
(iii) B,,, is injective and B, X > R¢, so By is a well-defined closed linear
operator with D(B;)) o Rs;
) B; 1 = Byl
Moreover, for all integers n,m > 2n,+6
(V) Yo v m = B}.n+m
Finally, if m > 1 and n > 2ny+m-+6 are integers, then
(vi) B,,,X = D(4™) and

A™B,, = 2—71“ S Mos(iD)R(z; A)dz,
T,
where the integral on the right side converges in the norm-topology of % (X).
Proof. Let us first establish an estimation for ||R(z; A)|| on Iy, ¢. Since
lo(—iz)] € o(—iRez)lw(iz])), Rez>0,
for every & > 0 there exists a ¢, > 0 such that
|o(—iz)I™ < ¢ e w(|z])|™, Rez>0.
Hence, for zelyq,5
[IR(z; DIl < cocee™ H(iz)™ < cocpe®|w(|z])im**.

11 Banach Center t. VIIL
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In particular,

(4.15) [IR(z; Al € cocyme®w(z))"t, 2z €Ty 4p-
On the other hand, choosing an integer m > 1 with

2

m > max Y-

te<y t
we have

lo®)] < lo, ()", teR,

so that

C\uo s © {z€C;Rez < amln|w,(Imz])|+}.
" Applying Lemma 4.8 with ¢ = %, we deduce that there exists a ¢ > 0 such that
cloy(z))['2, 2 € C\do,ap-

lo,(i2)| >

Hence, writing
. 1+ (itly)
Pt | 1+(it/t)

we get
4. 16) lo,(i2)] = ed|w(iz)[*?, ze C\ oo+
Using (4.15) and (4.16), we get for each integer n > 2n,+6
. €oC1ye _ .
Hw;"(lZ)R(Z; A)H 2 Ci'ld" ! (|ZI)I z eru),a,ﬁ;

hence the integral in the formula from (i) converges in the norm topology of £ (X).
Taking into account that m;) = w}(iz)@(z),z€ C, and that
z > ;"(iz) is an analytic function on a neighbourhood of C\4yq,s and O(jz|™™?)
at 00 on C\ .45, and using similar arguments to those used in the proof of
Proposition 4.5, we can easily verify (ii) and (v).
(ili) is a direct consequence of (ii). Indeed, if x € X is such that B, ,x = 0,
then by (ii)

8(@)x = & (w(—iD)g)B, ,x =0, @eBDY;
so x = 0. On the other hand, again by (ii)
B,.X o U B, & (wl(—iD)p)X = U E(P)X;
(-2 w . q;sﬂ‘.,

hence B, , X o %s.

In order to prove (iv), let n > 2ny+6 be integer and ¢ € 23. Since B, , and
&(p) commute, we have successively

B;1é(9)B,, . = &),
(B;1%5) (6(9)B,,.) = &(p).
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Using again the permutability of B, , and £(¢), we get
,.26(P)X = D(B;1ids) (B, 1195 (B,

Since @ € ¢ is arbitrary, we conclude that B, ,%s c D(

(B;11%:5)B

Using the density of %, the continuity of B, , and the closedness of B;|%s, we

and @) = 6@.
n' al) and

,nX =X, XERg.

infer that B,,X c D(B;L|®s), that is D(B;}) = D(B;i|#s). Consequently,
B;l= B;}|%e¢, and so (iv) is proved.
By (ii) we have
B;1&(p)x = €(w}(—iD)g)x, @€y, xeX,

and by (iv)
Bl % =

Thus B;1, and hence also B, ,, does not depend on the choice of «, f, ¢o and #n,.
So (i) is completely proved.

Finally, let m> 1 and n > 2no+m-6 be integers. By (4.15) and (4.16), it
follows that the integral in the formula from (vi) converges in the norm-topology
of #(X). We put

T,n‘

S Z"w;"(iz)R(z; A)dz € Z(X).
Lo, 0,8

Let x € D(A™). Using the formula

m—1
A™R(z; A)x = z"R(z; ) x— Z 2"I-140x,  xelgqs,
Jj=0
and the closedness of A™, we can easily verify that B, ,x € D(4™) and
A™B, x = Tx.

By the density of D(A™), the continuity of B, , and the closedness of A™ it
follows that B, ,X < D(A™) and

A™B, = T.
Hence (vi) is proved.

We shall study next the dependence of B, , on y:

LemMA 4.10. Let A € (CD), , B, co > 0.and let ng > 1 be an integer as in Defi-
nition XVI, and let y,,y, > B. Then for each integer n > 2n,-+6 the integral in
the formula

1
— [ @

To,e8

C,

Y1720

" (D52 (2)R(z; A)dz

converges in the norm-topology bf LX) and we have
4.17) B, 2a= B, xC, ., n=C, 2B,

peth 21l g STL
11*
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Proof. By the estimations (4.15) and (4.16), the integral in the above formula
converges in the norm-topology of £(X). Using similar arguments to those used in
the proof of Proposition 4.5, we get the equalities (4.17). =

The above two lemmas permit us to infer

TaEOREM 4.11. Let A € (C3), a, B, co > 0 and let no = 1 be an integer as in
Definition. XV, let & be the w-ultradistribution semi-group generated by A,y > B
and let po = 2n,+6 be an integer. Then

N B,

nzpo

n = po, defined by
xe () B,.X
n3po

endowed with the norms || -|ly,u,

“x”y n= ” nx“’
is a Fréchet space X, 4 which does not depend on the choice of , , ¢, 1o, ¥, P
and satisfies:
() Xu.4 = D(A), AXo, 4 = Xo,a and AlX,
(i) B¢ is a dense Imear subspace of X, 4;
(iii) the inclusion X, 4 < X is continuous and has a dense range

4 €ZL (X, 4);

Proof. By Lemma 4.9 (v) and by Lemma 4.10, for all y,,y, > fand n,, n,
> 2ny+6, n, = 3n,, we have: '

XcB,, mXcB,.X;

1'2 "y Y1 Ay

so () B, ,X does not depend on y and p,. On the other hand, again by Lemma
23po
4.9(v) and Lemma 4.10, for ali x € N B, ,X-and y,, 9., n,, n, as above, we have

nz=po

(4.18) xll,n, = 1B 2w, X1 = [1Cyy . m, Byym=2m, Byt X

S G panl 1By myam 11Xl 3

so the topology defined on () B, X by the norms {|- ||, . n>

n>po

depend on y and p, either. Taking into account Lemma 4.9 (i), we conclude that

X, 4 does not depend on the choice of «, B, ¢, 1o, ¥, po. Clearly, it is a Fréchet
space. ‘

In-order to prove (i), we remark that by Lemma 4.9 (vi), X,

same lemma, for y e D(4), y > f and integern >

> Do, does not

»,4 < D(4). By the
2no+17, we get-

1 .
B"”'Ayzin—i S w;™(iZ)R(z; A) Ay dz
I'm,a,ﬁ
. 1 X
= | zw;"oz)R(z;A)ydz—[m {- w;"(vz)dz]y = 4B,y

To,a,p8 . Lo, a8
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and 4B, , € Z(X). Hence, if x€X,, 4 then for all y > ﬂ and integer n >
we successively have

2n5+7,

B;}ax EX‘,, A < D(A)a
Ax = AB, x(B;3X) = B,,,A(B;1x) €B,,,X,

so that Ax € X,, ,. Consequently, AX,
> 2ny+7 is integer, then

0,4 © Xp,4. Finally, if xe X, 4, y > f and

l{Axll,, u = HB7 5 AB,. nB,.. By haxll <

el

NAB, |l 1]y, 2ns

and thus A|X,, 4 € L(X,, 4).

By Lemma 4.9 (jii), ¢ is a linear subspace of X, ,, and using Lemma 4.9 (iv)
and (4.18), we can easily verify that £ is dense in X, 4. So we also obtain (ii).

(iii) is an immedijate consequence of the inequality

Ilxlt < 11By, ll [1xMy. 25

and of the density of #¢ in X. »
We now define another class of “abstract w-spaces™
ap™ as in the definition of the space &.

x €Xp 45 1 2 2n0+6,

, using the coefficients

DeFINITION XX. Let 4 € (C3). We define the Fréchet space Y, 4 by endowing
the linear subspace of X

oo
{x € M D(4*); sup L¥aP"|| 4*x]] < + oo for every L >0 and integer n > 1}
k=0 k=0

with the semi-norms

x> supLtapriid®x], L >0, n> 1 integer. -
k>0

LemMA 4.12. For each A € (C2) we have
XW.A < Ym.A;
where the inclusion is continuous.

Proof. Let L > 0 and integer n > 1 be arbitrary. We choose «, f, ¢o, 1o, as in
Definition. XVII, y > f and integer m > 2L°n+2n,+6. By (4.15) there exists a
¢; > 0 such that
4.19) [IR(z; Dl < erjw(lz) =+,

On the other hand, by (4.16) there exists a ¢, > 0 with

2€l,0p-

(4.20) [0,3i2)] > ez, 2 € C\ous;
@2) (L) = Moz o3, k> 0, zeC\Apnp.
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Let xeX,, , and integer k> 0 be arbitrary. By Theorem 4.11(1) 4IX;;, .
€ #(X,, ) and it obviously commutes with B, | Xu, 4 € £(Xo, 4); hence
LkapmAkx = L*aP"B, nA*B; 5 x

1

k w,B —
Fmi L*ap "w;

To,a,p

"(iz)R(z; A)4*B; L x dz

= | @aprermiaRE 0B~

rm,a,ﬁ

—(Lra "z o5 “(lz)z ~I-14iB; 3 x dz.
=
k=1
Since z— (L*ap "zF)w;™(iz) 2 z‘J‘lA’B;‘mx is analytical on a nelghbourhood
of C\Ag., s and by (4.20) 1t is O(jz{~%) at co on C\AM 5> usmg the Cauchy
integral theorem we deduce

Lka;’vnAkx = .2.% S (L"a‘” ") w;™(iz)R(z; A) By x dz.
I,

,%,8

Now using (4.19) and (4.20), we can easily see that

Zrapiatal < 2 ( { |w(tzl)|-2dz)nxn,/,mu
Fw,m,ﬂ
We conclude that, writing
=28 {0 foqa)adiz,
Fm,m,ﬂ

we have

sup Lap"{|A*%]} < ellxllym; X €Xpa5
k=0

which proves our statement. m

Assuming that o satisfies the strong non-quasmnalytlcxty condition, we can
prove also the converse inclusion, extending [4], Lemma 4, and '[14], Theorem 3.8:

THEOREM 4.13. Let us assume that o satisfies the strong non-quasianalyticity
condition and let A € (CS). Then the Fréchet spaces X,, 4, and Y, 4 coincide.

Proof. By the above lemma we need only to prove that Y, 4 < Xo,4 Where

the inclusion is continuous. We note that, by statement (111) from Theorem 2 25
we have

o
You = {x ekﬂoD(A"); iupL"c;‘"'"HA"xH < 400 for each L >0, n> 1}
= >0 ER
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and the topology of Y, 4 is given by the semi-norms

x> supL*cp"|ld®xl|, L >0,n> 1 integer.
k=0

Moreover, by statement (i) from Theorem 2.25, there exist a ¢’ > 0 and an integer
n’ > 1 such that
(4.22) clo()™,

Let a, f, o, no be as in Definition XVI, let > f§ and let =
integer. Writing

o(—i) < t> 0.

= 2"o+6 be

14+(itly)
=g ———o| < 400,
ekp,k(y {1+ (it/t)
we have
lo,(O} < ¢ lo()], teR.

By Theorem 1.3, for all integers £ > O we have

(@@ < i), teR.

In particular,

1 1 y
T [(@™®O) < C“Tch(w')(”(O)ls k>0,
that is
4.23) g e, k= 0.
Then, using (4.22), we get
>t < (cPlo@I™, >0
k=0
and this implies by (4.20)
0
@29 > @rizterm i) < (VoD 2 € C\Auap-
k=0
Now let x €Y, 4 be arbitrary. Since by (4.23)
At < k>0,

2 k¢*sup2rca|| 4P|,
=20 ‘

we can define the elements yy, ¥, ..., Vo €X by

©

= Z(—l)‘czwﬂx, m=1,2,..,00;
k=

then y, — ¥, in the norm topology of X. Moreover,

(4.25) ||Vmll < 2¢"sup2?Pce||APx]ll, m=1,2,..,0
»20
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For every integer 1 < m < +c0 we have

1 { oy, N —'I nn’
B, it 20 Vm = "2‘75 5 [Z( Decgr (iz)R(z; A)A"x]
a,‘ B8 k=0
- 7}5 (S o) os-mraames e
Tpna,p = k=0
= D (= perrztagrin) )z ’Afx] dz.
Z Z

Using (4.24) and the Cauchy integral theorem, we can easily verify that for every
integer l < m < +©
Byt amVm = S ( Z( ez ) w2 (i2)R(z; A)xdz.

w, ‘l;
Since yp — Yu, by (4.19), (4.24) and the Lebesgue dominated convergence theorem,
we deduce

1 N .
B, ni2m Vo = wr S wl(iz)w; > (iz)R(z; A)xdz = B, zpn%.
0, %0

By Lemma 4.9 (v) and (iii), it follows that
BynVo = %;

so, using (4.25), we conclude that

(4.26) x€B,,X and |IB;ix|| = [ly,ll< Zc"supZ"c;""HA”xH.
Since x €Y, 4 and the integer n > 2ny+6 are arbitrary, (4.26) proves that

_Yo,4 © Xo,4 and that this inclusion is continuous. m

DermNITION XXI. Let —0 €a <b < +oo and let E be a locally convex
topological vector space. Then we denote by £,((a, b); E) the vector space of all
infinitely strongly differentiable functions ¢: (a, b) — E such that for any compact
Kc(ab), L>0, mteger n > 1 and continuous seminorm p on E

ke (p) = sup [Lrag "sup p(p®(5))] < +co.

We endow &,((a, b); E) with the locally convex topology defined by the semi-

norms rg:x?, compact K = (a,b), L >0, integer »> 1, p continuous semi-

norm on E.
We next recall the following terminology from [36]:

DermiTioN XXIL Let E be a locally convex topological vector space.

icm
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We say that a family {U;}i»o = ZL(E) is a semi-group of class (Cy) if

Up=1, Uyo=UU,t,s>0,

and for every x € E, the mapping [0, + )3 t+> U,x € E is continuous.
A semi-group {U}hizo © Z(E) is called locally equi-continuous if for every
compact K < [0, +00), the family {U,},x is equi-continuous.
We can now give our main result concerning the abstract Cauchy problem:
TeeoREM 4.14. Let A € (CS). Then
(i) for each x€X, 4 the (ACP) has a unique solution

[0, +0)s t> Um4x eX
Jor (4, x);

(i) the linear operators UP*, t> 0, belong to L(X.,,4) and commute with
A}Xm..{ € g(Xm,A);

(iii) {UP*}»0 is a locally equi-continuous semi-group of class (Co) of operators
from £(X,,s) and its infinitesimal generator is A|Xp, 4 € £ (Xa.4);

(iv) for each x €X,, 4 the function

0, +0)a t—> UP4xeX, 4

belongs to €,((0, +); X,,,4) and it depends continuously on x;
(v) denoting by & the w-ultradistribution semi-group generated by A, we have

+oo
s@yx = | pOUPAxdr,

9

€D, XEXg4-

Proof. Let «, B, ¢, no be as in Definition XVI and y > §. Let 7 > 0 and let
n > 2ut+2m,+6 be integer. By (4.19) and (4.20) we have for all z€ Ly

llew7"2)R(z; AN < eyc57e (a2t <

¢; e3"|e(lz))|%e™;
so the integral in the formula

1
E,, = i S e“w;"(iz) R(z; A)dz

To,a,8

converges in the norm topology of £(X) and

— ( { lw(lz!)!-2d2> ot

Lo,a,8

427

It is clear that E,,, commutes with all operators B,,m, m > 21,46, so that

(428) E!‘nXm,A CXa,A1 Et,n‘Xn.A € g(Xm.A)'
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On the other hand, using Lemma 4.9 (ii), (4.5) and a reasoning similar to that
used in the proof of Proposition 4.5, we get for every ¢ € 2,

E, .B;16(p) = E, .8 (0}(~iD)p)

1
- S 0 (DR(z; A)dz - S (2 () R(z; A)dz
Pm.u,ﬁ Tm,a,{l
1 iz~ . . .\
= i S *p(2)R(z; A)dz = & (p( —1)),
Pw,a,ﬁ
that is, with the usual notation =,p = @(- —1),
“29) E.Bi8() = 6(r), ¢ e98.

By (4.28), (4.29) and Theorem 4.11 (ii),
and is completely defined by

(4.30) Up48(p)x = &(r,9)x,
so that it does not depend on n. Moreover, by Theorem 4.4 (iii)
E(=p) = 48(9),

thus (4.30) implies for every p € 92 and xe X
AU E(p)x = A8t )x = E(~1,9")x = UPAE(~¢')x = UP4AS(p)x.

By Theorem 4.11 (ii) it follows that U™ commutes with A|X, 4 € L (X, 0).
Again by (4.30) and Theorem 4.11 (ii), the semi-group property of the family
{UP*}450 follows immediately.

An easy computation shows us that, choosmg for example n >

1 E;n— =0.
i Eex Bl =0

4 = E, ,B;} | Xa,4 belongs to Z(X,, )

ped), xeX,

peD;

204+ 2n,+6,

Hence, for every x € X,, , and integer m > 2n,+6 we have

lim [|UPAx— XLy = llm ”By w(Een~

010

B, .)B; x|

\Olé?lo”El,n"' y,u” ”By,l B_an = 0

so the semi-group {Uf4},., is of class (Co).

Next let K < [0, + ) be compact. We choose 7, > 0 such that K c [0, 7]
and 7 > 2alo+2n,+6. Then, using (4.27) and Lemma 4.9 (v), for every ¢ & [0, £o],
integer m > 2n,+6 and x € X,, 4, we get

NUE 4% lym = ||B;5 Ee nB;, 1xll

yont

c c—'" I
= (PS D24l | i

0,08

so that the semi-group {U#*},5q is locally equi-continuous.

<
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Further, let ¢ > 0 and choose #, > ¢ and an integer n'> 2aty+2n,+8. Using
the Cauchy integral theorem and the closedness of 4, we can easily verify that

and AE,,= L

27tirS ze"” w;"(iz)R(z; A)dz.

@,0,8

E,,X < D(4)

Since, for every 0 < s <o, § # t, we have

1 Z__ ST\ __ optZ
m(e‘ %) —ze

< [t—s| |z%¢%l, Rez>0,

writing
1

€3 =

e\ 12 IR G Aldiz] < +oo,

To,0.8
we infer that

1 .
“ 't__':q‘ (Et,n_Es,n)“A-E:.n

< c3ls—t].
Consequently, for each x € X, , and integer m > 2nq-+6, we have

(U2 Ax — U24x)~ AUP*x
t—s- ¢

< cals—t [xllymem O0<s<to,s#1;

pm

hence

= 0.

yomt

(4.31) o (UPAx — U2 Ax) — AU Ax

t—s

0<st
By the facts proved above concerning the operators {U{**},»0 and by Lemma
4.3, we conclude that (i), (ii), (iii) of the theorem hold.
In order to prove (iv), let x € X,,4. By (4.31) the function
0, +0)a t— UP*x €Xopy

is strongly differentiable and
4
dt
By induction, we infer that the above function is infinitely strongly differentiable
and

U2Ax = AUP4x = UP*Ax.

k
%- Upax = AFUS4x = UPd*x,

Further, let K < (0, +oo) be compact, let L >0 and let n> 1, m = 2n,+6 be
integers. By the local equi-continuity of {U®4}.s0 proved above, there exist an
integer m’ > 2n,+6 and a ¢, > 0 such that
HO2 Yl lyam < Call¥lyoms
and by Lemma 4.12 there exist an integer m’

'"“Aky“ < ‘-‘s”}’“y,m"»

(4.32) k0.

te K,y €Xy 4
' > 2mp+6 and a ¢s > 0 with

sup L¥ap yeX, 4
k=0
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Hence, using (4.32), we deduce

2Ky m(Up4x) = sup [L"a;?"'sugHU;”"‘A"xIIy‘,,,] '
k=0 te
< cqsup Lragm||ARx| |, m
k0
= c,5up L¥ag™||4*B; 1 x|
k>0

< €4Cs ”B{;.rln'xHy.m"' = CyCs ”xH~/.71:’~l-n|”:

which proves (iv).

Finally, let ¢ € 9 and x € X,, 4. Let us take #, > 0 such that suppg < [0, #o]
and n > 20ty+2n,+6 is an integer. Using arguments similar to those used in the
proof of Proposition 4.5, we get

€(¢)B,"=—2% S B(2)R(z; A)dz- 1_ S w;"(iz)R(z; A)dz

Top 27 i
1 BT
:WPS (25 "(i2)R(z; A)dz

0,08
to
=Sq)(t) [-L S e“w:"(iz)R(z;A)dz] dt
2rwi g ’ ]
0 @08
to

={ om0,
0

so that
to w0
S(@)x = E(p)B, . B;3x = S o(t)E, By xdt = S () UP4xdt,
] )

Hence (v) is also proved. ®

Assuming that o satisfies the strong non quasi-analyticity condition, by
Theorem 4.13 we can replace the space X, , in Theorem 4.14 by the space
Y,.4; we thus obtain an extension of some results of T. Ushijima from [64] (see
also [26}, Theorem 3.1), [4], Theorem 1 and [14], Theorem 4.1.

We finally remark that using Theorem 1.6, Proposition 4.6 and Theorem 4.14,
we can easily obtain the following extension of Corollary 4.7:

COROLLARY 4.15. Let A be a densely defined closed linear operator in X such
400
that for some increasing function f: [0, +00) — [1, +o) with § t2n f(t) dt
1
< 4+, ¢, >0 and an integer ny, = 1, R(z; A) € L(X) exists for z in the region

Ay = {z€C; Rez > Inf(jTmzl)}

@ ©

icm

and satisfies the estimation
[IR(z; DIl < co(1+]zl)™, zed,.

Then there exists a Fréchet space ¥, continuously and densely imbedded in X, and
a semi-group {Uy}eso of class (Co) of continuous linear operator on % such that

X cDA), AZ c%, AZ c 2L
and {U,}sso is generated by A|%. Moreover, for each x € %
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[0, +0)2t—Uxe® <X
is the unique solution of the (ACP) for (4, x).

5. w-ultradistributions as hyperfunctions

The purpose of this séction is to represent the X-valued w-ultradistributions as
boundary values of X-valued analytic functions on C\ R, where X is an arbitrary
Banach space.

L)
In the whole of this section #;, 25, ... >0, #; < +00, 3. 1/t < +co will be
“ k=1

fixed and g,y will be denoted simply by w. We fix also a Banach space X.
For each integer n > 1 we shall denote by w} the Borel transform of |w(- )|,
that is
o 400 +0
o}ty =t § lo@syleds = { lo(yleds, t>o0.
) ]

It is easy to verify that Lo !

5.1) supklag™t:+! < wx(t) < 3supklad(3t)k+:, 1> 0.
k20 k=0

We first give the following representation of w-ultradistributions with compact
support: '

ProrosITION 5.1, Let Fe #(6,;X), suppFc (a,b), —0 <a<b< +w
and define the Cauchy transform of F by

D(z) = —I—F(———l:—-), z € C\suppF.

2w z

Then the X-valued function @ is analytical on C\SuppF and there exist L > 0,
integer n > 1 and ¢ > O such that

2@ < cw:(d—ist(—z{:m), zeC\a, b].

Moreover, the following convergence holds in £(9.;X):
’ lim (®( - +ie)—D(- —ie)) = F.
0<g—0


GUEST


174 I. CIORANESCU AND L. ZSIDO

Proof. It is easy to verify that @ is analytical. By the continuity of F there
exist L > 0, integer n > 1 and d > O such that

IF()] < drif" ”](97), ¢ € 8o
Hence, for each z € C\ [a, b],

1
___ s [a.b] -
PN < 578 ( - _z)
d . k!
=g %’(L i A |s~z|"+1)

&a

< — w*(_..__L__._ﬁ
= 2nL "\ dist(z, [a,b]) ]
Now let @ € F,, and ¢ > 0. Then for each integer £ > 0 and s € R we h_ave

+oo

1 1 ®)
1[27:; Sw (P(t)(s (t+ig) s—(t—ie))dt] A0

+ 0

1 k)
= [: | o0 G=pera d‘] —P06)

o

1 k)
- [ § osrnts t] — ()

-0

40
1
=[5 § woe - gt
T
€
<o ) 996+)—g®(s)) g At

-Vs

1 S &
. ) —®
+ - | (s + 1)~ p®(s)| Py dt

11>vs
Ve 4 . i
< L2 sup 1o+ 001)) + 2 sup lo®(t (___ ) w)
< sup (] + nfegf?’ M\ mctanl/_'g ;
thus, using Proposition 2.7, we get
+ 00

S o(t) (@(t+ie)~@(t—ie))dt——F(tp) H

N +co

Aol o]

©-ULTRADISTRIBUTIONS 175
1 + o
1 1
< W[a.b] S t - -
< dryl (m w()( ) __(t_ia))dt 97)

<d (_V? @ (@) +— (7 —arctan ;)ri’.,,(w))
<d (I/E 2. +% (_;i —arctan Vlz—)qf.n(‘}’))
d( L 42 r (@) + — (-2~—a,rctanl/1 )qL,n+1(<P))

- d('/ztl +4(i;.—arctanvl—)) atne1(9)-

Ve
Consequently lim ((D(- +ie)—D(- —ie)) = F in L(9,;X). »
We remark that as lim of(Ljf) = 0 for each L > 0 and integer n > 1, the

1=+ 00
Cauchy transform of any Fe £(£,; X) vanishes at oo.

DermviTION XXIII We “denote by #,(X) the vector space of all X-valued
analytic functions &, defined on C\ R, with the property that for every compact
K < R there exist 4, L, ¢ > 0 and integer n > 1 (depending on @ and K) such
that

1P < co¥ (Hl—fz!) zeC, Reze K, 0 # [Imz| < 6.

General w-ultradistributions can also be represented as boundary values of
functions from #,(X), but not in a canonical way:

THEOREM 5.2. Let F e £(D,,; X). Then there exists an X-valued analytic func-
tion D on C\suppF such that O| ¢\ g € # ,(X) and the following convergence holds
in £(92,; X):

hm (CD( +w) &(- —ig)) = F.

Proof By Theorem 2 5 for each integer —o0 < m < + 00 we can take a func-
tion @, € .‘Z,,,[m——, m-+3] such that Y @m = 1. Then putting F,, = ¢, F, we obtain
F,eé, and

suppF,, < supp@, NsuppF = [m—2, m+2Z]nsuppF.
By Proposition 5.1 for each integer m, there exists an X-valued analytic function
D, on C\suppF,, o (C\ [m—2, m+Z)u(C\ suppF), such that &, € #,(X) and
lim ((15,,,( +ie) =D+ —ie)) = F,,  in L(2,;X).

<¢—i
Let m be an integer with |m| > 2; then @,, is analytical on {z € C; |z| < |m}~
—2} and we have the expansion
0

D,.(2) = Zc?z", z€C, [z < |m| —3.

k=0
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Let us choose the integer &, such that
ona= > x| < 2, el < i
=0

Em
and denote by P,, the polynomial defined by Po(2) = Zo crz*. We can now define
k=

an X-valued analytic function @ on C\ suppF by

B = Byt D (Pu—Pu).
| EE
If K is compact and 8 > 0, then if we take an integer m, > 1+ s:fgx iz|, on the set
|Imz| €8
{ze C;Rez e K, |Imz| < 6}\suppF,

we have the following expansion

P = Z @, — z: Put Y (@u=Py),
|m|<mo 2 |m|<mo ET .

where the last two terms are analytical on {z €C; |z| < mo—3}.
Hence
lim (P(- +ie)—&(- —ig))=F

0<em0

in £(92,:X). m

We remark that in proving the above result we adapted the idea of H. G. Till-
mann from [60], [61] (see also [10], Ch. 5).

Next we shall prove that, under some additional assumptions concerning w,
any function from #,(X) has boundary value in #(ZD,; X).

DernvTioN XXIV. Let 7 > 1 be an integer; for each integer k > 0 we define

supm!ay"t"
inf ™20 mz0
t>0 k”k

bw.n —

It is clear that
@r=b"=1
and
ap" < b < 00, k2=0;
hence
sup k! by ik,

supklap "tk < t>0.
k=20

Conversely, for every ¢t > 0 we have

supm!aft™
< sup | 222 -1 = supm!ag" ™.
k=0

ktbyme
pici ¢ ki m>0

k=0

Hence

supklapt* = supklbg "%,
k>0 k>0

t>0.
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By (5.1) it follows that

5.2 supk‘b“’ gkl < wp(f) < 3supk'b’” "3k, > 0.

The consideration of the numbers 4%’ is motivated by the following regularity
property (see [45], p. 17): for every integer k > 1 we have

(supm! ap"t™)? supm!ap*em supm!aZ"s"

@,m2 _ § =0 : =0 ) 0
(k!bgmy? = :Ef - 12F = :’)‘ﬁ = -1 i’;‘f; = FT
= [(k— D161 [(k+ DIbE3]
Hence the sequence
' pon s
kX } -
{ b?'}l k=1 :

is decreasing. Moreover, it converges to 0. Indeed, if we suppose that

b B
lim k Foi = %o >0,
k- k— 1

then we successively get

Bm (k1B ™ = eo, lim k!Bg"(2/eo)t = +00,
k=-»00 k—c0

\k
’(—2 ) g2 w:'(—-z ) < +o0.
£ 2 &

We shall examine further the possible relations between af*” and 5"

in contradiction with the fact that

2 k
supk!bp® (-—) = supk!ap”
k=0 & k>0

LeMMA 5.3. The following statements concerning w are equivalent:

o0
(i) there exist 0 <ry < r2<rf3<...,rn < +m, 2 re < 4 o0 such that
k=1

9,, coincides with @"'(r:)
(ii) there exist L > 0, integer m >

as topological vector spaces;

1 and ¢ > O such that
bpl g clkap™, k2 0;

> 1 and ¢ > 0 such that
tobgt < c(nfap™, n21,k20

Proof. It is clear that (iii) = (ii).
(il) = (i). As 1 = byt < cLPay™ =

(iii) there exist L > 0, integer m >

= ¢, it follows that ¢ > 1. Let us put

. 1
3 b‘l’:—-l

Ty = bi"l s

k> 1.

12 Banach Center t. VIII
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by” .
As the sequence k——,;—,—- is decreasing, we have 0 <r; < ry/2 < r3/3 <
k=1

€.yt <+ . Usmg (n), the inequality of T. Carleman (see [45], Lemma 1.8.VI,
or [48] Ch. XVI, §4, 5, 6) and Corollary 2.9, we get

0
_1_ Z S—“ (B2
e .
1k i
aw‘ m a‘ku' m
<cLe Z
gy ) h @

cL v (a s myLfk

k=1
< 400.
k=1

. B
ay™.
= cL E (W
=10

<VZsup bt I < Y Tlot V2.

On the other hand, by Lemma 1.7, for every 1¢ R we have

{0gr(0)] < 3max {1, (supby-1}4¢])2} < 3max {1, c*(supap "|4Lt[%)?} <
k>l T ket

For each te R,

()| < V2 supay 1|]/ ftjk
k>0

3c|w(4L1)m.

By Theorem 3.20, it follows that 2, and 2,

- coincide as topological vector
spaces.

(i) = (iii). By Theorem 3.20 there exist L/, L' > 0, integers n’,n"” > 1 and
¢, ¢ >0, such that
lo()] < clogyL')”|, teR,
logg()] < ¢”lo(L"t)"], teR.
Let n > 1 be a fixed integer and consider the sequence 0 < 5, < 5,/2 < 83/3 €
(2]
< .y 3 1/8 < +0, defined by
=)
k ! ’
8 = ?r,,, 2nn'(p—1) < k < 2nn'p.
By Lemma 1.7, for each ¢ > 0 we have
gglga‘i?"‘t" < ()" < cloggL't)™|
o IAVEAY L rriak
< 3c'max{1 (sup__(ilf__t_)__) }( 3¢ max{l sup (Snn Lt) }’
kxl Ty Ty Sy e s,,
Hence, for each k.> 1 - .
5 . (s)*
SUP ( I) rpr \k SUP — LA
apn < 420 2\ BT < 3¢'max (8nnL am1 S1 +ee 8y
( s \* = Sk ’ S k
8nn'L’ Snn’L’
rpok , rpe
— 3¢'max {( 8nn’L ) , (8nn L’)"} = 3 BnniL )¥
Sk S Sp e 8

icm
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so that
sup (si/k)*
n Sk Sy .ee 8,
supq !a;,’ ( Ty ) 1y k 7>1 -
pon < 220 ) Snnka < max i(SnnLk) 3¢ 1...q ;
k'( Sk \) k! Sk k!
‘\ 8mn’'L'k ) 8nn’L’k

1y \K 'y Nk 1Nk
- ma 1 8nnLk) 3 8nn’L’y 1= 3 (B'LY
& Sk S - 8 Sp eee Sk
It follows that for each > 0

suphg " < 3¢ |y (Bnn'L't)] < 3¢'|wgyy(8nn'L't)>™ |
k>0

< 3c’c”|a)(8nn'L’L"t) 2 < 312 c’c"supa‘“ 2ann” (8 ]/ 2 nn’L'L"t)k

In conclusion, puttmg L= 8]/2n’L’L" m= 2n' " and ¢ = 3Y/2c¢”
each mtcger nx1 :

, we have for

supb"’ kg
k30

csupa,‘ "(Lnt)%, t>0.

Hence for each n,k > 1

ag:m 4
‘supby”
ng q (Lnam mn

am.mn k

(Lnaw mn )

After the above preliminaries concerning the regularity of w, we begin the )
proof of the éxistence of the boundary values of the functions from 5#7,(X).

DEFINITION XXV. We say that o is regular if it satisfies the equivalent con-
ditions of Lemma 5.3.

LemMA 5.4. Let 55 > 0, 8 > 0 and let ® be an X-valued analytic function on
{zeC; [Rez| < 50+ 6,0 < Imz < 26} such that for some L > 0 and integer n > 1

12 < or ().

Then there exists a sequence {® x>0 of X-valued continuous functions on {z € C;
[Rez| < So, 0 < Imz < 8} which are analytical on {z€C; |[Rez| < 5o, 0 < Imz
< 6} and constants M > O and ¢ > O such that for z in the region {z e C; |Rez|
< 8,0 <Imz<d} we have L

b < < c222 = c(Ln)ag™. m

zeC, |Rez| < 50+6,0 < Imz < 24.

M k+2
'ﬂ);"
B2 < ckibg (-—Im) . k>0,

®(z) = Z B(2).
=0

n*
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Proof. Tt is well known that .

. 1+
0,: fveC; vl <1}av > iqg—y

is a conformal mapping of the unit circle
{we C;Imw > 0},
Further, if 0 < » < 1, x > 0 are such that

1 l
o4 4 26
x§Tl-rz)(1—uft3‘> s S ==+ 7

foeC;lvl <1} onto tﬁe half plane
x—1

then

dag

0,: {weC; Imw >0}ow > ‘S V(T::;CEY(—I—; =

is a conformal mapping of the half plane {w e C;Imw > 0} onto the. rectangle
{z€C;[Rez| < s5,+8,0 < Imz <28}, if we agree that V1= and Y1-#2C2
have positive real parts (see for example [1], Ch. 6,2.3). ‘Hence @ = 0,00, is
a conformal mapping of {veC;le] <1} onto {ze€C; |[Rez| < S+ 4,0 <Imz
< 26}

13 direct computation (seefor details [35], p. 25-27) shows that there exist
d>0,¢ >0, ¢; >0 such that . :

1— o] < 4Im6, (),

ImB,(0) < d(1—[o)), TmOE)<
and :
« Imo € ¢, Im@,(w), Im@,(w) < d,
ImO,(w) € c,Imw, [Re@,(w)| < 5o, Im@y(w) < 4,
Hence :
(5.3) 1—le] € (4¢; + 61 ImO(@),
(54) - ImB@) < 2 d(1~[v), [ReO@) <50, ImOE)< .

. Nextwe pongider the X-valued analytic functionf = @ o @ on {v € C; [v| < 1}
Singe for all ze C with [Rez| < 5o+, 0 < Imz < 24, we have

R B AL - B ‘,.l'BL).k»I’
l]¢(2)|1<3i1;1;k!b‘£' (—Ifﬁ—z—) <3;(k—1)”’?~1 Tz

by (5.3), we get for allv eC, |2] < 1,

7@ < 3 (k1) 1524 [3L (dey + 6-91(1 — [ol) .

k=1
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By Theorem 1.12 there exists a sequence {fi};», of X-valued analytic functions
on {veC;|v| <1} such that writing

_ 30 BBLGe 6]

bﬂdl. n

N o 4 BB BLAe, +675]

b‘f'"

we have

IA@ < atk—DI N¥ (1=, Jol <1, k> 1,

@) =Y 4@, W<l
k=1

For each integer k > 0 we denote by @, the restriction of fi, 0@~ to {z € C;
|Rez| < 50,0 < Imz < 6}, Then, on this rectangle, by (5.4) we get

N k+2
BN S%k!bi’-"( Ifnj)  kso,

&) = Z B(2). m
=0

The following lemma is essentially proved in [35], p. 28-29:

LeMMA 5.5. Let 5o >0, 6 >0, let k> 0 be an integer and let P be an X-
valued continuous function on {z’e C; |Rez| < 5,0 < Imz < 8} which is analytical
on {zeC;|Rez| < 50,0 < Imz < 8} and such that ‘ '

Imz

k+2
i@l S( ! ) .+ zeC, [Rez] < 89,0 <Imz < 4.
Then there exists an X-valued continuous function ¥ on {z e C; |[Rez| < 5,0

< Imz < 8} which is analytical on {zeC§ |[Rez| < 8,0 <Imz < 8} and such
that

k+2 L
B ie)—Pls Hieall <y [2[14 2] et V2,

—S0 < §< 85;0< g1 8‘2‘{16,

PEEN(z) = B(z), z eC, [Rez| < s, 0 < Imz < 4.

Proof. For each ze C, [Rez| < 50, 0 < Imz < 8, we denote by I', the curve
obtained by the union of the segments [id, Rez+id] and [Rez+id, z]. Define
a sequence {¥;};5o of X-valued continuous functions on {zeC; ]Rez'|,('< S,
0 < Imz < 8} which are analytical on {z € C; [Rez| < $,,0 < Imz < 6} by the
formulas

v, =0,
Y2 = (¥, .(0dt, j>1.

Iy
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Clearly, 7§? = ® on {z& C; |Rez{ < 8,0 < Imz.< 6} forallj> 0. By induction
it is easy to verify that for 1 < <k+1

k+2

+2-m
k1=t 1\ 1 (k+1-m)! T
“@W(m) '“(k+1)!ml G-mt (a) (@=Tmzy=".

Using the above inequality for j = k-2, we get

k+2
1 Y 1 " k4 2~m
“qjk+2(z)|| < ('3‘) Zm)' ]RGZ[ (6~ ~Imz) +

1 s ktl 1 \k+a-m
— e — e o= 6_Imz Kt 2~m
TR Pz ! }/; ki2—m (a) ( )
k+2
1 P
SwFEDr (” ) Aer
Hence for —s5o < 5 < %o and 0 < & < & < & we have

&

([Phrs (i) — s+l < § 1 Prpals+inlidr

81

1 [f,, s\ ] 8
< Wl(l+ To) (e2— &)+ 51"31+621‘n—8—1"“811n:1‘]
1 ; 50 \F¥2
0 .
< W[2(1+ —5) ez+1/2éa,].
Taking ¥ = ¥, 3, we obtain the desired result. m
We can now give the following
THEOREM 5.6. Assume that w is regular. Then for each D e M ,(X) the limit
lim (@(- +ie)—D(- —ig))
0<s~0
exists in Z(@w;X).

Proof. Let so > 0. There exist 8 > 0 and L > 0, integer # > 1, ¢ > 0, such
that in {z e C;|Rez| < s4+6,0 # [Imz| <28}

" L
D2l < cawr} (m)

By Lemma 5.4 and 5.5, there exists a sequence {¥,}i50 of X-valued continuous
functions on {z & C; |Rez| < 50,0 # (Imz| < 8} which are analytical on the in-
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terior of their domains and constants M > 0, N > 0, d > 0, such that for —s,
<s<Ss,and 0 <& <& or —8 <g <e <0, we have

Wils +ie) —Fils +iell < dbg"(MNY+2)/ Te,,
and for —s5o <8 <5 and 0 # |e] < &

kzo0,.

Mk+2
JP+3(s+ig)|| € dk'b‘""(‘l) , k>0,

D(s+ie) = Y PEI(s+ie).
k=0

Finally, since w is assumed to be regular, there exist an L, > 0, an integer m, > 1
and a ¢, > 0 such that

b < colkap®, k= 0.

Now let ¢ € D,[—50, So]. For 0 < &; < 6, <6 or — 68 < g < & <0, we have
+00 +©

H_S @(s) D(s+ie,)ds— _S () D(s+iea)ds]

0 oo

”Sj( 1)k+3

+0a

S PP+ (s +ie))— P (s +iey)) dsH

~00

(NgE

)

o

q,(k+ 3(s) (Y’,‘(s +;£1) (s +ze,)) ds”

}:zso sup |p®*+3(s)|dbg "(MNY+2)/ Tes]

—S0< SRS
Zzsodco(MN)z Vil _sup_ ¢+ (s)]az ™ (LMN)

< sodeg(2MN)* Y/ Te,] YL, . m (@) < S0dco(2MN)? l/m B, mnm, (@)
sodcot3
S 2LZMN

Hence for 0 <&, < & < 6,

1/@ qg’L,,MN,m,,-}-a((p)'

+0 +00

”S @(s) (P(s+ig)— P(s—ie,))ds— S qa(s)(@(s+isz)—¢(s-—iez))ds“

sodeo 13

I3MN l/—ls—zlqu.o MN.m,,+3(‘P)-

Consequently, lim (P(- +ie)—P(- —ic)) exists in L(Z,; X). »
V<e0

We remark that for the proof of Theorem 5.6 we adapted some ideas ‘of
J. Korner from [35]. Next we intend to characterize those functions from #,(X),

=

.
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o being regular, whose boundary values in #(9,; X) are zero. For this purpose
we need some lemmas:

o0
LemMA 5.7. Let f() = Z o.l* be an entire function of expomential type 0.
k=0

Then g(§) = Z lee| & is also of exponential type O and for each z € C, r > 0 and
k=0 .

X-valued analytic function @ on some open neighbourhood of {{ € C; |z2—{| <
have

r} we

2 16l PO < Paore (}) i 2Ol

k=0

Proof. Let & > 0. Then there exists a ¢, > 0 such that [f({)| < ¢.e®¥ for all
¢ e C. By the Cauchy integral formula, for each integer k> 0 and ¢ > 0

1 e

ledl < = sup [fQ) < e—
Q" |t|=e

Taking ¢ = k/e and using the Stirling formula, we get

led < c, (——)

Hence [g(0)| < c,V??e""' for all ¢ e C.
Further, by the Cauchy integral formula, we have

7 ——-—-—-—.

<e¢, [/ZTEk & <¢ 1/__. @e)f

D) < ~£— sup 0]

hence

S edlione < Zkllql— s I|¢(C)Il~rgmm(;)|§1tllp_ 2. -

k=0 k=0

o0
By Lemma 5.3 if f({) = Z ¥ is an entire function of exponential type 0
k=0

and @ is an X-valued analytic function on some open subset £ of C, then we can
define another X-valued analytic function f(D)® on 2 by

00
(DD @) = D 680,
k=0
Moreover, the “differential operator of infinite order” f(D) is continuous on the
topology of uniform convergence on compact subsets of £,
If f defines an w-ultradifferential operator with constant coefficients, then the
w-ultradifferential operator S(D) and the “differential operator of infinite order”
Sf(D) defined above coincide on real analytic functions. More precisely, we have
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LemMA 5.8. Let —c0 < a < b < +o0, let D be an X-valued analytic function
on some open neighbourhood of (a, b) in C and let f be an entire function of ex-
ponential type O such that for a certain L > 0, integer n> 1 and ¢ > 0

1G] < elo(Lt)],
Then for any @ € D,(a, b) we have

teR.

b b
(.5) § 95 (f2)®) ()ds = § ((~D)g) (VF(5) ds.
Proof. By Corollary 2.6 it is enough to prove (5.5) for those ¢ € 9, whose
support is contained in a certain (so—¢, 5o+ &), where {{ € C; ls,~¢{| < &} is con-

0

tained in the domain of @. In addition, if @) = . x(¢—so)* is the power series
£o

expansion of @ in {{ € C; |so—{| < &}, then it is enough to prove (5.5) for @ of
the form ¢ — (—so)xi, k= 0.
Hence if f(&) = 2. ¢,{™ is the power series expansion of f, we bave to show
m=0

that for each ¢ € 2, and k > 0 we have

+o k 4o
(5.6) _Sm o(s) (”; g fi”)! sk—m) ds = ~Sw (F(=D)g) ()s*ds.
But ‘
/\\\
0 Z - Z (0]
and
//\\
-~ ~ &
(R=D)g) (s* = D = () fom(=ir)p*-m(r)

m=0
and it is easy to see that these two Fourier transforms are equal in ¢ = 0, which
proves (5.6). m
Next we shall prove a vector version of & classical result of P. Painlevé (see
[53], §2 and [46], § 3).

LeEMMA 5.9. Let —~c0o <a<b< +o0, let 6 >0 and let D be a bounded X-
valued analytic function on {z € C;a < Rez < b,0 # |Imz| < 8} such that for each
compact K < (a, b) and each x* e X*

lim sup |(x*, D(s+ie)—D(s—ig)y| = 0.

0<s-0 sek

Then @ has an X-valued analytic extension on {z € C;a < Rez <b, [Imz| < é}
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Proof. Leta < ¢ < d < b be arbitrary and denote by I" the counter clockwise
oriented closed curve obtained by the union of the segments

) .6 , 8 , 0 é , 0 (8 F)
[6_17’d~17]’ [d~17,d+1~‘24], [d+17,c+z-§—], [C—H_f’c—i“[];

consider the X-valued function ¥ on {z € C;c <Rez < d, [Imz| < 8/2} defined by
¥(z) =

21:1 S

Let x* € X*; then there exists {&}x»: < (0, 6/2) such that & - 0 and
lim sup [{x*, P(s+ig)—D(s—ig))| = 0.

k-0 sek

For each k we denote by I} the closed curve obtained by the union of the segments
, . . ) (. .0 d
[e+ig, d+ig], d+zek,d+17 s d+t-2~,c+z—2~ , C+i—2~,c+ie,‘
and by I'? the union of ‘thc segments

; . . , 8 ) 4 [
[d—ig,, c—ig], [c~;s,‘,c~1—§—], [c—l—i-,d-17], I.d—l—f,d—-ie,,].

Then by the Cauchy integral formula, for all z e C with ¢ < Rez < d, ¢ < [Imz|
< 6/2, we have

1
@0 = g | o (o OO+ |
T Tk

On the other hand, by the choice of {&}i»:, for zeC witﬁ ¢c<Rez<d O
# [Imz| < 8/2, we have

kP2 = hm( 2_}“ S

o, POYL.

7 PO+ |
. I'l:
Consequently, {x*, &(-)) and {x*, W(-)> are equal on the intersection of their
domains.

Since x* € X* was arbitrary, it follows that @ and ¥ are equal on the inter-
section of their domains, that is @ can be extended analytically to {zeC;a
< Rez <b,0 # [Imz| < 8}u(e,d). m

Now we can give an w-ultradistributional version of Painlevé’s theorem (cf.
[53[, Theorem B, [46], Theorem 1, and [35], p. 43-45),

THEOREM 5.10. Assume that w is regular. Let & & #,(X) and let —0 < a
<b< +o0 be such that for each g € B, (a, b) and each x* € X*
b

Jim { 9(5)<x*, B(s+ie)— D(s—ig)dds = 0

L G B

Then D has an X-valued analytic extension on (C\R)U(a, b).
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‘Proof. By Lemma 5.9 and by the uniform boundedness principle (see [20],
Theorem II, 3.20), it is sufficient to consider the case X = C. Let a < ¢ < d < b.
By Theorem 5.6 the limits lim &(- +i¢) and hm &( - —ie) exist in the strong

0<e=0

topology of D,lc, d]; hence {P(: +i&)}occ<; is a bounded subset of 2,[c, d]
in this topology.
_ Since 2,[c, d] is Montel, by our hypothesis on @ and by [22], § 22, 2.4, we
have
lim (P(- +ie)—D(- —ie)) = 0

0<s=+0

in the strong topology of Z,[e, d]. Further, since 9,[c,d] is a nuclear Fréchet
space, by [22], § 2.6, 2.4 (or by [29], Ch. III, Theorem 1.1) and by [22], § 2.5, 2.7
and  2.10, there exist L > O, integer #> 1, >0 and a: (0,1) » (0, +00),
lim «(e) = 0, such that ’

0<5-0

d
|§ o) (@ i) ds| < yat, (o),
c

(CX)] d

1§ o5) (@(s-+ie)-B(s—ie))ds] < w(e)a..(9)

for g € 2,[c,d), €€(0,1).

Denote by 2,,r.,(c, d) the vector space of all continuous complex functions
with a compact support ¢ on R such that suppe < (¢, ) and ¢¢,.(¢) < + 0. For

each ¢ € 9,,1..(c, d) there exists a sequence {gili»y in D,(c, d) © Dy, 1,4(c, d)
such that llm q,, Ho—@) =

Indeed, if 6 > 0 is such that suppzp < [a+0, d—0], then by Theorem 2.5 there

exists a y € 9, suppy < (—0,0), S w(s)ds = 1, and defining for every k > 1 the
—c0

function
wil(s) = k*y(k?s), seR,
we obtain
v €D, (—0/k*,0/k*) and gy, eD,(c,d)
Moreover

+co

g2alp—grv) = | [p() (125 w(Leydr

+ 00

=2n | 1BOo@yIHO k) di

< 2mg2. (@) sup 1H(0)— PO +4suplp() | [pw(Leyldt;
; Irl<1ik reR 12k

hence lim g2 (p—@*yy) = 0.
k= +co
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It follows that (5.7) can be extended to every @ € D, 1, a(c, d). Let 0 > 0 be
such that ¢+8 < b—0. Define the function E on R by

400

E(s) = S w2 Ly " 2edt,

-0

seR.

Then E is a bounded continuous function on R, in particular E € 9,, and it is
easy to verify that

o(=iy2 LD)"*’E = 2md,,

where 8, is the Dirac measure concentrated at 0.
On the other hand, the restriction of E to R\ {0} can be extended analytically
to some complex neighbourhood of R\ {0} by the formula

0

E(2) = z! S cu(]/:sz“t)‘""ze“dt.

-0

By Theorem 2.5 there exists a y € 9, such that suppy < (-;0, #) and »(s) =1
for s in some neighbourhood of 0. Using the arguments from the proof of Corollary
2.2, one can easily verify that wE is a continuous function, suppyE < (-0, 68) and

+ oo
a2, wE) < a3, @) § lo(y2L)7dt < +oo0.

Further, by Lemma 2.10 and Proposition 2.9, (1-y)Ee&,. Applying the

o-ultradifferential operator w{i}y/2 LD)"** to both sides of the equality E = pE+
+(1-y)E, we get

(5.8) 278y = o(—iy/2 LD|" *(yE) + (12 LDf"**((1~9)E);

hence the support of ¢ = w(—7)/2 LD]"“((I—wp)E) € &, is contained in (-0, 0),
that is
peP,(-0,0).
If se(c+0,d-0) and ee R, 0 # |e| < 1, then r — (D(s-i«r-{ ie) belongs to
&,(—0,0), so that (5.6) gives
2nP(s+ie)

+0
= [w(—i)/iLD)"“(q;E)] [B(s+* +ig)]+ S () D(s+r+ie)dr
. . 0

+0

+6
= Sﬂ WE) ()| (-1yZ LD)"™ *B(s+ - +ie)] (dr+ S o) D(s+r+iedr.
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Define on {zeC;c+0 < Rez < d 6,0 # [Imz| < 1} an analytic function ¥
by the formula

+00

P@) = | @BOOE+2)dr.

-

Then by (5.7), for s (c+8, b—0) and ¢ e (0, 1), we have

d
[W(s tie)] = | @E)r—9) Dl tie)dr| < yap.,(vE)
and
d
P (s-+ie)~P(s—ie| = | (WE)(r-s)(QS(rHE)—@(r—ie))dr\

< a(&)g2, ((WE)Y (- —9)) = a(&)q?, »(wE);
hence by Lemma 5.9, ¥ has an analytic extension on {z € C; ¢c+0 < Rez < d—0,

Imz| < 1}. It follows that wli})/2LD)"**¥ also has an analytic extension @; on
{zeC;c+0 < Rez < d—0, |Imz| < 1}, and using Lemma 5.8 we get

+0
§ GB®[0(iy2LD)" *@(s+ - +ig) ()dr = Py(s+ie),

for every s € (c+0,d—6) and ¢€ R, 0 # |¢| < 1.
Further, we define on {z¢C;c+0 < Rez < d—0,0 # [Imz| < 1} another
analytic function @ by the formula
+6
0@ = | pB(r+2)dr.
R -0
By (5.7) and by Lemma 5.9, we infer as before that @ has an analytic extension
@, on {zeC;c+0 < Rez <d-0;Imz| < 1}.

Since &(z) = —il-{(ﬁl(z)—i;qu(z)) on {zeC; c+8 <Rez < d—0, 0 # [Imz]

< 1}, we conclude that & can be extended analytically to {ze C;a <Rez < b,
0 # |Imz| < +o0}u(c+0, d—0).

Finally, since 8 > 0, c+6 < d—0 and a < ¢ < d < b are arbitrary, it follows
that @ can be extended analytically to (C\R)u(a,b). m

Recall that following M. Sato (see [54], [33]) an X-valued hyperfunction on R
is an equivalence class of X-valued analytic functions on C\ R, where two X-
valued analytic functions on C\ R are equivalent if their difference has an entire
extension, The equivalence class of an X-valued analytic function @ on C\ R will
be denoted by [®] and @ will be called a defining function for [®). If 2 is the greatest
open subset of C on which @ can be extended analytically, then C\{) <R is
called the support of the hyperfunction [®).
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The X-valued hyperfunctions on R form a linear space with the operations
[@]+[B,] = [@,+D,], A[P] = [AD], 4 & C. Assume that o is regular. By Theorems
5.2 and 5.10, every Fe £(9,; X) defines a unique X-valued hyperfunction j(F) on
R such that every defining function & for j(F) belongs to ¥#,(X) and
lim &( +ie)—P(- —ie)=F

O<en0
in £(2,; X). Moreover, the support of j(F) coincides with suppF. Thus j is injective,
But by Theorem 5.6 j is also surjective, and so we conclude that j is a linear iso-
morphism of £(2,;X) onto {[P]; D € H#,(X)}.

Let us denote by 2#%(X) the linear space of all functions from &#,(X) which
have analytical extensions on C\ some compact subset of R and which vanish at
co. Then, associating with each F e £(&,; X) its Cauchy transform, we get a linear
isomorphism k of £(&,; X) onto 3#°;(X). Clearly

JF)y = [k(F)], FeZ(8,;X).
We shall further give an intrinsic characterization. of

U {10 D€ #,,, (0},

m(,,‘}zegulnr
which can be considered as the union of all X-valued wy,-ultradistributions with
regular wy,). :
DEFINITION XXVI. We say that an X-valued analytic function @ on C\ R
satisfies the local Levinson condition if for each s, € R there exists an g, > 0 such
that defining f§ . .5 46 (1, +0) = [0, +0c0) by

St sprea(t) = SUp{lIB@)]}; z€C; 50— 60 S Rez € so+80, 7" < |lmz| < 1}

we have
+ ® o
S ln+ln+f[so—eg.so+au](t)
z

n dt < 4.

1

It is easy to see that @ satisfies the local Levinson condition if and only if, for
each compact set K < R, defining f2: [1, +0) — [0, +0) by

£2(0) = sup {||B@)||; z €C, Rez e K, -1 < [Imz| < 1},
we have
+ o
S In, In, f2(8)
i
i

THEOREM 5.11. Let @ be an X-valued analytic function on C\R. Then the
Jollowing statements are equivalent:

(i) D satisfies the local Levinson condition;

dt < +00.

o0
(i) there exist ti,t;,... >0, t; < 400, 3, 1/t, < +© such that wy, is
k=1
regular and & € ¥ ,(X).

icm

©-ULTRADISTRIBUTIONS 191 -

Proof. Assume that (ii) is satisfied. Since ey, is regular, by Theorem 3.20,
there exist 0 <7, < r,2< /3 ...,r < +0, i 1/r < 4+, Ly > 0, integer
no = 1 and ¢, > 0 such that !

()] < colwpy(Lot)™l,

Let K = R be a compact set. Since @ € 57,
n> 1 and ¢ > 0 such that .

teR.

. rk}(X ), there exist L > 0, integer

NP@)I] < elwny)F (TIFIGT) zeC,Reze K,0 # [Imz| < 1.

So, defining fy: [1, +00) - (0, +o0) by
Jx(®) = sup{||D(2)||;z € C; Rez e K, t~ < |Imz| < 1},
we have

ccht
Tx(®) < elop)i(Ly) < —L~;’- (0l (LLot), t> 0.

o0
Consider the sequence 0 < 5; < 5;/1 < 5,/2 < 85/3< ..., 2. /s < + o0, defined
k=0

by

k
S = ;r,, nng(p—1) < k < nngp.

Then
ccy
Je(@®) < —L—o-nin: (0@t (LLonngt), t>0;

so by Theorem 1.10

+ao
S _1_n+ In, fx(t)
2
i

Conversely, assume that (i) is satisfied. Then by Theorem 1.10 for each integer
m > 1 there exist

dt < +o0.

©

0<tys Stn22 S tmaf3< sty <+®, D Utyp=4" Ln>0
k=1
and ¢, > 0 such that
@ e Ly |™ o<t <1
< Cp® e T < < |l <1.
19(2)]] € e 22;: T (IImz]) , zeC, IRezlsm, |Imz|

For each m > 1 we define «,: [0, + ) = [1, +0) by

o
tk
(1) = 1+z——~——---, t>0.
b | AT
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By Lemma 1.7, @, is submultiplicative. Moreover, for each k > | we get
saceessively

Ia
S $ am(r)7 r> 0’
tm, 1- mk
Rl
U < (am)Borcl(t)a t> O;
[P, Sy

hence
|1D(2)]] < Con(0tm) e z€eC, [Rez] < m, 0 < |Imz| < |
m\%m/Borel [Il ZI ’ ] = 3 .

Now for each m > 1

1< o(t) < (427" Yoy, w0, 22 0;

hence we can define a continuous submultiplicative function «: [0, +00) - [1, +c0)
by

o0

Wl
o(t) = }_Joc,,,(t), t>0.
m=1
Denoting the set
B h,2 b1 ta 3,1 taz
TR TR R g g g
simply by r;, r,, ..., we have
2] © @0
] | 21»
LR WIS SINI
=15 mSiEe1 ™k

and

a) < [T a+2-" w0, >0,

m=1
so that by Theorem 1.6

0

+S Ina(f)

1z

dt < +c0.

w
Finally by Theorem 1.8 there exist 0 < #; < £,/2 < /3K .t < 00, X 1/4,
: : E=t

< +o and ¢ > 0 such that

) < clogy@, r>0;

thus, for each m > 1

(am)Burel(') < aBor:l(t) < clw(lk)|Borel(t) = c(w(,t))’;‘(t), t>0.

icm°®
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Consequently, for every m = 1

L,

Imz|

. 1P| < c,..C(w{:k})T( \) zeC, [Rezl < m, 0 < |Imz] < 1,

that is @ e.%”,,,{,k}(X). =
We end this section with the examination of the regularity of several classes
of functions ;.

) R ‘ ’
Levma 5.12. Let {t,} = (0, + ], #; < 40, 9, 1/ty < +co0 be such that
. k=1

0

Z h;tk < 4+ and let ® = wy,y. Then, for each integer n > 1 we have
=1 'k
(9 (k1™ > ((k—Dlegn) ((k+Diegn), k3> 1;
o0 L‘a n
0.
(5.10) Z o< e

k=1
Proof. Inequality (5.9) is an immediate consequence of Proposition 2.8.

o0
By Corollary 1.9, there exist 0 < s, < 5, < ..., 2, 1/5, < +c0 and ¢ >0
n=1
such that

tl’
@"(~it) € csup————, . t &[5y, +00).
P31 S1.008p
For each integer k> 1
(=i
gre @O fgp &

i K e
sk Sk pm1 S1...8p Sy .Sy

s0, using the inequality of T. Carleman (see [45], Lemma 1.8.VI, or [48], Ch. XVI,
§§ 4, 5, 6), we deduce

s n bl n n\1/k
E & <\ '(C‘i" & )
<) .
k=1 i =1 SO
=E (c‘;‘"")ll"gcé = ce:>_—<+oo u
; (5y . 5
k=1 =1 (51 .- 5¢) =k

0
PROPOSITION 5.13. Let {;} = (0, + ], #, < + 00, kZI 1t < +c0 be such

> Ing,

that
=1 &

k}: 1/r.< +o0 such that 92,
=1

< +co0. Then there exist 0 <ry Srf2<rf3<.,n <+o,

PR ;
c 90,{,,‘).

(re}

13 Banach Center t. VIIL
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Proof. We denote g, simply by o. Putting

cgt
rk_—=7k’l:-‘—"£—, k=1,

by Lemma 5.12 we have
o0
1/r, < + o0,
k=1

O<r<r2<r3<.., rn<+owo,

For each te R

()] < a)(—-i[tl)—LZ"‘ci’ 12t)* < 2max{1 SUp ——— (2“‘) } 2]wpy 20,

and the statement results from Theorem 3.20. m

ln tk
Weremark that by this proposition every wy,-ultradistribution w1th

=1
< +00 belongs to the “union” of all wgy-ultradistributions with regular ayy,).
Note that the converse inclusion is not true. For example, if 1, = 1, £, =2, ...,
Int
t, = k(Ink)* for k > 3 and 1 < £ € 2, then wy,) is regular, but Z-—l = +00

PROPOSITION 5.14. Let {t} = (0, + ], t; < +00, kZ‘ 1/t < 40 be such

that wy, satisfies the strong non-quasianalyticity condition. Then there exists an

oo
0<r<n2<nf3<..,r<+w, k; 1/re < + oo such that Doy = Doy
Proof. We denote again o,y simply by w and we define
w1 .
no= %}, k> 1.
Asin the proof of Proposition 4.13, wehave 0 < r; K 1,2 < r3f3 < ...y 1y < 400,

"
@(re} @t}

On the other hand, there exist an L, > 0, and mteger ny =
such that

0.
Y irn <+ and 9,,, <9
F=1

landa ¢, >0

o(=it) < colw(Lot)|, t>0.
Hence, using Lemma 1.7, for every ¢ € R we have

lwgg()] < 3max {1, (supeg*(41t)*)*} < 3a(~4ilt])* < 3cfw(dLot)™"|.
kx1

By Theorem 3.20 we conclude that @“'{ud < .%,m}. o

We note that if 9,,,(“) = 9,,,{,” and o, satisfies the strong non-quasianalytic-
ity condition, then by Theorem 3.20 and Theorem 1.2, w(,) also satisfies the strong
non-quasianalyticity condition.

® ©
icm
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If {t/k}sy is increasing, then the strong non-quasianalyticity of wy,; can be
characterized in terms of the sequence {#,}. More precisely, we have

PropPOSITION 5.15. Let 0 < t; < ,/2 < t3/3 <

Then the following statements are equivalent:
(i) @y, satisfies the strong non-quasianalyticity condition;
(ii) there exist L > 0, integer n> 1 and d > O such that

k n
Oy(—it) < dmax{ (sup 20 ) }, t>0;

Lt < +oo,k}: 1/t < +o0.
=1

k1 by
(iii) there exist ¢ > O such that

L)
1 t
. ZT c—(1+lnw), T

Proof. We shall denote wy,) simply by w.

For each 4 > 0 let n(4) be the number of all #, w1th . < A and write also

t*

N() = lnmax{l sup }, t>0.
k21t b A
Recall that.(see [45], 1.8, or [34], §§ 3, 4, or the proof of Lemma 1.7)

lim n(%)

A= 400

=0,

t
N = S A i o.
0

)

Integrating by parts and using the above relations, we get for all t > 0

+® +o
PR | ot _ n(d)
Inw(—it) = § ln(1+ A)dn(l) _zoS Tyt
Using the inequalities
t
n(4) Sﬂ(/l) _
osx(’sdeo “ar= N,
1 (n,,_ ¢ () T &)
R n P n P n
2105 T <zOS o< S a1,
we obtain
1. na N
G ot S "1(2) da< 1nw(-it)<N(t)+tS ";:f)dl, t>0.

t

13+
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.

On the other hand, again by partial integration, we obtain for all £ > 0

S "D 1) ()t §—dn(l) = n(t)+t2 1
0

22

tp>1t

Since

et et el

y

n(t) = n(t) S d—; < Si(;l)—dl < S"—(l-lda = Net),
1 1 0

it follows that

.
Ul
.12 'S Ly S 2Dy Naen+t Y L, 1>o0.
tp A t,
f">l 14 /p>1
From (5.11) and (5.12) we deduce
. 1.\1 U
(5.13) z; < Ino (~if) < 2N(et)+t‘£;‘t 1> 0.

We shall prove further the implication (ii) = (iii).
Let g be the integer with g—1 < L < ¢q. Since

4 » nq
o(—it) < n( ) < d‘lmax{l,(:till) i t t,,) }. t>0,

p=1
by (5.13) it follows that for each integer k > 1 and 0 < ¢ < 1, we have
©0

1 .
tZT < 2l(nw —it)

p=k 7

14
< 2qlnd+2max{0, nqlnsup B -—«}
pat by oty

I

2qlng +2ng = klnmﬁ

b
2nq(1+lnd)k{1+ln ( tkj'ﬂi‘).

Denoting ¢ = 2ng(1+Ind) and letting ¢ — #,, we obtain (iii).
Next we prove that (iii) = (i),
Defining #: (0, + ) — [1, + ) by

0
s K\
B = sup(1+ }__4 ——i——) , t>0,
>t ) -tl o tk
we infer, by Lemma 1.7, that ¢ — -1—11& is decreasing and

N(@#) <Inp(t) <Ind+2NQ2t), t>0.
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Consequently, for each ¢ > 0, writing k = n(¢)+1, we have

1 % 1 t te
'Z’; = *‘kl? T"k(”h‘w)

< ck+¢

—;:ck+ctiv%tl tll—l—%(—t"—)

< e(n@®+1D)+clnp(®) < c(N(et)+1)+c(lnd+2N (1)
< 3cN(ef)+3c.

By (5.13), it is clear that

Inw(—it) < B¢c+2)N(et)+3¢c, t>0;

so (ii) holds with L = e, n > 3¢+2 and d = e*.
Finally, (i)=> (ii) is an immediate consequence of Lemma 1.7. &
Concerning the implication (iii) = (ii), we note that if there exists a ¢ > 0

such that
Z—-<c k=1,

p=k

then (ii) holds under the assumption that 0 < #; < £, < t3 < ... (cf. [34], Proposi-
tion 4.6). Indeed, for every ¢ > 0, writing k = n(z)+1 and using (5.13), we get

o (—if) < 2N(et)+th——<2N(e()+ck (C+DN@ED+e.

p=k

We end our considerations of strong non-quasianalyticity with some examples.
Firstly, if # = k%, ¢ > 1 (the Gevrey sequence), then oy, satisfies the strong

non-quasianalyticity condition. Indeed,

0 + 00

I (. N S
t, 2 (e—Dk—Dr* " -1 t°

=

p= k-1

Secondly, if t, = 1, t, = 2 and # = k(lnk)® for k = 3, &£ > 1, then wy,) does
not satisfy the strong non-quasianalyticity condition.
Indeed, for k > 3, we have

+o

ol ai kink
ZT Je(tnky S Ty - a1’
p= k

f k(lnky

) ..tk)”k B3 (k!)!/t < e(lnk),
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SO

% 2 1ty Ink
ii £= \
k_fgk(l 4 > I Gl — T
+in (t; ... t)UI*

Since for ¢ > 2 we have

Z In tk

k=1

it follows that the above condition does not imply strong non-quasianalyticity, cven
if0<y <HR2<3< ..

6. o-self-adjoint operators

@© .
Also in this section 0 < #; < 1, < 1, < .oy 8y < +00, 2 1/t < +00, will be fixed
k=1
and g,y will be denoted simply by w. We also fix a Banach space X.
The following definitions are inspired by [24], [44] and [13]:

DEeFINTTION XXVIL By a spectral w-ultradistribution we mean any E & (2,
(X)) satisfying the conditions .
() E(py) = E(Q)E(), @,y € Du;
(i) {xeX; E(@)x =0 for all p€9,} = {0};
(iii) g_él E(p)X is dense in X.
Lot

We say that a glosed linear operator T in X is w-self-adjoint if the spectrum
o(T)of T is contained in R and there exists a spectral w-ultradistribution E
€ Z(2.; (X)) such that

. (iv) defining @, €&, by @,(s) = s, s R, we have for every (p e@
E(p)X < D(T), E(@)T< TE(p) = E(p,9).
We remark that, if T is w-self-adjoint, then by (iv), D(T) > \ ) E(p)X, and so
962,
by (iii) T is densely defined.

It is easy to see that in the above definition (iv) can be replaccd by
(iv') for every p €9, and z e C\R we have -

E(@R(z; T)= R(z; T)E(p) = (J_")

PROPOSITION 6.1, Let T be an w-self-adjoint operator. Then there exists a unique
spectral w-ultradistribution E satisfying condition @iv).

Proof. Let Ey, E, be a spectral w-ultradistributions satisfying (iv). Then we
have for every y,0 e 9,

E, (yg,) E(6) = E\(y) TE>(0) = E;(v)Ex(py 0).
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By induction, it follows for every y, 6 € 2, and integer m > 0 that
E (v¢) E»(0) = E,(p)E,(p70)
Using Theorem 2.13, we deduce
E,(y@) Eo(0) = E\()Es(9h), @ Ebu,p,0€D,;
so by condition (i) we have
E,(p)E () E.(6) = E.(W)E:(9)EA(0), o@.v,0€D,.
Now, by conditions (ii) and (iii) we conclude that
Ei(¢) = Exp), 9D, m

By Proposition 6.1, we can give the following

DermNTION XXVIIL For every w-self-adjoint operator T the spectral e-ultra-
distribution satisfying condition (iv) is called the spectral w-ultradistribution as-
sociated with T. ‘

Further, we point out how the spectral o-ultradistribution associated with
some w-self-adjoint operator T can be obtained from T

PROPOSITION 6.2. Let T be an w-self-adjoint operator and E the spectral o-
wltradistribution associated with T. Then, for each v € D, the finction

C\\R 5z E(p)R(z; T) e £(X)
belongs to #,(£(X)) and we have in £(Du; £ (X))
\
EQE = lim L (EQR( —ie; )=EQIR(- +i6; ).

Proof. Let us consider Fe 2(2.,; £(X)) defined by
F(p)=EWE(p) = E(vp), ¢€Zn.
Then suppF < suppy is compact and the Cauchy transform @ of F is defined by

B(z) = 2_71”17(_1.__) = _zl_E( ¥ ) = ——Z%E(W)R(Z;T)’ ’ZGC\SUPPF‘

s —z T\ —2

Thus our statement directly results from Proposition 5.1. m

COROLLARY 6.3. If T is an w-self-adjoint operator and E is the spectral -

ultradistribution associated with T, then
suppE < o(T).

Proof. Let ¢ € 9, o(T)nsuppep = @. For every y &P, the L(X)-valued
function z - E(p) R(z; T) is analytical on C\ o(T), and so by Proposition 6.2 we
have E(y)E(g) = 0. Using condition (i) from Definition XXVII, we mfer that
E@=0.m

The boundedness of w-self-adjoint operators can be characterized in terms of
the associated spectral e-ultradistributions by:
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COROLLARY 6.4. Let T be an w-self-adjoint operator and E the spectral o-
ultradistribution associated with T. Then the following statements are equivalent:

(@) Te£X);

(ii) o(T) is compact;

(iii) suppE is compact.
Moreover, if the above conditions are satisfied, then E can be considered as an element
of %(8.; L (X)), and defining @q, @1 € &, by :

Po() =1, @i()=3s, sER,

we have - ,
61 E(po)=1Ix, E(p)=T.

Proof. 1t is clear that (i) = (ii). By Corollary 6.3, we have also the implication
(i) = (iii).

Assume further that (ifi) is satisfied. Then we can consider that E e £(&,;
£(X)) and then, for every g,y €&, we have
E(py) = E(E(y).
Hence .
E(po)E(@)x = E(pop)x = E(@)%, ¢€Da, xeX,
so that
E(po) = Iy.
Moreover, from ‘
E(@)E(9)x = E(p19)x = TE(9)x, ¢ €Dy, xeX,
we get ’
E(p) =T
In particular, Te #(X). m ‘

It is easy to see that T e L (X) is w-self-adjoint if and only if there exists an
EeZ(6a; Z(X)) satisfying condition (i) from Definition XXVII and (6.1). In this
case Eis the spectral w-ultradistribution associated with 7.

We remark that &, is an admissible algebra in the sense of I. Colojoard and
C. Foiag (see [16], Ch. 3, Definition 1.2). Thus the above statement is equivalent
to the following one:

Te £(X) is o-self-adjoint if and only if it is &,-self-adjoint (see [16], Ch. 5,
Definition 4.1).

Using our results from § 5, we shall next give a sufficient condition in order

that an: operator T be w-self-adjoint. For this purpose we first prove some. pre-
llmmary results:.©

Levma 6.5. Let us assume that o is regular and let T be a closed Imear operator
in X such that o(T) = R and :

C\R>zt> R(z; T) e £(X)
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belongs to #,(L(X)). Then
E= OEﬂOT(R( —ie; T)—R(- +ig; T))

exists in £(92,; 4(X)) and we have:
6.2) Elpy) = E@E(W), ¢,ye9,;

(63)  E(MR(T)= R(z TE(@) = (—L), P €D,z € O\R;

6.4 suppE = o(T).
Proof. By Theorem 5.6, the limits
E_ = lim —-R( —ig; T),

0<em0 2700
E, = lim ! ——R(* +ig; T)
Q<en0 2ri

exist in Z(9,; Z(X)); hence also the limit

E = lim —(R(- —is; T)~R(- +is;
0<s—0 27r ( ( 'r) ( N n)
exists in' #(2,; £(X)) and we have
E=E_-E,.
By Theorem 5.10, it follows immediately that (6.4) holds.
Let us now prove (6.3). Let ¢ € 2, and z € C\ R; we write y = g/(z—~ )
€ 9,. Using the resolvent equation, for every ¢ > 0 and se R we get

R(s—ie; T)—R(s+ie; T)
= [R(s—is; T)=R(z; T)|+[R (z; T)=R (s-+ie; T]
= (z—s+ie)R(z; T)R(s—is;T)+(§+is—z)R(z; T)R(s+ie; T)
= R(z; T)[(z—5) (R (s—i&; T)—R(s+ie; T))]+
+ieR(z; T) (R (s—ie; T)+R(s+ie; T)).
Since :
+o

. 1 s ..
011?:0-2—7:7 _S p(s) (R(s—ie; T)+R(s+ie; T))ds
exists in £ (X) (actually it is E_(p)+E, (), we deduce

+o0

S ¥ () (z—s) (R(s—ie; T)—- R (s+is; T))ds

0 27 K

E(y) = R(z;T)[ lim

= R(z; T)E(p).
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By the definition of E, R(z; T) commutes with E(g), so that we obtain
E(y) = R(z; TVE(p) = E(p)R(z; T).
Finally, let @, v € 2,. We define Fe £(9,; #(X)) by the formula

F(G) E(¢t), 0¢€3,.
Since supp F < supp@ is compact using Proposition 5.1 and (6.3), we get
E(py) = F(y)
Lt 1 U Vs
- 01::1-1»0‘2__ S 1p(s)[F( §—ig— ')—F( s+ie—- )J(

+0

1 4
01«1?}»0? _S 1/)“)[ ( —ie— -

_ 7 '
) E( e _Hm
+ 0

- E("”)[olfﬁo"ivl%? _Sw p© (R(s—ie; T)=R(s+ie; T))tls]

i

= E(p)E(y).
Thus also (6.2) is proved. =
LEMMA 6.6. Let T be a closed linear operator in X for which o(T) < R and for
which there exist two increasing functions

S0, +0) = [1, +0),

iim @ o
toio L
and
g: [0, + 0) — [e, + ),
Ky Inl
S 1ne®) 4 < 4o, '
1
i
such that

[IR(z; T)II <f(|RSZI)g( ~~~~~~~ )
Then, for every x € X such that
C\R3z—R(z;TxeX

has an entire extension, we have x = 0.

Proof. Let x* e X* be arbitrary.

By our hypothesis on x, the function C\ R 3 zi— (R(z; T)x, x*) has an entirc
extension . Since f is increasing, we have

P(z)

S A+ 1) A-+[1x*)

< g( 7] ) nz?2 ioteger, [Rez| <n,0# |Imz| < L.
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By Corollary 1.13 there exists a constant ¢ = ¢, ; > 0, depending only on g, such
that

D(2)
S) (L +11x[]) (1+Hx*H)

Using again the fact that f is increasing, we infer that

1P@)] < e(1+]Ixl) A+[1x*1]) f(IRez|+2),

n > 2 integer, n—2 < |[Rez| < n—1, |[Imz| < 1.

[Imz} < 1.
Since
|P(2) < g()f(Rez]), [Imz{>1
we deduce that @ is of exponential type O and, in addition, it is bounded on the
imaginary axis. By the Phragmén-Lindelsf principle [see [38], Ch. I, Theorem 22)
it follows that @ is bounded, and so by the Liouville theorem it is constant. Con-
sequently, @' = 0, and hence
(R(z;T)*%,x*) = 0, zeC\R.
Since x* € X* is arbitrary, we conclude that
R(z;TYx =0, zeC\R;
5o, by the injectivity of R(z;T), x = 0. m
We can now give the following

THEOREM 6.7. Let us assume that o is regular. Let T be a densely defined closed
linear operator in X, o(T) < R, for which there exist an increasing function

£ 10, +00) = [1, +o0),
HE&SO ’

>
t—++o

and L >0, ¢ >0, and integer n > 1, such that

lIR(z; THI| < f( Rezl) (”‘“’*(”tiézl")) zeC\R.

Then T is w-self-adjoint, the spectral w-ultradistribution E associated with T is defined
by the formula

(6.5) E = lim ———(R( —ig; T)—R(- +ie; 7)),

0<z0 271

where the limit exists in £(9,,; £ (X)) and supp E = o(T).

Proof. Clearly, the function C\ R 5 z— R(z; T) € £(X)belongs to #,(Z(1));
so by Lemma 6.5 the limit in (6.5) exists in £ (Z,; £(X)) and (6.2), (6.3), (64)
hold.

-Let x € X be such that E(p)x = 0 for every ¢ € 9,. Then, by Theorem 5.10;
the mapping C\ R>z+> R(z; T)x € X can be extended to an X-valued entire
function. By Theorem 1.10 and Lemma 6.6, it follows that x = 0.


GUEST


204 I. CIORANESCU ‘AND L. ZSIDO

Next let x* € X* be such that
(E(p)x,x*> =0,
Then E(p)*x* = 0 for every @ €9, and, using Theorem 5.10, Theorem 1.10,

and Lemma 6.6 as before, we deduce that x* = 0. Thus, by the Hahn-Banach
theorem, we conclude that () E(@)X is dense in X. =
g€,

peD,, xeX.

The result from the above theorem extends Lemma 2.3 from [44] and at the
same time it gives an answer to the question raised in Remark 2.5 in the same work,

In the case of bounded operators we can prove a more complete result, extend-
ing [62], Satz 1 and Satz 2, [31], Corollary 2.11, [16], Ch. 5, Theorem 4.3 and
[13), Theorem 3.1:

THEOREM 6.8. Let us assume that o is regular and let T ¢ £ (X). Then the fol-
lowing statements are equivalent:
(i) T is w-self-adjoint;
(i) there exist L > 0, integer n >

el <

1 and ¢ > O such that
clo(LH|", teR;
(iii) 6(T) < R and
C\R>zr'R(z; e Z(X)
belongs to #,(Z(X)).
Moreover, if the above statements hold, then the spectral w-ultradistribution E
associated with T is defined by the formula

—ie; T)=R(- +is; 1),

where the limit exists in £(D,; £(X)) and suppE = o(T).

Proof. Firstly we assume that (i) holds and we denote by E the spectral w-ultra-
distribution associated with 7. By Corqllary 64, Ec Z(8.,; .Q’(X)) and, defining
@ €8, by ¢.(s) = 5,5€ R, we have

E(gD) = T,

E = lim —(R(

0<s~0

‘ m 2 0 integer.
Hence,

T = I(") ™ = (Z @ "') - E(e), teR.

m=0 m=0

On the other hand, by the continuity of E, there exist compact KcR,L>0,
integer n > 1 and ¢ > 0 such that

IE@) < o), ped,.
Consequently, we have for each re R
[1e"T]] = [|B(e*)]| < esup L¥ap "t |k < clo (L™

icm
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Next we suppose that (ii) is satisfied. Then we can define an analytic function

R: C\R - Z(X)
by the formulas

+
"i S e~itzghT gy Imz <0,
0
_R@= i o
l—-—i S etze~ T, Imz >0
0
and we have
+o0 L
—l]hnz[ n
(6.6) IR < ) clo(Lt)|"dt = Lw"([ImZI)’ z e C\R.
Using the identity
bad "
ltT 2 lt) tER,
we can easily see that
0
R@)= ) e = RiGT), Imzl > |[TI.
m=0
Consequently, ¢(T) < R and
R(z; T)= R(z), zeC\QR,

and go (6.6) shows that C\ R > z— R(z; T) € £(X) belongs to .9!’2,,(.2’()()).
Finally, let us assume that (iii) holds. Since o¢(7) is compact and
lim [|[R(z; T)|| = 0, by Theorem 6.7, (i) results as well as the formula for E
|z|=+e

from the last part of the theorem and the equality suppE = o(T). m

We now give a quite general sufficient condition for a densely defined closed
linear operator T with a real spectrum to be wg,y-self-adjoint for some regular
Dryy -

DeriNITION XXIX. We say that an analytic function @ on C\ R with values

in some Banach space satisfies the O exponential type Levinson condition if there
exists an increasing function

Fi 10, +00) = [1, +00),
lim -lP—f—(QS 0

1=+ 00
such that, defining gf: [1, + o) — [0, +0) by

g8(t) = sup{f(Rez) || S (2l: 2 € C, ITmz| > t~1},


GUEST


206 1. CIORANESCU AND L. ZSIDO .
we have

+ 00 1 >

S In,In, g7 (®) nt;gf(t) dt < +oo.

If @ satisfies the above condition with f = 1, then we say simply that D satisfies the
Levinson condition.

1t is clear that the 0 exponential type Levinson condition is stronger than the
local Levinson condition, defined in Section 5, Definition XXVI.

The following result extends and “explains” [43], Theorem 6:

THEOREM 6.9. Let T be a densely defined closed linear operator in X, o(T) < R,
such that
C\R>z—R(z; TV e £(X)

satisfies the O exponential type Levinson condition. Then there exist 0 <ry < ry/2
o0
raf3< iyt <+, 2 1 < 400, such that T is wg,y-self-adjoint and,
k=1
denoting by E the spectral wy,y-ultradistribution associated with T, we have supp E
= o(D). <

Proof. Since C\R>z R(z; T)e Z£(X) satisfies the 0 exponential type
Levinson condition, there exist increasing functions

fi [0, +00) > [1, +00),
fim l‘l& <0

3

1=+ 00
and
g [1, +00) = [2, +00),
+00
S lnlnzg(t) dt < +00,
t
such that

[[R(z; I <f(fReZDg(—|I—n—1—lzT), 0 # [Imz| < 1,

lIR(z; DI < f(IRez)g(1), [fmz{ > 1.

00
By Theorem 1.10 there exist0 < ry < r,/2 S r3/3< ..., 1y < 400, Z 1r, < 40
P

and ¢, such that

»

g(t) < colw(r,,)iﬂnrcl(t)i te [lv +°O):
so that, defining the increasing function fy: [0, +o0) = [1, +0), by fo(?)
= max {l, ¢o}f(t), we have

lim
140

= Info(t) <0

icm
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and
IR (z; T Sfo(lRGZI)(g(1)+lw{r;;lna,,. (—[ﬁ)) zeC\R.

Applying Theorem 6.7, we obtain our statement. m
In the case of bounded operators we can again give a more complete result:

THEOREM 6.10. Let T & ZL(X). Then the following statements are equivalent:

o0
() there exist 0 <r; <r/2<r/3< ..., /; < 4+, Z 1/r, < + 00, such
E=1
that T is wy. -self-adjoint;
¢ Infle )|

(i S 14122

-

(iii) o(T) = R and C\R >3zt R(z; T) € L(X) satisfies the local Levinson
condition;

(iv) o(T) < R and C\\R 3 z+» R(z; T) € £(X) satisfies the Levinson condition.
Proof. 1t is evident that

T ([T Hle T,

dt < +o0;

t,sER,
so that we obtain (i) <> (ii), using the corresponding equivalence from Theorem
6.8 and Theorem 1.8.
Using Theorem 1.8, the implication (ii) = (iii) from Theorem 6.8 and Theorem
1.10, we obtain the implication (ii) = (ii).
Since o(T) is compact and ,llim ||R(z; T)|| = 0, clearly (iii) = (iv). Finally,
Z| >0 i

by Theorem 6.9 also the implication (iv) = (i) holds. W

7. Final comments

In this section we analyse the connection between the theory of w-ultradistributions
and the existing ultradistributions theories; next we present the advantages of the
w-ultradistribution theory and finally we formulate some open problems.

7.1. We begin by clarifying what we understand by an ultradistribution theory.
We note that our concept of ultradistribution is slightly different from that of
. : 4
P. Schapira (see [55]).
Let © be a family of parameters. Assume that with every o € & is associated
a locally convex topological vector space 9, of infinitely differentiable functions
@: R~ C with a compact support such that

(7.1 2, is the inductive limit of a sequence of Fréchet spaces;
(7.2) the topology of @, is stronger than the topology of pointwise convergence;

(7.3) 2, is an algebra under pointwise multiplication;
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(7.4) for every compact K = R and open D c K, there exists a ¢ €9, such that
0< o<1, og()=1forsek, supppcD.
Denoting by &, the vector space of all functions : R — C such that

e, @D,

and endowing it with the projective limit topology defined by the linear mappings

Esayi>op e, pED,,
we suppose also that '
(7.5) of is a dense linear subspace of &,, where . is the linear space of all complex

functions on R which can be extended analytically to some complex neigh-
bourhood of R.

If the above assumptlons hold, then we say that {@,}se is a theory of ultra-
distributions.

The elements of the dual 2, of 9@, are called o-ultradistributions,

Let o €G. By (7.3) and (7.4), for every F e 9, there exists a smallest closed
set § = R such that

9p€D,, Srsuppy =0 =F(p)=

Then S is called the support of F and it is denoted by supp F. It is easy to see that
the o-ultradistributions with a compact support can be identified with the el-
ements of the dual &, of &,. Hence, by (7.5), for every F € 2;, supp F being compact,
we can define its Fourier transform F: R — C by the formula

B = —2ln-F(e‘“'), teR.

For o €S we call a g-ulradifferential operator any linear operator T: D, — D
such that
suppT(p) = suppy, ¢ E€D,.

A o-ultradistribution theory becomes a good tool in many problems of the
analysis if one can prove

(N) the nuclearity of the fundamental spaces 2,, 2, &, &u,

and if one can solve conveniently

(PW) the Paley-Wiener problem for 9,; to characterize the image Of 9, by the
Fourier transformation;

(PW’) the Paley-Wiener problem for &,; to characterize the image of &, by the
Fourier transformation;

(UD) the problem of the a-ultradifferential operators: to construct all o-ultradiffer-
ential operators;
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. (OP) the problem of the o-ultradistributions with one-point support: to describe

all o-ultradistributions F with suppF < {so}, 5, € R, in terms of the Dirac
distribution &,, and o-ultradifferential operators;

(H) the problem of the imbedding into the hyperfuctions: to represent the o-ultra-
distributions as boundary values of hyperfunctions in 2, and to charac-
terize those hyperfunctions which correspond to c-ultradistributions.

7.2. Next we show how two ultradistribution theories can be compared.
Let {Z,}eee and {2,}.ex be two ultradistribution theories,
Let 0 €S and 7 e X. Then the inclusions

(7.6) D < Dy,

1.7 & cé,

are equivalent. Indeed, if (7.6) holds and p e &,, ¢ € D,, then, choosing 8 € 2,
such that 6(s) = 1 for s esuppp, we have gy = @(By) and Op e, c 9,, and
S0 oy € D,.

Conversely, if (7.7) holds and ¢ € @, then, since 9, = &, = &,, choosing
6 € 9, such that 8(s) = 1 for s € suppe, we have ¢ = ¢f € Z,.

Let us assume that (7.6) holds. By (7.2), it follows' that the graph of the inclu-
sion 9, © 9, is closed, and so by (7.1) and by the closed graph theorem of D. A.
Raikov (see [50]) it is continuous. By the same closed graph theorem, the multi-
plication in ‘2, is separately continuous. Hence, for every ¢ e@u, if we choose
6 € 9, with 6(s) = 1 for s € supp @, the composition

EaprrppeD, )
of the mappings &, y 0y € 9D,, D; € D, and D,3 0> pp € D, is continuous.
Consequently, also the inclusion &, — &, is continuous.

Finally, if &, < &, then by (7.5) &, is. dense in &,. Tt follows that also @, is
dense in 9, Indeed, if ¢ € 2, then, choosing 8 € 9, such that §(s) = 1 for s € suppe,
and using the continuity of &, p+ 0y € 2, and the density of &, in ,, we con-
clude that @ = f¢ belongs to the closure of {fy;ped,} c 2, in Z,.

Thus, if the equivalent inclusions (7.6) and (71.7) hold, then they are continuous
and have a dense range. So in this case we can consider

P, <D, & <&, ] o
where the inclusions are continuous and have dense ranges with the Z,-, 2.~
&4, €,-topology on 9, 9, &, 6, respectively.

By the above considerations, it is justified to say that the uItradlstrzbutwn
theory {@:}rex is larger than {D;}ees if for every o € S there exists e X such that
the equivalent inclusions (7.6) and (1.7) hold.

If {D:}rex is larger than {D,}.ee and comversely, then we say that {D:}rex
and {Ds}oes are equivalent ultradistribution theories.

1t is clear that if {92}z is an ultradistribution theory and & < T, then also
{9, }ree is an ultradistribution theory and {%;}.eq is larger than {2, }s«ce.

14 Banach Center t. VIII
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7.3. We recall the usual ultradistribution theories. .
Let .# be the family of all sequences {M,},,0 = (0, +0), Mo = 1, satis-
fying the conditions: ‘
(M.1) logarithmic convexity: M} < My 1 Mpi1, P > 1;

]
(M.3)' non-quasianalyticity: 21 M, /M, < +©.

pe

Let {M,};»0€.# be fixed. For every A > 0 and —0 <a< b < +00 we
denote by P, xla, b] the vector space of all infinitely differentiable functions
@: R— C, suppy < [a, b}, such that
L P)(s ) < +00.
llpllarpnn = i\;g(h,M, ssgglw )

If Dou,alas, b is endowed with the norm ||+ {lpg,e, it becomes a Banach space,
Following [51] and [52] (see also [34]) we define

U Zpyalae, bl,
k>0

~w<a<hb< 4w

Doy =

and we endow it with the inductive limit topology. It is clear that (7.1) and (7.2)

are satisfied. By [51], Ch. I, § 2, Lemma 1, (7.3) is satisfied and by [51}, Ch. 1, § 2,

Proposition 3, also (7.4) is satisfied. Finally, by [34], Theorem 7.2, (7.5) holds.
Consequently, {Pps)}mmes is an ultradistribution theory in the sense of

7.1. The elements of Diu,y are called Roumieu ultradistributions of ?lass {M,}.
On the other hand, for every —o0 <a <b < 4o we consider

Dupla, b] = hﬁo Dounla, bl,

endowed with the locally convex topology defined by the norms | - [,k 2 > 0.
Then D, la, bl is a Fréchet space. Following {41], Ch. 7 (see also [34]), we define

U Dmpla, bl,

~<a<b<too

Dy =

and we endow it with the inductive limit topology. Clearly, (7.1) and (7.2) are again
satisfied. By [34], Theorem 2.8, we get (7.3), by [34], Lemma 5.1, we get (7.4) and
by [34], Theorem 7.2, also (7.5) holds.
Therefore, also {Das,)}s,3ex is an ultradistribution theory.
" The elements of D(ar,y are called Beurling ultradistributions of class {M,}.
“"Further, let % be the family of all continuous functions «: R~ [0, +c0)
such that

%0 =0, at+s) < aft)+als),

|

t,seR,

dt < 400,

-0

icm
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and there exist a, € R, b, > 0 with

aft) = a,+b,In(1+|t)), teR.

Let:x e %. For every —w <a<b < +w we can define the vector space
Dqla, B] of all continuous functions ¢: R - C, suppy < [a, b], such that for
every A >0 '

+00
o= § IpOIe=0dt < +oo.
-0

If 9,[a, b] is endowed with the locally convex topology defined by the norms
II* llaas 4 > 0, it becomes a Fréchet space. By [7], Corollary 1.3.21, all functions
from 2,[a, b] are infinitely differentiable. Following [6] (see also [7]), we define

D, = U

—w<a<b<+m

9,[a,b],

and we endow it with the inductive limit topology. Conditions (7.1) and (7.2) are
obviously satisfied. By [7], Proposition 1.3.5, (7.3) follows and by [7], Theorem
1.3.7, we get (7.4). Finally, by [7], Corollary 1.5.15, o < &, and a reasoning simi-
lar to that used in the proof of [34], Lemma 7.1, shows us that & is dense in &,.

We conclude that {9, }.w is an ultradistribution theory. The elements of %'
are called Beurling ultradistributions of class c.

Finally, denoting by 2 the family of all entire functions ), where 0 < ¢,

o

St <., < 4o, kZI 1/t < +00, by £, the family of all regular w € 2
and by £,, the family of all w € Q satisfying the strong non-quasianalyticity con-
dition, by Proposition 5.14 we have 2 5 Q, 5 2,,.

By our résults from §2, {Duluca, {Dolueno and {Dolucoy, aré ultradistribu-
tion theories, each of them being larger than the next one.

7.4. Next we shall compare the ultradistribution theories defined above.
Obviously

(7.8) Doy © Diptyys (Mp}pno€ M.

Let {M,} e #. By Lemma 1.5 (ii) there exists an {N,} e # such that

M, N,
lim —=2=L 2 _ ¢,
P M,, p-1

Thus, for every £ > 0 there exists an integer p, > 1 such that successively we have

M, _ N,

< —_—
M, S®N, > P7Pe
M,, N
ZTPe < gP-Pel Pz B
M,S¢ N, PP

e
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So, if ~w <a <b < +0w,h>0and ¢ €D, then we have for every g > 0
and 0 < e < g/h

sup ( sup 199“”(s)|)}

P>Ps

1 Ny,
uqauw,},gsmax{sup( 3T P |ep“'><sn) s
pPE

1
< max {sup (g"M,, sup Itr"”(s)l) L, e s,g ”q’”{l\’p),h} < +o0.

P<ps
It follows that
Diwpala, bl = Daupla, b, -0 <a<b< +00,h > 0;
hence
(7.9 - Doy < Doy

By (7.8) and (7.9) we conclude that the ultradistribution theorics {D iy} imaen
and { Dy tiaen are equivalent.
Again let {M,},.0 € .#. Denoting
my = p/M-—l’ p=1l, .

we have @ = o, € Q. For every infinitely differentiable functlon g: R~ C
with a compact support and 2 > 0 we have

| .
Hellpen = sup ,—————sup!q»“"(S)!)
h m,

1\
< sup ((F) a;‘,"isuphp(”)(s)[) = r{m1(®),

=0
so that
Dola, bl © Dgapala, b, h>0, —0<a< b< +o.
It follows that
Do < Dimy:

Conversely, let w € Q. We consider the entire function 7 defined by

() = Hw(,,m)

mml
Plainly, v €. Denoting

1

MP = ';E'i': 14 = 0:
by Corollary 2.9 we have {M,),, o € 4. For every infinitely differentiable function
@: R - C with compact support, L > 0 and integer n > 1 we have
r2,a(9) = sup (L*ap"sup [g®(s)|)
k>0 seR

< sup ((4"Lyay *sup [p®(s)]) = —ept}
S k}g(( Yeay, JE}'J lp (s)[) ||(P|l(M,).4 LY
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SO
Dagla, bl © Dyula,b], —o <a<b< +oo.
Consequently,
D) © Do

Thus, the ultradistribution theories {Du}oco and {Douplimaen are equiv-
alent.
We conclude that the Roumieu ultradistribution theory, the Beurling ultra-

distributions associated with sequences from .4 and the w-ultradistribution theory
are all equivalent.

Let « € A. By Theorem 1.8 there exist 0 < t; < £,/2< 3/3< ..., ty < +00,
) . .
ST 1/t < 40 and ¢ > O such that, putting o = wy,; € 25, we have
=

FOD < clo(t)l, teR.

Hence, for every continuous function ¢: R — C with a compact support and 4 > 0,
we have
+00

lplles < § 1@ <0ya

+o
<o | pOOBa = e o),

“w
where [1] denotes the integer part of i. So
Dyla,blc D,a,b], =~ <a<b<+owo, .
and we conclude that
Do €Dy
Conversely, let © = wpy€8,swhere 0 <1, < L2< 3 .., <+

Z 1/t, < +o0. We define the continuous function «: R — [0, +0) by
k=1 -

a(t) =Inf1+ , teR.
stl A

Using Lemma 1.7 and Theorem 1.8 we can easily verify that « € %. Moreover,
again by Lemma 1.7,

lo()] < 3240 < 3¢50, teR;

so, for every continuous function ¢: R — C with compact support, L > 0 and
integer n > 1, we have

+ 00

qg.n(q’) < 3" S |¢(t)l e8It gy

+00

<3 {10 8@+ 500t = 3lgl |y nqraeny -

-0
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Consequently,
Dla,b] =« Dyla,b], ~w<a<b< +ow,
and thus

D Dy

We conclude that the wultradistribution_ theories {Du}ueo, and {Duluen are
equivalent, Tn particular, {D,}ueo is larger than {Dojuen.

7.5. It is easy to see that for each w € 2
P L

nzl ,’(’,;.u

DA \D2D 1D ...,
5 %
and so in a certain sense the w-ultradistributions are of Beurling type.
‘We examine further a particular case in which 2, coincides with 9(_1_ ) By
a1
[34], we consider the following conditions on {M,},,0 € .#:
(M.2) stability under ultradifferential operators: there are 4, H > 0 such that

M, < AH®? min MM,_,,

Ogq<p

p=0;

(M.3) strong non-quasianalyticity: there is B > 0 such that

0

)]
Zﬂ"—'i<3p M, p=1l
q=p+1 M, Mpa

We denote by .#, the family of all {M,},. 0 € # satisfying (M.2) and (M.3).
Let {M,}p50 € #oo. We define

P
M(@)=sup—~— t>0,
® SUP 3
M, :
m, = M, P21, o= .

By [34], Proposition 3.6, (M.2) is equivalent to
M(1)?* < AM(Ht), t>0.
On the other hand, by our remark after Proposition 5.15,
w(—it) < eM(t)*+2, t>0.
Hence, choosing some integer ny > 1 with B+2 < 2", we have

o(—it)" < P AT -IN(H YY), px 1 integer, t > 0.

Denoting
= EB"A2"°+""1, Ln =’H"“+", n> 1,
we get
w(—it)y M(L,t
@ g t" < ¢p— (t"u ) , n>1and k> 0 integers.
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. 1 M,
Since for ¢t = AT A we have
P
M, M, 1
M(L,t) = su (—‘—‘— ")= L),
(Lt) %H ) = 3
we conclude that '
Lk
(7.10) L ey, nx1l, k>0.
M,

Let —0 <a <b < +co0. For every infinitely differentiable function ¢:
R - C, suppy < [a, b], using (7.10), we deduce, for A > 0

plltohs < 1pll gy, = 75010 < 1l gy, < €allollipgy ar,
and .
o) < cllpllpynr, L >0, n>1 integer.
Hence .
Q(Mp)[a, b] = @(,l-‘,,g,.n)[a, bl = Dy 1conyla,B] = D[a, b].
We sum up: if {Mp}p50 € Moo and o = wgy,), Where my = MM, 1, p > 1,
then

9(M )

Moreover, by (7.10), we have
@(=it) < 2¢y jo(Ly 1)),

= Dty = Dyyeprty = Do

t>0;
so w satisfies the strong non-quasianalyticity condition.

In particular, {D,}acq,, is larger than {Dosy}impen -
We remark that if {M,},,0 € Moo and if we define {M}} as in [34], Defi-
nition 11.1, then, by Lemma 5.12 and (7.10), we have

1 1 1 1 M, .
> P> Ry it J > 0
M; = plest ™ pt ¢ LI’ p>0;
50
(.11 M,<cLip'MY), p>0.

If we use the notation from [34], Definition 3.7, (7.11) means M, < p!M; . Thus
we answer positively the question raised in [34], page 99.

We note also that for ¢ > 1 we have {(p!)°},.0 € #oo. Indeed, (M.1) is
clearly satisfied, (M.2) results from the inequality

14
__1’_!_.,_~(p<2(p)= » <g<
q!(p—q)l_q\’\jﬂj . O<g<p |

and (M.3) has been verified at the end of § 5.
The elements of Dy and Dy pue are called Gevrey ultradistributions of Rou-
mieu type and of Beurling type, respectively.

a4
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7.6. Next we shall point out those aspects of the theory of w-ultradistributions
which seem us to bring improvements into the above mentioned theories.

The characteristic feature of the theory of w-ultradistributions is that it is
based on the theory of entire functions rather than on the theory of logarithmic
convex positive sequences (as the Roumieu and Beurling uvltradistributions of class
{M,}) or on real analysis (as the Beurling ultradistributions of class a). Even when
such logarithmic concave sequences as {ay"}x,o OF {¢f"}i,0 appear, they are
the coefficients of entire functions. Therefore the deep results of the entire function
theory (a good reference for these is [38]) are available. Among them we mention
the Phragmén-Lindelsf principle and several results due to S, N. Bernstein.

The “complex analysis feature” of the w-ultradistribution theory allowed
us to solve the problem (PW’) by using “exact” conditions (see Theorem 3.3),
rather than “asymptotical” ones, like condition (v) after Theorem 3.3. We note
that all the existing solutions of (PW”) for Roumieu or Beurling ultradistributions
have an asymptotical character.

Again the “complex analysis feature” of the e-ultradistribution theory,
together with our “exact” solution of the (PW) (see Theorem (2.3), allowed us to
construct sufficiently general w-ultradifferential operators and hence to solve (UD)
(see Theorem 2.21). We also mention that the problem (UD) was considered for
particular Roumieu and Beurling ultradistributions in [2].

Further, the “exact” solution of (PW’) and the solution of (UD) enable us to
solve the problem (OP) (see Theorem 3.5). A partial solution of (OP) for par-
ticular Roumieu ultradistributions was given in [51], Ch. III, Th. 4. Moreover, using
the weighted approximation theory initiated by S. N. Bernstein, we proved The-
orem 3.17 and Corollary 3.18, which complete our solution of (UD) and (OP).

We remark moreover that Theorem 2.21, Theorem 3.5 and Theorefn 2.25
give an elegant solution of (UD) and (OP) for the ultradistribution theory {@., }ueq.,»
in particular for {D,)}aenq, These solutions seems to be new even for the
Geyvrey ultradistributions.

7.7. In the present section we show that the ultradistribution theories {Z.,}weq,
{Dotueoes {Du}uean, are mutually non-equivalent.

We remark first that, if ‘the ultradistribution theory {Z,}eee is larger than
,{91}151 then

e 8,
L5 4 e

We recall that for every logarythmic convec sequence {4}, 5, < (0, +0), po = 0
being integer, the corresponding Denfoy—Carleman class of4,; is the vector space
of all infinitely differentiable functlons ¢@: R~ C such that for each compact
K < R, there exists an & > 0 such that

h*4,,

sup lpP(s)] < P Po-

icm

-ULTRADISTRIBUTIONS 217
By a theorem of Pringsheim (see {45], 4.1.I), #y; = (Fym) Goincides with the
vector space & of all real analytic functions.

Now, by Lemma 2.11, we have & = (0 &,. Further, by 14, {Doloco is

we

larger than {Dar,}aren, so that ﬂ o< (0 &ory. Finally, by [51], Ch.

{Mpest
II, § 1, Lemma 5,
(N Epay = Fpy= .

{Mple.t
Consequently,
(7.12) N o= oA = L.
wel2

On the other hand, by 7.4 {Zu}uen, is equivalent to {Du}eew, 50 ) o
ey
= Q( &«. Using [7], Theorem 1.5.12, we obtain
-3

(7.13) M o = Hpinpy-
B weg
‘We note that (7.12) and (7.13) can also be deduced directly, by using the gen-
eral result of J. Boman from [8], without making use of Roumieu or Beurling ultra-
distributions.

By [45], Ch. VI, 6.6. III, there exists a periodic function in & pinpe; Which

"does not belong to &, so that

8% 8.
Hence {Pu}uco and {Dyn}uen, are not equivalent. In particular, there exists an

o € 2 which is not regular.
Taking ¢, = 1, £, = 2 and ¢ = k(Ink)* for k> 3, 1<e<

- <]
Z Int, _
*=1

0
s Py < 00, E 1/re < +o0, are such that Do, © Duy,)»

2, we have

fO0<r<rn<

then by Theorems 3.20 and 1.2 there exist an L, > 0, an integer n, > 1,and a

¢o > 0 such that

{02 < cology(Loz)™, Imz < 0;

so by Corollary 1.9

+o .
[ il o,
t
1
Consequently, wg, does not satisfy the strong non-quasianalyticity coudmon
We conclude that {D.}wen, and {Dow }ocan, are not equivalent. :

7.8. Similarly to [51] and [7], rapidly decreasing c-ultradifferentiable functlons
&, can be defined and, for regular w, the tempered w-ultradistributions .?(y,,, X)
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can be characterized among the X-valued hyperfunctions. We note that tempered
w-ultradistribution semi-groups are regular and there exists a duality, via Fourier
transformation, between the theory of tempered w-ultradistribution semigroups
and tempered w-self-adjoint operators.

All these topics will be developed in a forthcomming work of the authors.

7.9. Finally we formulate some problems:
(i) to characterize those functions f: [l, +0) = (0, +c0) such that for a
certain w € £y and ¢ >0
ft) < clo@)l, te[l, +o0).
(ii) can one remove in the solution of (H) the regularity assumption on w?

(iii) to characterize intrinsically U Do among all hyperfunctions.
weldoy

(iv) to develop, similarly to the case of differential operators, the theory of ellip- .

tic, hyperbolic and parabolic w-ultradifferential operators.
(v) to develop the whole theory of w-ultradistributions for R" and, further, for
suitably defined w-ultradifferentiable manifolds.
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1. Introduction

1.1, In this paper we determine explicitly the Sz.-Nagy-Foias characteristic
function of a Toeplitz operator of the form T,,, where ¢ and y are finite Blaschke
products, ¢ having one zero. We use this to prove a similarity theorem (Theorem
2, below) for T,,. The reason for considering Toeplitz operators of this special
form is to compare Theorem 2 with a similarity theorem from [1], restated here as
Theorem 1. These two theorems occupied my two lectures to the Spectral Semester
at the Stefan Banach Center. '

In Section 1.2, we introduce Toeplitz operators and the similarity problem
and in Section 1.3, we discuss the Sz.-Nagy-Foias charactefistic function.

1.2. Let L denote the L? space of Lebesgue measure on [0, 27] and H? the
L? closure of the polynomials in e*. For a bounded measurable function F on
[0, 2%], the Toeplitz operator Ty is deﬁncd on H? by

Tyx = PFx
where P is the projection of L? on H?Z

If F is reasonably smooth (for example rational), the spectral theory of T,
is well known [3]. The essential spectrum of T is the curve I': ¢ — F(e") and for
2 ¢ 7T, the index of T% is minus the winding number of I' around 1. Either the
kernel or the cokernel of Ty— Al is always 0, so that the index describes completely
the multiplicity of A as an eigenvalue. Moreover, T has no eigenvalues in the
essential spectrum [1}. ‘ '

In [1], the following similarity theorem was proved for Tg. )

THEOREM 1. Suppose that F(z) is a rational function with no poles on |z} =
Suppose that the curve I' is a simple closed curve of winding number n about its in-
terior points and suppose that F(z) is n-to-1 in some annulus r < |z| < 1! Then Tg
is similar to T,.n, where T is the Riemann mapping function ﬁam the wunit dtsk to
the interior of the curve I.

* Partially supported by an NSF grant. o EE
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