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The aim of this note is a deseription of weak isomorphisms and weak
homomorphisms of distributive p-algebras and of double Stone algebras.

We shall use the notation and the terminology from [7] and [8].

1. Weak homomorphisms of unijversal algebras

Let (4; F) and {B; @& be two universal algebras. Let P™ (4) and P™ (B)

denote the sets of n-ary polynomials of <4; F'> and {B; @, respectively
(for details see G. Gréatzer [7]). Following A. Goetz and E. Marczewski
(see [6]) we can define the concept of a weak homomorphism as follows.

Let ¢: 4 — B be a mapping. If for every # > 0 and every f e P (4)
there exists g e P (B) such that

(1) G By ovey ,0) = (f(mlj reey wn))fp

and if for every # > 0 and every g € P™(B) there exists f e P™(4) such

that (1) is true, then ¢: 4 — B is called a weak homomorphism.

If ¢ satisfying the above condition is a bijection, we have a weak

isomorphism. It can easily be seen that ¢ satisfying (1) is uniquely determi-
ned by fif ¢ is a bijection. Thus we get a mapping f —g from P®™(A4)
into P™(B). (The related notions polymorphism and cryploisomorphism are
discussed by G. Birkhoff ([0], Chapter VI, and also 11

Since, by [4], Theorem 7, any weak epimorphism ¢: A — B can be

decomposed into o homomorphism p: 4 — 4 /6, and a weak isomorphism

n: A[6, — B, the study of weak homomorphisms can be confined to the
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weak isomorphism. In order to show that a bijection ¢: A — B is a weak
isomorphism it is enough to prove that there exists a bijection f - g
between P™(4) and P™(B) for all n = 0 satistying (1).

We recall some more facts which can easily be derived from the defi-
nition of a weak isomorphism.

ProposITION 1. If @: A — B is a weak isomorphism of algebras,
then ¢ ': B —A is also a weak isomorphism. Furthermore, if ¢: A — B
is @ weak isomorphism and 0 € Con(4), then the relation 0 defined by

wp =yp(0') iff

8 a congruence relation on B. Moreover, the mapping ¢,: Con (A)— Con(B)
defined by Op, = 0" is a lattice isomorphism.

w =y(h)

COROLLARY 1. (6(%, %)@, = 0 (a9, yo).

COROLLARY 2. Let ¢: A — B be a weak isomorphism. Then A is
subdirectly irreducible if and only if B 4s subdirectly irreducible.

PROPOSITION 2. Let ¢: A — B be a weak isomorphism. Let 0 € Con(A4)
and et 6" = 6p, (see Proposition 1). Then the mapping

g: AJ0 > B0’

defined by ([x]0)p = [2p]0’ is & weak isomorphism and the following diagram
commates :
A2 B
|
Aj6—2— B

In order to recognize two different weak isomorphisms we need the
following observation. Let us consider a weak isomorphism ¢: A — B
between similar algebras, i.e. ## = G. We can suppose that the set F of
fundamental operations is well ordered and that the algebras in question
are of type 7, i.e. 4, B e K (7).

Let P™ (z) denote the set of all n-ary polynomial symbols of type 7.
It is well known (see [7]) that for A e K(r) every polynomial symbol
f e‘P‘”)(r) induces a polynomial f e P™ (4). Now, having a weak isomor-
phism @: 4 - B for A, BeK(t), we can determine a binary relation
B = P™(7) x P™(7) (n>0) as follows:

(f,§) e RM iff the induced polynemials f and g satisfy (1). Con-
versely, let B™ (for every n 3> 0) be a binary relation on P™ (7) such
that for any feP™(z) there exists § with (f,§) e B™ and for every
{ e P™ (7) there exists $ € P™ (v) with (5, §) € ™ . We say that a bijection
& A —~B for A,BeK(7) is an R-weak isomorphism it (f,§) e B™
implies that the induced polynomials f and g satisfy (1)
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Clearly, any R-weak isomorphism ¢: 4 — B is a weak isomorphism
and R™ < R™. Note that an E-weak isomorphism ¢: 4 —B is an
isomorphism if and only if B™ (n 2> 0) is reflexive.

It is also easily seen that Proposition 2 can be reformulated: If
@: A — B is an R-weak isomorphism, then ¢: A[f - B0 is an R-weak
isomorphism.

Now we will show that any weak isomorphism between algebras
in an equational class is determined by weak isomorphisms between
subdireetly irreducibles. If 6§ e Con(4), we say that 0 is subdirectly irre-
dueible if A /8 is a subdireetly irreducible algebra.

TeEorREM 1. Let K be an equational class. Let A, BeK and let
@: A — B be a bijection. Then @ is an R-weak isomorphism if and only if

(i) O, € Con(B) for every subdirectly irreducible 0 e Con(B);

(i) @: A/0 — B|0p, is an R-weak isomorphism for every subdirectly
arreducible 0 € Con(4).

Proof. The necessity of (i) and (ii) follows from Propositions 1 and 2.
Let us suppose conditions (i) and (ii). Let 4 = J](4;; 4 € I) be a subdirect
representation of A (see [7], Theorem 2.3), i.e. 4; arve subdirectly irreduc-
ible. Moreover (see [7], Theorem 20.1), there exists a system {0; e Con(4);
i eI} such that A(6; i el) = 4 and A[§; == 4;, ie. §; are subdirectly
irreducible. Therefore, 6; = 6,¢, € Con(B) by (i), and

A; =~ A6 = B[b;:=B;

applying (ii) for every i e I. Using Corollary 2, we see that B; is subdirectly
irreducible. It is not difficult to prove that A (6;; ¢ €I) = 4. Therefore,

B [[(B;; ieI) is a subdirect representation of B (see [7]). By (ii),

g Ay~ B; (iel)
is an R-weak isomorphism. There exists an R-weak isomorphism
7: [](4;; 2el) - [[(B;; tel)
because the operations are defined componentwise. Therefore
p: A—+B

is an R-weak isomorphism since ¢ is o restriction of @ to 4, and the proof
is complete.
COROLLARY 3. Any weal isomorphism between algebras of an equational

dlass K is an isomorphism if and only if every weak isomorphism of sub-
divectly irreducible algebras from XK is an isomorphism.

ExaMPres. 1. It is well known that in the class of all lattices there
are at least two kinds of weak isomorphisms, namely the isomorphisms
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and the dual ones. But in the class of all distributive lattices we have only
these two kinds of weak isomorphisms. This follows from the fact that only
the two-element lattice is a non-trivial subdirectly irreducible one in this
class.

2. A trivial application of Theorem 1 shows also that there are only
two kinds of weak isomorphisms between Boolean algebras, which was eg-
tablished by other methods in [10], Theorem 1. (We recall that the only
non-trivial subdireetly irreducible Boolean algebra is the two-element one.)

3. It is known that the class of all semilattices has no non-trivial
proper equational subelasses. It is not difficult to prove that the only non-
trivial subdirectly irreducible semilattice is the two-element one. Let
8 ={a,b} and a = aAb % b. Then it is easily shown that the bijection
p: & — § defined by ap = b and bp = ¢ cannot be a weak isomorphism.
Hence any weak isomorphism of semilattices is an isomorphism.

2. Weak homomorphisms of disiributive p-algebras

A universal algebra {(L; v, A, * 0,1) of type <2,2,1, 0,0 is called
a distributive p-algebra it {L; v, A, 0,1} is a bounded distributive lattice
and )

< a*.

zAq =0 iff
The standard results can De found in [8].
It is known that the distributive p-algebras form an equational class
which has countably many equational subclasses. More precisely, we have
an infinite chain

B ocHBechc..chc..

< By,

where #_,; is the trivial subclass, %, is the class of all Boolean algebras
defined by

zva* =1
and %, is the subclass of Stone algebras defined by

vt =1,

The subdirectly irreducibles can be described as follows. Let B be

an arbitrary Boolean algebra. Let ¢ denote the largest element of B.
Now add a new element 1 to B. We get L = BU{l}. We define 1>
for all z € B and # < y for «, y e B if the same is true in the given Boolean
algebra B. Now L turns into a bounded distributive lattice L = B@1
and, finally, L is also a p-algebra if we define 1* = ¢* =0, 0* =1 and
#* =o' for x e B (for details see [8]).

ProposITION 3. Let L be o subdireotly irveducible distributive p-algebra.
Let |\L| > 3. Then every weak isomorphism of L is an isomorphism.
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Proof. Let ¢: L —~ L' be a weak isomorphism in the class of distri-
butive p-algebras. By Corollary 2, I’ is also subdirectly irreducible.
Hence there exist Boolean algebras B and B’ such that I = B@1 and
I’ = B'@1’ (cf. [8]). If ¢ and ¢’ denote the largest elements of B and B,
respectively, then (e, 1) (8(¢, 1)) is the smallest non-trivial congruence
relation on L (I, resp.). By Corollary 1, (8(e, 1))p, = 0(ep, 1p). Therefore,
{ep, 19} = {¢',1'}. Sinee Ljb(e,1) =~ B and L'[6(¢,1) =B, we get
a weak isomorphism

7: B—=5B

between Boolean algebras by Proposition 2. By [10], Theorem 1 (see
also Example 2), @ is either an isomorphism or @ is a dual isomorphism,
ie. (xVY)p = BPAYP, (BAY)P = TGV YF, &*0 = &*, 0p = ¢’ and g = 0.
But we have seen above that {ep, lg} = {¢,1'}, which means ep = ¢’
and, consequently, 0p = 0’, because 0 and 1 are the only nullary operations
of distributive p-algebras. Thus @ is an isomorphism. Since for every
congruence class [#]6(e, 1) = {z} for z ¢ {¢, 1}, @ determines uniquely ¢.
Thus ¢ is an isomorphism.

THEOREM 2. Let ¢: L — 1L be a weak epimorphism of distributive
p-algebras. Let L' be not a Boolean algebra. Then o is an isomorphism.

Proof. By [4], Theorem 7, ¢ = u7, where u: L —>L[0, =L, is a
(natural) epimorphism and n: Ly — L' is an R-weak isomorphism (for
some relations B™, n > 0). Since I is not a Boolean algebra, there is in
subdirect representation of I’ a subdirectly irreducible p-algebra having
at least three elements. By Proposition 2, the same is true for L. Let 4
be such a p-algebra, i.e. |[4| > 38, 4 = L,/0 and 6 is subdirectly irreducible.
Therefore,

7: Ly/0 — L' [0,
is an R-weak isomorphism by Theorem 1. But 7 is an isomorphism by
Proposition 3. That means, (f,f) e R™ for every n > 0 and every n-ary
polynomial symbol f . The last result implies that » is an isomorphism,
and finally ¢ is & homomorphism.

Remark. Proposition 3 and Theorem 2 have been proved in [5],
Theorem 3 and Corollary B, for the class of Stone algebras.

3. Weak homomorphisms of double Stone algebras

A universal algebra (L; v, A,*,,0,1> of type ¢2,2,1,1,0,0> is
called a double Stone algebra it {<L; v, A, *, 0,1 is a Stone algebra and
Ly v, AyT,0,1> is a dual Stone algebra.
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Double Stone algebras form an cquational class &, which containg
four equational subclasses (see [9], Theorem 1)

Foo Frc Py P

& are the trivial algebras, &, is the class of Boolean algebras defined by

7" =t

and &, is the subclass of regular double Sione algebras defined by
sva=yayt

The non-trivial subdirectly irreducibles are the two-, three- and four-
element chains, considered as double Stone algebras.

It can be seen at first glance that in the class & there are at least
two weak isomorphisms, namely the isomorphism and the dual one defined
by

(2) (*7+), (+;*) ER(I)’ (Vya) (A, v)eR®,

Since every polynomial is a composition of the fundamental operations,
we see that conditions (2) generate a relation corresponding to a weak
isomorphism.

(0,1), (1, 0) e R®,

PROPOSITION 4. Any weak homomorphism in the class &, of all regular
double Stone algebras is either a homomorphism or a dual homomorphism.

Proof. By [4], Theorem 7, we have only to prove the statement for
weak isomorphisms. Following Theorem 1 this can be reduced to weak
isomorphisms of subdirectly irreducible algebras. By [9], Theorem 1,
the only non-trivial subdirectly irreducibles from <, are the two- and the
three-element chains. Evidently, there are two weak automorphisms of
a two-element chain. Let p: L — L be a weak automorphism of a three-
element algebra from &,. Clearly, L is a chain 0 < ¢ < 1. Since 0 and 1
are the only nullary polynomials, we get {0p, 1¢} = {0, 1}. Hence ap = a.
Thus there exist two bijections which correspond to an automorphism
or to & dual one, and the proof is complete.

Remark. Proposition 4 has been proved first in [10], Theorem 1,
for the class of Boolean algebras.

PropPOSITION 8. Lot L = {0,¢,d,1} be a chain 0< c< d< 1 con-
sidered as a double Stone algebra (i.e. ¢+ = d* = 1* = 0 and 0+ = ¢t = d*

=1). Then for any weak automorphism ¢: L L we have ¢ = ¢, for
i€{l,2,3, 4} and

(1) @12 L — L is the identity automorphism;

(ii) o I - L is a dual automorphism, i.e. Op,= 1, 1p, = 0, ¢p, = d

©
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and dp, = ¢, and the bijection of polynomials is generated by 0 —1, 1 — 0,
o* gt gt o, wvy >zAy and Ay >V Y

(i) @y: L — L is given by Op; = 0, 1g; = 1, cp; = d, dp; = ¢ and the
bijection of polynomials is generated by 0 —0, 1 =1, o* - %, g+ — 2™,

avy —>h(z,y) = (@AY V(@A TV (ZFAY)V (@ Ayt v (@TT AyH),

Ay >Rz, ) = (@Vvy)A@VvyT)A @t VYA @y YT A @t v )
(iv) @2 L — L is given by Op, =1, 1p, = 0, cp, = ¢, dp, =‘(Z and
the bijection of polynomials is generated by 0 — 1, 1 — 0, * — a*, 2+ — o*,

avy —T(z,y) and Ay - h(z,y).

Proof. It ¢: L — L is a weak automorphism, then {0p, 19} = {0, 1},
because 0 and 1 are the nullary polynomials. Therefore we have four
possibilities (i)—(iv) for the mapping ¢. It is straightforward to prove
that ¢, and ¢, are weak auntomorphisms.

(iii) Tt is easy to check that k(z,y) = h(y, %), (s, ¥) = k(y, #) and

Wiz, ) zny for w,yefe,d},
), =
Y zvy  otherwise,
7 zvy for =,yel{c,d},
h (2 =

@, 9) xAy  otherwise.

By direct computation we get Op, = 0, 1p, =1, o*ps = (ogs)*, @t

= (@gs)", (v Y) @5 = h(2ps, Yps) a0 (2 A Y)ps = B (303, yps) for all 2, y € L.
Tt follows that there exists a 1-1 mapping f — ¢ from P™ (L) into P (L)
(n = 0) such that the polynomials f and g satisfy (1). It remains to show
that this mapping is onto. But this follows from

vy =B, 5), b, v)),

wry = h(hip, q), k(z,y))
and

H

L(h(h (@, y*), h(z,y)*), h(w, w*)),
B (B (h(a*, y), h( ﬁ*,J)) h(y, y¥),
7—1( (Z ?/+): ./** )7
L{h(h(z*, y), R x**,y)) h(y,y ))

hmw

= S
I

for all »,y € L.

(iv) The last case can be handled similarly as (iii), which we leave
to the reader. The proof is complete.

It should be noted that k(z,y) = azvy and k(z,y) = oAy in any
regular double Stone algebra. Summarizing, we obtain from Theorem 7 of
[4], Theorem 1 and Proposition 5 of this paper, and from Theorem 1 of
[9] the following
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TeEOREM 3. Let A, B be double Sione algebras and let p: 4 — &
be o weak homomorphism. Then one of the following statement holds:

(1) @ 8 a homomorphism;

(i) ¢ s a dual homomorphism, d.6. Op =1, 1lp = 0, z*p = (zg)*,
ot = ()%, (@vy)g = 2pAyp and (zAY)p = apV Yy for every @,y e 4;

(iif) 0p =0, 1p =1, o*¢ = (xp)*, 279 = (2p)*, (avY)p = h(ap, yp)
and (Ay)e = hizp, yp) for every m,y e 4;

(iv) 0p =1, 1p = 0, a*¢p = (ap)", a*p = (2p)", (2vy)p = k(xp, yp)
and (wAy)p = hovp, yp) for every »,yed, where hiz,y) and Bz, )
are defined in Proposition 5.
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PRAPRIMALE ALGEBREN, DIE ARITHMETISCHE VARIETATEN
ERZEUGEN

K. DENECKE

Pidagogische Hoclschule, Sekfion IMathematik und Physik, Potsdam, G.D.R.

Diese Arbeit beschiftigt sich mit endlichen Algebren, bei deren die Menge
aller abgeleiteten Operationen, der Opcrationenklon, maximal in der
Klasse aller Funktionen iiber der Trigermenge der Algebra ist, den préa-
primalen Algebren. Maximale Klassen der Klasse aller Funktionen iiber
einer endlichen Menge spielen bei der Losung des Vollstindigkeitsproblems
in den mehrwertigen Logiken eine Rolle. Hier werden praprimale Algebren
betrachtet, die arithmetische Varietéten erzeugen. In Theorem 3.2 wird
eine algebraische Charakterisierung dieser priprimalen Algebren gegeben
und damit teilweise ein fiir beliebige praprimale Algebren noch offenes
Problem gelost. Ausgangspunkt ist einerseits die von Rosenberg [9]
vorgenommene Klassifizierung der maximalen Klassen von Funktionen
iiber einer endlichen Menge, andererseits die Behandlung von Vollsténdig-
keitsfragen in universalen Algebren in Arbeiten von Foster und Pixley.

1. Grundbegriffe
Sei B, = {0,1, ..., k—1} und F(E,) die Menge aller Funktionen, die auf B,
definiert sind, dh. F(B) = |J F(E,) mit F,(B,) = {f: By - B}

n=0

A =<8, F) sei eine endliche Algebra mit I = F(E;) als Menge
der Fundamentaloperationen. F bezeichne die aus F durch Superposition
von Funktionen entstehende Klasse von Funktionen aus F(F,), die alle
Projektionen e} ¢ ¥, (E,) mit e (24, ..., #,) = &; (i =1, ..., n), enthalten
soll. Dann ist F Polynomialklasse oder Operationenklon von A.

Zwei Algebren heiBen dquivalent, wenn sie den gleichen Operationen-
klon erzeugen.

In den Arbeiten von Foster wird der Begriff der primalen Algebra
definiert:
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