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10.3. Tt is easy to generalize the notion of a hyperalgebra and to define
a hyperalgebra in a cartesian closed category. For example, the Seott model
7.3 (A) gives rise to the following hyperalgebra % in the cartesian category
Clatt of complete lattices and continuous functions: the underlying object
of 9 is D, and the hyperoperations are the following arrows in Clatt:

apy: [D% — D] — [D% — D] defined by ap,(f, ) = ez-10<f, 9,
ab,: [D%' - D_]—[D% ~ D,,] defined by ab,(f) = &' Ao o [F),

@ [DY, - D,]° - [D% - D,] defined by ¢f(L) = pry(D,), where
[4 — B] means the lattice of all continuous functions from the lattice 4
to the lattice B.
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SOME PROBLEMS OF BCK-ALGEBRAS AND GRISS TYPE ALGEBRAS

KIYOSHI ISEKI

Depariment of Mathematics, Kobe University, Rokko, Kobe 657, Japan

The notions of BCK-algebras and Griss algebras were formulated first
in 1966 (see [2], [3]). For example, BOK-algebras are obtained as unified
theory generalizing some elementary and common properties of set-dif-
ference in set theory and implication in propositional caleuli.

We know the following simple relations in set theory:

(A—B)—(4A—C)=(C-B,
A-—(A—-B) < B.
In propositional calculi, these relations are denoted by
(» > (g > =@ ~>1),
p=>(»—>9 >4
From these relationships, we have a new class of algebras as follows:

DEFINITION 1. Let X be a set with a binary operation * and a con-
stant 0. X is called a BCOK-algebra if it satisfies the following conditions:

(1) (@xy)*(2x2) < 2xy,
(2) ox(2xY) < Y,

(3) <%,

(4) 0<a,

(5) <y, ¥y < implies 2 =¥,
(6) z <y if and only if oxy = 0.

e introduced another class of algebras which are called Griss algebras.
The notion is an algebraic formulation of negationless logic considered
by G. F. C. Griss [1].

[423]


GUEST


424 K. ISHKI

DEFINITION 2. By a Griss algebra, we mean an algebra <X, «, v, 0>
of type (2,2, 0) satisfying the following conditions:

(7 X is a v-semilattice with 0 as least element,
(8) (xvy)x(yve) <oz,

9)  wxy < (as2)v (2+9),

(10) sy 2oxy =0=zavy =9.

In this definition, the first condition (7) is strong, as will be shown
by Example 3. In this example, X is only a semigroup with zero 0.

In this paper we shall state several unsolved problems on BCK-
algebras and Griss type algebras.

In a BCK-algebra, we have the following elementary and basic prop-
erties (for proofs, see [7], [8], and [9]):

(11) o <y implies zxy < 2w, v < y*2,
(12) <y, y <z implies z< 2,

(13) (zxy)%2 = (wx2)xy,

(14) oy < 2 implies zxz <<y,

15 sy <o,

(16) %0 = w.

On the other hand, in a BCK-algebra,
A7 @e(wry) = y=(yr)
is not always true.

DerinrtioN 3. If, in a BCK-algebra, (17) holds, then it is called
a commutative BCK-algebra or Tanake algebra.

This algebra is characterized by the following

TaEOREM 1. A BCK-algebra is commutative, if and only if it is a semi-
lattice with resepct to A, where LAY = y*(y*w).

An axiom system for commutative BOK-algebras is given in the
following

THEQREM 2 (H. Yutani). An algebra (X, *,0)> of type (2,0) is a
commuiative BOK-algebra iff it satisfies the following conditions:
(13) (Try)xz = (wer)xy,
(18)  @x(zxy) = y=(yxa),
(3" zxwr =0,
(16) 240 = .

Therefore, the class of commutative BOK-algebras is a variety.

PrROBLEM 1. Is the class of BOK-algebras a varieiy?

©
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Recently H. Yutani [10] considered & useful class of BCK-algebras
which is a variety. To define this new class, we use the following notations.

A polynomial @, ,(x,y) of variables #, y of a BCK-algebra X is
inductively defined as follows:

Qoo(2:9) = @ (2%Y),
Qumarn (@ Y) = Qu i, Y)*(@xY),
Qi1 (T:Y) = Qmn (@, Y)* (Y @),

Under these notations, the commutativity is denoted by @ ,(#, ¥)
= Qo,o(¥, %)

DEFINITION 3. A quasi-commutative BOK-algebra (of type (4,5, %,1))
is a BCK-algebra which satisties for some 4, j, %, and 1
(19) Qi,j(m: y) = Qk,l(yy x) for a,y.

As is easily seen, a commutative BCK-algebra, a positive implicative
algebra and an implicative algebra arve all quasi-commutative.

THEOREM 3. The class of quasi-commutative BCK-algebras is a variety.

In fact, a quasi-commutative BOK-algebra of type (¢,j,%,1) is
defined by the following equations:
(1 ((m*y)*(m*z))*(z*y) =0,
(16) %0 = 2,

(4, 0%z =0,
(19) Qi@ ) = Qua(y, #)

By the definition of a quasi-commutative BCOK-algebra, the above
equations hold. Conversely, we assume that the above equations hold.
Then, if #y = y*@ = 0, we have @;;(%,y) =1, Qr;(y, %) =y. Hence
(5) holds. From (1), we have (& (#+y))+y = 0, which implies (2). Hence
the algebra is a BCK-algebra.

Moreover, we have the following

THROREM 4. Any finite BOK-algebra is quasi-commutative.

Exavere 1 (H. Yutani). Let X be the set {0, a, b, o, d}. We define
the operation % by the following table.

#{0abcd
0100000
aila0a0a
bi{bb0o0O
clece 00
ad|lddbdbbo
Table 1
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Then X is a BCK-algebra. Moreover, it is a quasi-commutative algebra of
type (1,1,1,1), ie. @, (%, %) =Q11(y, ) for all 2, ¥.

ExaMpLe 2 (Y. Seto). Let X be a partially ordered set with the least
element 0, and a distinguished element ¢ such that 0 << for all z e X
and ¢ < o for all nonzero » € X. The operation #* is defined as following:

0 if <y,
gxy =Jo if y=0,
¢, otherwise.
X is a BCK-algebra. Moreover, X is a quasi-commutative algebra of type
1,2,1,2).

ProsLEM 2. Find a quasi-commutative BCK-algebra of type (4,7, %, 1)

for any natural number 1,7, k, and 1.

Next we shall define a special class of BCK-algebras which is called
a BCOK-algebra with condition (8).

Let X be a BCK-algebra, and let », ¥y be any fixed elements of X.
Then the set of  satisfying

(20) wry LY

is not empty, because 0y = 0 < y. We assume that there is the greatest
element % satisfying (20). This greatest element is uniquely determined.
The greatest element is denoted by zoy.

DErFINITION 4. If there exists oy for any elements @, y of a BCK-
algebra X, then X is called a BCK-algebra with condition (S).

In a BCK-algebra with condition (8), sz <y and y+2 <y imply
T, Y < 20Y.

THEOREM 5. Any BOK-algebra X with condition (S) is a commutative
semigrowp with respect to o.

Proof. By the definition of o, we have
(woy)*xx < y.

Hence (voy)xy < «. Therefore woy < you, 50 we obtain zoy = yow.
Next by the definition of o,

{(moy)ozjre < aoy.
Hence

(((woy) oz)*z)*fy < .
From (14), we have

(((woy)oz)*y)*z < @.

©
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Therefore
((moy)oz)ry S woz,
80 we have
(xoy)oz L yo(woz) = (woz)oy.
Since ¥ and z are symmetrie, we obtain
(zoy)oz = (zoz)oy.
This equality and the commutative law of o imply
(moy)oz = (zoz)oy = (20z)oy = wo(z0y) = 2o (yoz),
which proves the associativity of o.
Hence X is o commutative semigroup with respect to o.

Moreover, usz = 0 2 <. Hence 200 = 2.
If X is bounded, then # <1 for any w e X. Hence for any u e X,

urr < 1.

Therefore 1 = zol.
If we put Nz = 1*x, we have xo Nz = 1.

CoroLLARY 1. If X is a BOK-algebra with condition (S), then
200 = 0o = .
If X has 1, then
2ol =lox =1, woNzw =1.
THEOREM 6. 2 <y - woz< yoz.
Proof. x <y implies
(@o2)xy < (woR)x < 2,
which implies shows zoz < yoz.
TuEorREM 7. The following propositions (21), (22) are equivalent:
) 2Ly >0y =y,
(22) zow = for any ®eX.

Proof. Assume (21). # < # implies zos < 2 by (21). From Theorem 6,
¢ =200 < wow. Hence wox = , which proves (22).
Assume (22). # < y implies zoy < yoy = ¥, by Theorem 6. Hence we
have (21).
THEOREM 8. In a BCK-algebra X with condition (S), we have
rxy < (w%2)0 (2xy),

(o y)x(yor) < xxz < 202,
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Proof. (zxy)*(w+2) < 2xy implies

zxy < (wx2)o (2%Y).

On the other hand, z#(wxy)<y implies
z < (zy)oy.
By Theorem 6, we have
roz < (@xy)o(yor).

Henee

(woz)o(yor) < wxy.
Since X is a BCK-algebra, x+y < 2 < zoy. Therefore

(wo2)%(yor) < zoy,
which completes the proof.

ProBLEM 3. Is the class of BOK-algebras with condition (S) a variety?

In a BOK-algebra with condition (8), #ow = 2 is not always trues
We have the following interesting

ToeorREM 9. Let X be a BOK-algebra with condition (S). The following
propositions are equivalent:
(I) X is positive implicative,
(IT) & <y implies zoy =1y,
(III) 2o = for all xe X,
(IV) (@oy)*2 = (w*2)o (y*2).

Exaweir 3. Let X = {0,0,b,1} with 0< a< b< 1. We define =
as in Table 2. Then X is a BCK-algebra, but not positive implicative.
Moreover, X has eondition (S), and the operation o is given in Table 3.
Therefore <X, *, 0; 0> is not a Griss algebra, since X is not a semilattice
with respect to o. But X satisties (8), (9).

l

|0ab1
0000
a000
ba0oO
laa0

Table 2

Ho o o] %
Ho s ol

DEFINITION 5. Let 4 be a non-empty subset of a BOK-algebra, X.
4 is called to be an ideal, if (1) 0 € 4 and (2) y*a, s A implies y € 4.
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Let X, (a € I) be a family of BOK-algebras. The direct product [1X.
is a BOK-algebra, if we define

(F#9)(a) = f(a)*g(a),
where f,g e [[X,.

Then we have the following

THEEOREM 10. Any ideal I of X, XX, 4s represented as a product
of ideals I,,1, in X, X, respectively, i.e, I =1I,xI,, wherel; is the
projection ¢ of I, (4 =1, 2).

PROBLEM 4. Let I be an ideal of an infinite direct product [1X, of
BCE-algebras X,. Is I represented as a product of ideals of X%

ProBrEM 5 (H. Yutani). Let X be a BOEK-algebra. Find o free
BCK-algebra Y that X is an ideal of Y.

ProBrEM 6 (H. Yutani). Let Y be a subalgebra of a BCK-algebra X
and I an ideal of X . Does an ideal J of X exist with the property: I = JN Y2

In a BCK-algebra, we can define some kinds of different homomor-
phisms. Usually, we consider the following type of homomorphisms.

Let X, ¥ be two BCK-algebras. A mapping f: X - ¥ is said to be
a homomorphism it for all @,y e X,

Flaxy) = f@)=f(y).

Then we can consider a category BCK with objects all BOK-algebras,
and morphisms all homomorphisms from a BCK-algebra to another.
In BCK there exist finite limits.

On the other hand, the class of BCK-algebras is a Jonsson clags.

There is an interesting problem.

ProsrEM 7. Does the coproduct of any two objects in BCK exist?
In this paper we stated important unsolved problems, but some of
those problems have mutual relationships.
A Griss algebra on a totally ordered set (this is a semilattice) satisfying
2x0 = g is uniquely determined, i.e.
fo ife<y,
TxY =
|
On the other hand, there exists at least two Griss structures thatb
%0 = % 18 not always true on any totally ordered set with cardinality > 4.

Next, we shall state an unsolved problem related to Griss type al-
gebras.

if y<a.


GUEST


430 K. ISEKI

In our definition of the Griss algebra, we can replace condition (8)
by the following equation:

(@vy)xz = (@x2)V (Y*2).

PrROBLEM 8. Discuss the relationship between a Griss algebra and an
algebra satisfying (1), (9), (10) and (zv Yr{rve)<yve.

Many results on BCK-algebras and Griss type algebras are found in
papers inserted into Mathematics Seminar Notes, Kobe University.

Added in proof. Problem 1 has been solved by Professor A. Wrongki.
He proved that the class of BOK-algebras is not a variety.
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ON AN ALGEBRAIC AND KRIPKE SEMANTICS FOR INTERMEDIATE
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The topic of this paper is to show that Kripke semantics and algebraic
semantics for intermediate predicate logics are incomplete.

Then we prove @ weaker version of the converse theorem to the
following one:

Let K be a class of intermediate logics such that for every L e K the formula
of the form Vu(a(x)Up) = (Vwa(z)Up), where x does not appear in f
is provable in L.

If L e K and L has & characteristic Kripke model, then L has a charac-
teristic set of algebraic models.

First of all, we describe a language % in order to define intermediate
predicate logics. Liet # consist of a countable infinite set ¥ of individual
variables @, y, 2, ...; a countable infinite set of n-ary predicate variables
™, g™ ™ and a countable infinite set of constants. 0-ary predicate
variables are identified with propositional variables. The logical symbols
of £ are N, U, =, |, ¥, 3. The set of formulas F is defined in the usual
way and elements of F we denote by a, g, y, ...

We will identify a logic with the set of formulas provable in it. Thus,
by LK we mean the set of all formulas provable in the classical predicate
caleulus and by LI we mean the set of all formulas provable in the intuition-
istic predicate caleulus. Let o be a formula provable in LK. Then by
LI+ a we denote an intermediate predicate logic obtained by adding an
axiom scheme o to LI.

DErINITION 1. A set of formulas L is said to be an intermediate
predicate logic if it satisfies the following conditions:
@) LIc L c LK,
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