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We show this by an induction on the length of derivations from B’
in .

Suppose: if Bz is derivable from E’ in < a steps, then x e I*.

Suppose: Ba is derivable from B’ in o« steps. We show a € I%.

Let #, = {&| Az occurs before the last line in some (fixed) derivation
from E' of Ba}.

Let %, = {x| Bx occurs before the last line in this derivation}.

Now, A occurs in the conclusion of only one axiom in E', namely
Bax — Ax. It follows that

Ry < Ry
Also, by induction hypothesis, Zz = I*. Hence
{*) Ry I™.
Finally, it should be clear that

Bt A>Ba.
This says
acl(Z,).
Then by (*), since I is monotone,
acl(I®y=1I.
This concludes the proof.
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Let V be a lattice, % a positive integer and (V) the direct power o,
A function feF,(V) is called compatible if for any congruence OonV
and (a;,0;) €0, 4 =1, ..., &, (f(ay, --., az), f(brs .-, b)) € © holds, and f
is called order-preserving if a,<b;, i =1,...,k implies f(ay, ..., a)
< f(byy oney by). We denote by Cp(V) the set of all k-place compatible
functions on V and by OF,(V) the set of all k-place order-preserving
functions on V. As it immediately follows by a result of Wille [12], OF,(V)
< C, (V) ift V is simple.

Tn the present paper we determine all distributive lattices V with
C,(V) < OF,(V), and we give necessary conditions for an arbitrary lattice
¥ to satisfy C4(V) < OF(V). Thereby we obtain necessary conditions
for a lattice to be (locally) k-affine complete and (locally) k-order affine
complete resp. (for these concepts of completeness cf. Schweigert [9]
and Wille [12]). Furthermore, we show that every distributive lattice is
locally k-order affine complete (generalizing a result of Grétzer [4]) and
that 1-affine completeness implies k-affine completeness in case of a dis-
tributive lattice.

Throughout this paper we adopt the following notational conventions:
join, meet, inclusion, and proper inclusion in a lattice are denoted by U, N,
<, and <, resp.; k always stands for a positive integer and V always
denotes a lattice.

2

Tirst we show that it is sufficient to consider the case & =1 in order
to answer the question whether OF, (V)< (V) and whether C,(V)
< OF,(V), resp.

[97]
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Let # be a set of binary relations on a lattice V' and let U(%),(V)
be the set of all f € F,(V) such that for any B € Z and (#;, ;) € R, 4 =1, ...
v By (F(@yy ey 8)y FWay -v0y ¥y) € R (Of. Lausch and Nobauer [7].)

TuEOREM 1. Let Z, & be sets of binary relations on a lattice V. Then
U(R), (V) € U(S),(V) implies that U (R),, (V) s U(S),(V) for all positive
integers m < k. If in addmon every B eZ is reflevive and every S e & is
tramsitive, then U(Z)(V) € U(F ) (V) implies that U(R), (V) < U (L), (V)
for any k=1,

Proof. Suppose U(Z),(V)
It wo define f e F,(V) by

o

U(P)(V), m<k and fe U(R),, (V).

f(wl, ceny

then clearly fe U(#),(V), thus fe U(&),(V), whence f e U(%),, (V).

Now let every R € Z be reflexive and every § € & be transitive and
assume that U(%),(V) € U(#)(V). Proceding by induction on % sup-
pose that U(#),(V) = U(&),(V) for all positive integers n < k—1 (k> 2)
and let f e U(%),(V). For a eV define f9 e F,_,(V) by

@) 2= f(@ry ooy Tp), (ml)"';w)g)evki

FO@y ooy Bpy) 1= F (@1, -y Bye1s @)y (Bryery @) € VF1
and for (@, ..., a,) € V¥™" define f, . ~eFy(V) by
fa,...,ak- @) i=F(try eoo @y, @), weV.

Because of the reﬂemwty of the E € # it follows that f® e U(%),_
and f, . U(#)1(V), hence by induction agsumption

(V)
10— 1

@ e U(F)y (V)

Now let a,,b;, ¢ =1,
where S € &. Then

and  fo. a4, € U(FN(V).

-» by be elements of V such that (a,, b,) € 8,

(flany ooy @), FOR By, ..y b))
= (f(ak)(“u ceny By, f(ak)(b” weey bk—l)) el
and
(f(u"')(bu ooy )y Flbay oeny bk)) = (fb1 ..... bk_l(“k)i fbl,...,bk__l(bk)) es.

Since the relation 8 is transitive, this means (f(ay, ..
Therefore, f belongs to U(#),(V).

Remark. Obviously the lattice structure on V is not needed in the
proof of Theorem 1.

oy )y f(Dy, "'J_bk)) ehl.
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CorOLLARY. OF, (V) < Ci(V) if and only if OF,(V) = C(V) and
C(V) < OF (V) if and only if C1(V) < OF (V).

THEOREM 2 (cf. Wille [12])‘ Let V be an arbitrary lattice. Then OF, (V)

< O (V) if and only if V is szmple
1—"4 oof . If V is simple, obviously OF,(V) < C,(V). It V is not simple,
then OF,(V) & O4(V) as was shown by Wille [12] (proof of Hilfssatz 4).

Hence by the Corollary of Theorem 1, OF (V) & C,(V)

Let P,(V) be the sublattice of F,(V) generated by the constant
functions and the k projections from V* to ¥, and LP,(V) be the set of
all f € F, (V) such that for any finite subset M of V* there exists a geP(T)
(depending on M) such that f(x) = g(z) for all x e M. P, (V) is called the
lattice of k-place polynomial f'wnctwns on V and LP,(V) the set of k-place
local polynomial functions on V. (Cf Lausch and Nébauer [6].) Clearly,
LP, (V) gives rise to asublattice of F,(V)and P (V) < LP,(V) < 0C,(V)
i= 0 (V)NOF, (V).

V is called (locally) k-order polynomially complete itt P (V) = OF, (V)
(LP(V) = OF(V)) (ct. Schweigert [9], Wille [11]); V is called (locally)
k-affine complete iff P (V) = O (V) (LP,(V) = O,(V)) (cf. Werner [10]),
and V is said to be (locally) k-order affine complete ift P (V) = OC,(V)
(LPy(V) = 0C,(V)) (cf. Wille [12]).

COROLLARY 1. If a lattice V is locally k-order polynomially complete,
then V is simple. In case V is distributive the converse is also true. (Of. Wille
1], [121)

Proof. The first claim is obvious from Theorem 2, the second one
follows from the fact that a distributive lattice V is simple iff |V|< 2.

OOROLLARY 2. Oy (V) 5= OF (V) for any lattice V with |V]> 1.

Proof. Suppose On(V) = OF,(V), then V is simple, hence F,(V)
= OF),(V) and therefore |V| must be 1.

THeEOREM 3. Let V be an arbitrary lattice. Then O (V) & OF, (V)
if and only if there ewists a sublattice U of V such that C,(U) & OF,(U)
and a v e Cy(V) such that p(V) = U and y* = y.

Proof. According to the Corollary of Theorem. 1 the eondition of
the theorem is obviously necessary. Therefore, assume that there exist
a U and a y as supposed in the theorem. Then there is a function feCy(U)
such that f ¢ OF,(U). We define a mapping g € F;(V) by g(a) : = flp(x)),
@ € V. As it is easy to check, g € C1(V), but since y(z) = for allz e U,
g ¢ OF,(V). By the Corollary of Theorem 1 this implies C,(V) & OF, (V)

COROLLARY 1. Let V be an arbitrary lattice. If there exists an interval,
[b,a] of V such that Cy([b, a]) & OF([b, al), then Cr (V) & OF, (V)
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Proof. Take U = [b, a] and define y by

p(@) 1= (anz)Ub, aeV;

then the statement follows from Theorem 3.
In the following an interval [b, a] of V with b < a is called a proper
interval.

COROLLARY 2. Let V be an arbitrary lattice. If V contains a proper
interval which is a Boolean lattice, then Cp (V) & OF (V).

Proof. Let U be a proper interval of V which is a Boolean lattice,
then 0,(U) & OF,(U) since for the mapping f € F,(U) defined by f(a) :=
%, © € U, where z* denotes the relative complement of » in U, f e 0,(U),
but f ¢ OF,(TU), as one can easily see. So the statement of Corollary 2
follows from Corollary 1.

COROLLARY 3. If a lattice V contains a proper subdirectly irreducible
interval, then Oy (V) & OF, (V).

Proof. This is a consequence of Corollary 1 and the remark after
Theorem 8 in Dorninger and Nébauer [3].

Let U be a bounded lattice (with bounds 0 and 1) and U,, U, sub-
lattices of U such that U;nT, = {0,1}, U, U, = U, and #,Nw, =0,
2V, =1, for all #, € U, —{0, 1}, @y € U;—{0, 1}. Then U will be called
the disjoint sum of Uy, U,.

COROLLARY 4. If a lattice V contains an interval U = [b, a] which
is the disjoint sum of two bounded lattices U,, U, with |Uyl, |Uy| = 3, then
Ci(V) & OF,(V).

Proof. If [Uy| = 3, then C, (V) & OF,(V) by Corollary 2, thus we
may assume that |U,| > 4. Let a;, b, e Uy such that b< gy < a, b < by < @
and a, <K b, and let feF;(U) be defined by

Ay

by

if ¢ =0,

otherwise.

fla):

We show that fe0y(U), ie. (2,y)ec@ implies (f(x),f(y)) €@ for any
congruence @ on U. If @,y #b or # =y = b, this is obvious, thus by
the symmetry of @ it suffices to show that (z, ) € @ and x # b implies
(f(@), f(b)) €O, ie. (b, a;)€O. If there is an # # b with (2,5} €0, a
straightforward computation shows that @ = UX U or 6 = (U, —{a})?V
U(U;—{B})2 or @ = (U, —~{b})*U(U,—{a})?, whence (b, a,) € @. Therefore,
J€0y(TU) but f ¢ OF,(U). From this we can conclude our claim by Cor-
ollary 1.
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3

Next we show that in case of distributive lattices the converse of Corollary 2
of Theorem 3 is also true.

TEEOREM 4. Let V be a distributive lattice. Then O, (V) & OF, (V)
if and only if V contains a proper interval which is a Boolean lattice.

Proof. The “if-part” of our assertion follows from Corollary 2 of
Theorem 3. Now suppose that C,(V) & OF,(V). Then by the Corollary of
Theorem 1 there exists an feC,(V) such that f¢ OF, (V). Let a,beV
such that a > b and f(a) } f(b). We define a function g € F,(V) by

g(2) := (f(a)Uf(@)N(f(a)Uf(O), @eV.

Obviously, g € C;(V) and g(a) = f(a) < f(a)Uf(b) = g(b).
Next we consider the function ke F,([b, ¢]) which is defined by

W) 1= (ang(@))Vb, we[b,al.

Since V satisfies the congruence extension property, h e 0,([b, a]). We
claim that h(a) << h(b). Since h(a) < h(b), it suffices to prove that h(a)
= h(b).

Suppose that aug(a) 5= aLg(b);then aUg(a) < aUg(b), and therefore
there exists a prime ideal P of V such that aUg(a) e P and aUg(d) ¢ P.
If @p denotes the congruence on V induced by P, i.e. @p = P2U(V —P),
then (a, b) € Op and hence (aUg(a), aUg(b)} € Op since g € 04(V), a con-
tradiction. Therefore, auUg(a) =auUg(h). Since aug(a) =aug(d)
and ang(a) = ang(b) cannot hold simultaneously, ang(a) #an ¢(b),
whence ang(a)<<ang(b). Setting g¢,(x):=ang(z) and applying
the dual of the preceding arguments to g,(#) and b instead of g(z) and a,
it immediately follows that h(a) 5= h(b). Therefore, h is a function such
that h e Cy([b, a]) but & ¢ OF,([b, a]). From this one can conclude, by
Gritzer [4], that [b, a] containg a proper interval U which is a Boolean
lattice. Clearly, U is also an interval of V.

Theorem 4 in connection with the following Theorem 5 is a gener-
alization of a result of Gritzer [4].

THEOREM 5. LP,(V) = 00,(V) for any distributive lattice V, i.e.
all distributive lattices are locally k-order affine complete.

Proof. Since LP,(V) c 00,(V), it suffices to show that 00, (V)
< LP,(V). So let f € 0C,(V) and %y, ..., %, € V* with n a positive integer.
Choose @,beV such that {x,...,%,}V{f(x),..., (%)} = [b,a] and
define g € F([b, a]) by

9(x) 1= (anf(®)Ub, xe([d,al’.
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Then ¢(x;) =f(x), ¢ =1,...,n, and, since V satisfies the congruence
extension property, g € 0C,([b, al). Hence by Gritzer [4], g € P,([b, a)),

1€ Gy, coey @) = W(@gy oery Uy Ty oeny ) Tor all (g, ..., @) e ([b, aly,
where w is a word in ay,...,a, €[b,a] and ay,...,2,. Let g e F (V)
be defined by ‘

gA(ml’ vy @) = W(Byy ey Uy Byy oeny wlc)a (#1540, @) € Vk;

then § e P, (V) and § (x) = g(z) for all x & ([b, al)*, hence

§ () = g(x) =Flz),
From this we can conclude fe LP, (V).

i=1,..,k.

COoROLLARY 1. A distributive laitice V is locally k-affine complete
if and only if V does not aomam a proper interval which is & Boolean lattice.
(Cf. Gritzer [4].)

Proof. Follows from Theorem 4 and Theorem 5.

COROLLARY 2. A countable distributive lattice V is locally k-affine
complete if and only if it does not contain an interval which is prime or a free
Boolean algebra with couniably many free generators.

Proof. The “only if-part” is clear by Theorem 4.

Suppose that LPy(V) = 0,(V); then by Theorem 5 Cy(V) & OF,(V)
Theorem 4 implies that V must contain a proper interval U which is
a finite or countable Boolean lattice. If U does not contain a prime interval,
then U is a countable Boolean lattice without any atoms. It is well known
(cf. e.g. Gratzer [5], p. 112) that up to isomorphisms there exists exactly
one countable Boolean lattice with no atoms. Since a free Boolean algebra
with countably many free generators also hagnoatoms, Uisa free Boolean
algebra. with countably many free generators

COROLLARY 3. A distributive lattice V is k -affine complete if and only
if it is 1-affine complete.

Proof. T V is k-affine complete, then it is 1-affine complete. (cf. No-
bauer [8]). I, on the other hand, V is 1-affine complete, then P,(V)
»=LP, (V)= 00,(V)= (V). By Dorninger [2](Theorem1), P, (V)= LP, (V)
implies Py (V) = LP,(V), by Theorem 5 LP,(V) = 00,(V); and by the
Oorollary to Theorem 1, 00y (V) = 01(7) unphes 00(V) = 0, (V).
Thus we infer P, (V) = Cy(V).

COROLLARY 4. A chain V is k-affine complete mf and o’n,l'z zf V does
not contain a prime interval. (CE. Gritzer [41].)

Proof. The necessity follows from Theorem 4. If, on the other
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hand, ¥V does not contain a prime interval, then by Dorninger and Nébauer
[3] (Theorem 9) V is 1-affine complete, whence by Corollary 3 V is k-affine
complete.

4

Last we consider (finite) direct products: Let ¥ be the direct product
of two lattiees U and W, then (by Nobauer [8] and Dorninger and Nébauer
[3]) there exists an isomorphism u from Cp(V) onto €, (TU) X C,,(W) which
assigns to a function fe O (V) a pair (g, k) € C,(U) X C,(W) such that

f((‘”l: Y1)y ooy (s ?/k)) = (g(wn vy @)y B (Y1, ey ylc))?

for all (24, ...,2,) € U% (¥, ..., ¥y) € W This isomorphism g is called
decomposition isomorphism. As it is easy to see, f € 0C, (V) if and only if
n(f) € 00, (U) x OC,(W). Therefore, we have

THEOREM 6. Let U and W be lattices and V= U x W. Then the decom-
position isomorphism u induces an isomorphism from 00, (V) onto 00, (U) X
X 00, (W),

COROLLARY 1. V = U XW is locally F-order affine complete if and
only if U and W are, and V is k-order affine complete only if U and W are;
in case that U, W are bounded the comverse of the latter statement is also
true.

COROLLARY 2. Lot V = UxW. Then C(V) < OF,(V)
if C(U) < OFk(U) and C,(W) < OF,(W).

The proofs of Corollary 1 and 2 can be given by similar arguments
ag in Nobauer [8] (proof of Lemma B) or Dorninger and Nobauer [3]
(proot of Corollary 1 of Theorem 2) using Theorem 6, Theorem 6 of Dor-
ninger and Nébauer [3] and Hilfssatz 4 of Dorninger [1].

THEOREM 7. Let U, W be distributive lattices with |Ul, |W|>1, and
V = UXW. Then P,(V) = 0C,(V) if and only if U and W are bounded.

Proof. The “if-part” follows from Grétzer [4] or from Theorem 5
and Dorninger and Nobauer [3] (Theorem 7). Now suppose that
Pu(V) = 0C,(V). T¢ u denotes the decomposition isomorphism from
0, (V) onto 0,(T)x 0, (W), then

u(Py(T X W)} € Pp(U) X Py (W) 00, (T) x 00, (W)
= /“(OGIc(U X W))7
the last equality holding by Theorem 6. From this we can conclude that

u{P(UXW)) = P,(U) X P, (W), whence U and W are bounded (cf. Doz-
ninger and Nobauer [3], Theorem 6).

if and only
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PROJECTABLE KERNEL OF A LATTICE ORDERED GROUP

JAN JAKUBIK

Mathematical Institute of Technical Universily, Kodice, Ozechoslovakia

Let 4 and ¢ be non-empty classes of lattice ordered groups. Consider
the following condition for £ and %:

(a) For each G € ¢ there exists a convex I-subgroup H of & such t]%ah
(i) H belongs to o, and (ii) whenever H, is a convex I-subgroup of & with
H, eA, then H, c H.

If (a) is valid, then we express this fact by saying that (A7, g)-ke'me?s-
do exist. Under the denotations as in (a), the lattice ordered group H is
said to be the (A", ¥)-kernel of G. Let %, be the class of all lattice ordered
groups; the (47, %,)-kernels will be denoted as A -kernels.

The existence of (", %)-kernels were investigated by several authors
(cf. Byrd and Lloyd [3], Cernak [4], Conrad [5], Gavaleovs [6], HQHa,nd {71
Jakubik [8], [10], [11], [12], Kenny [14], Martinez [15], Redfield [16]).
Let us mention the following typical results:

(i) Let o be a variety of lattice ordered groups. Then o -kernels
do exigt. (Cf. Holland [7].)

(ii) Let o', be the class of all archimedean lattice ordered groups.
Then 2;-kernels do exist. (Cf. Redfield [16].)

(iif) Let o, be the class of all complete lattice ordered groups. Then
A y-kernels do exist. (Of. Jakubik [8].)

The following negative result is easy to verify (cf. Example 2 below):

(iv) Let o', be the class of orthogonally complete lattice ordered
groups. Then 4 -kernels do not exist.

In this paper the following result will be established: '

(v) Let A5 and o, be the class of all strongly projectable or project-
able lattice ordered groups, respectively. Then X y-kernels and 2;-kernels
do exist. ]

Let us remark that neither of the classes o, (¢ = 1,2, 3, 4) is & var-
iety.
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