UNIVERSAL ALGEBRA AND APPLICATIONS BANACH CENTER PUBLICATIONS, VOLUME 9 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1982

We show this by an induction on the length of derivations from E^{\prime} in $\mathfrak{A}.$

Suppose: if Bx is derivable from E' in $< \alpha$ steps, then $x \in I^{\infty}$. Suppose: Ba is derivable from E' in α steps. We show $a \in I^{\infty}$.

Let $\mathcal{A}_A = \{x | Ax \text{ occurs before the last line in some (fixed) derivation from } E' \text{ of } Ba\}.$

Let $\mathscr{A}_B = \{x \mid Bx \text{ occurs before the last line in this derivation}\}$. Now, A occurs in the conclusion of only one axiom in E', namely $Bx \to Ax$. It follows that

$$\mathcal{R}_A \subseteq \mathcal{R}_R$$
.

Also, by induction hypothesis, $\mathcal{R}_{\mathcal{B}} \subseteq I^{\infty}$. Hence

$$\mathscr{R}_{\pmb{A}}\subseteq I^{\infty}.$$

Finally, it should be clear that

$$E \vdash_{\langle \mathfrak{A}, \mathscr{R}_A \rangle} Ba$$
.

This says

$$a \in I(\mathcal{R}_A)$$
.

Then by (*), since I is monotone,

$$a \in I(I^{\infty}) = I$$
.

This concludes the proof.

References

- [1] M. Fitting, Elementary formal systems for hyperarithmetical relations, Zeitschrift für Mathematische Logik und der Gründlagen der Mathematik (to appear).
- [2] T. Grillot, Dissecting abstract recursion theory, in: Generalized Recursion Theory (Fenstad & Hinman, editors), North Holland, Amsterdam 1974, pp. 405-420.
- [3] S. Kripke, (abstracts), Transfinite recursion on admissible ordinals I and II, Journal of Symbolic Logic 29 (1964), 161-162.
- [4] Y. Moschovakis, Elementary induction on abstract structures, North Holland, Amsterdam 1974.
- [5] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, N. Y. 1967.
- [6] R. Smullyan, Theory of formal systems, Revised Edition, Princeton University Press, Princeton 1961.

Presented to the Semester Universal Algebra and Applications (February 15 – June 9, 1978)

ON COMPATIBLE AND ORDER-PRESERVING FUNCTIONS ON LATTICES

D. DORNINGER and G. EIGENTHALER

Institute of Algebra and Discrete Mathematics, Technical University, Vienna, Austria

1

Let V be a lattice, k a positive integer and $F_k(V)$ the direct power $V^{(V^k)}$. A function $f \in F_k(V)$ is called *compatible* if for any congruence Θ on V and $(a_i, b_i) \in \Theta$, $i = 1, \ldots, k$, $(f(a_1, \ldots, a_k), f(b_1, \ldots, b_k)) \in \Theta$ holds, and f is called *order-preserving* if $a_i \leq b_i$, $i = 1, \ldots, k$, implies $f(a_1, \ldots, a_k) \leq f(b_1, \ldots, b_k)$. We denote by $C_k(V)$ the set of all k-place compatible functions on V and by $OF_k(V)$ the set of all k-place order-preserving functions on V. As it immediately follows by a result of Wille [12], $OF_k(V) \subseteq C_k(V)$ iff V is simple.

In the present paper we determine all distributive lattices V with $C_k(V) \subseteq OF_k(V)$, and we give necessary conditions for an arbitrary lattice V to satisfy $C_k(V) \subseteq OF_k(V)$. Thereby we obtain necessary conditions for a lattice to be (locally) k-affine complete and (locally) k-order affine complete resp. (for these concepts of completeness cf. Schweigert [9] and Wille [12]). Furthermore, we show that every distributive lattice is locally k-order affine complete (generalizing a result of Grätzer [4]) and that 1-affine completeness implies k-affine completeness in case of a distributive lattice.

Throughout this paper we adopt the following notational conventions: join, meet, inclusion, and proper inclusion in a lattice are denoted by \cup , \cap , \leq , and <, resp.; k always stands for a positive integer and V always denotes a lattice.

2

First we show that it is sufficient to consider the case k=1 in order to answer the question whether $OF_k(V) \subseteq C_k(V)$ and whether $C_k(V) \subseteq OF_k(V)$, resp.

Let \mathscr{R} be a set of binary relations on a lattice V and let $U(\mathscr{R})_{r}(V)$ be the set of all $f \in F_k(V)$ such that for any $R \in \mathcal{R}$ and $(x_i, y_i) \in R$, i = 1,, k, $(f(x_1, \ldots, x_k), f(y_1, \ldots, y_k)) \in R$. (Cf. Lausch and Nöbauer [7].)

D. DORNINGER AND G. EIGENTHALER

THEOREM 1. Let \mathcal{R} , \mathcal{S} be sets of binary relations on a lattice V. Then $U(\mathcal{R})_k(V) \subseteq U(\mathcal{S})_k(V)$ implies that $U(\mathcal{R})_m(V) \subseteq U(\mathcal{S})_m(V)$ for all positive integers $m \leq k$. If in addition every $R \in \mathcal{R}$ is reflexive and every $S \in \mathcal{S}$ is transitive, then $U(\mathcal{R})_1(V) \subseteq U(\mathcal{S})_1(V)$ implies that $U(\mathcal{R})_k(V) \subseteq U(\mathcal{S})_k(V)$ for any $k \geqslant 1$.

Proof. Suppose $U(\mathcal{R})_k(V) \subseteq U(\mathcal{S})_k(V)$, $m \leqslant k$ and $f \in U(\mathcal{R})_m(V)$. If we define $\hat{f} \in F_k(V)$ by

$$\hat{f}(x_1, \ldots, x_k) := f(x_1, \ldots, x_m), \quad (x_1, \ldots, x_k) \in V^k,$$

then clearly $\hat{f} \in U(\mathcal{R})_k(V)$, thus $\hat{f} \in U(\mathcal{S})_k(V)$, whence $f \in U(\mathcal{S})_m(V)$.

Now let every $R \in \mathcal{R}$ be reflexive and every $S \in \mathcal{S}$ be transitive and assume that $U(\mathcal{R})_1(V) \subseteq U(\mathcal{S})_1(V)$. Proceeding by induction on k suppose that $U(\mathcal{R})_n(V) \subseteq U(\mathcal{S})_n(V)$ for all positive integers $n \leq k-1$ $(k \geq 2)$ and let $f \in U(\mathcal{R})_k(V)$. For $a \in V$ define $f^{(a)} \in F_{k-1}(V)$ by

$$f^{(a)}(x_1,\ldots,x_{k-1}):=f(x_1,\ldots,x_{k-1},a), \quad (x_1,\ldots,x_{k-1})\in V^{k-1},$$

and for $(a_1, ..., a_{k-1}) \in V^{k-1}$ define $f_{a_1,...,a_{k-1}} \in F_1(V)$ by

$$f_{a_1,\ldots,a_{k-1}}(x) := f(a_1,\ldots,a_{k-1},x), \quad x \in V.$$

Because of the reflexivity of the $R \in \mathcal{R}$ it follows that $f^{(a)} \in U(\mathcal{R})_{k-1}(V)$ and $f_{a_1,\ldots,a_{k-1}} \in U(\mathcal{R})_1(V)$, hence by induction assumption

$$f^{(a)} \in U(\mathscr{S})_{k-1}(V)$$
 and $f_{a_1,\ldots,a_{k-1}} \in U(\mathscr{S})_1(V)$.

Now let $a_i, b_i, i = 1, ..., k$, be elements of V such that $(a_i, b_i) \in S$, where $S \in \mathcal{S}$. Then

$$\begin{split} \left(f(a_1,\,\ldots,\,a_k),\,f^{(a_k)}(b_1,\,\ldots,\,b_{k-1})\right) \\ &= \left(f^{(a_k)}(a_1,\,\ldots,\,a_{k-1}),\,f^{(a_k)}(b_1,\,\ldots,\,b_{k-1})\right) \in \mathcal{S} \end{split}$$

and

$$\left(f^{(a_k)}(b_1, \ldots, b_{k-1}), f(b_1, \ldots, b_k)\right) = \left(f_{b_1, \ldots, b_{k-1}}(a_k), f_{b_1, \ldots, b_{k-1}}(b_k)\right) \in S.$$

Since the relation S is transitive, this means $(f(a_1, \ldots, a_k), f(b_1, \ldots, b_k)) \in S$. Therefore, f belongs to $U(\mathcal{S})_k(V)$.

Remark. Obviously the lattice structure on V is not needed in the proof of Theorem 1.

Corollary. $OF_{\iota}(V) \subseteq C_{\iota}(V)$ if and only if $OF_{\iota}(V) \subseteq C_{\iota}(V)$ and $C_{k}(V) \subseteq OF_{k}(V)$ if and only if $C_{1}(V) \subseteq OF_{1}(V)$.

THEOREM 2 (cf. Wille [12]). Let V be an arbitrary lattice. Then $OF_k(V)$ $\subseteq C_k(V)$ if and only if V is simple.

Proof. If V is simple, obviously $OF_k(V) \subseteq C_k(V)$. If V is not simple, then $OF_1(V) \not\equiv C_1(V)$ as was shown by Wille [12] (proof of Hilfssatz 4). Hence by the Corollary of Theorem 1, $OF_k(V) \not\equiv C_k(V)$.

Let $P_k(V)$ be the sublattice of $F_k(V)$ generated by the constant functions and the k projections from V^k to V, and $LP_k(V)$ be the set of all $f \in F_k(V)$ such that for any finite subset M of V^k there exists a $g \in P_k(V)$ (depending on M) such that f(x) = g(x) for all $x \in M$. $P_{\nu}(V)$ is called the lattice of k-place polynomial functions on V and $LP_k(V)$ the set of k-place local polynomial functions on V. (Cf Lausch and Nöbauer [6].) Clearly, $LP_k(V)$ gives rise to a sublattice of $F_k(V)$ and $P_k(V) \subseteq LP_k(V) \subseteq OC_k(V)$ $:= C_{\nu}(V) \cap OF_{\nu}(V)$.

V is called (locally) k-order polynomially complete iff $P_k(V) = OF_k(V)$ $(LP_k(V) = OF_k(V))$ (cf. Schweigert [9], Wille [11]); V is called (locally) k-affine complete iff $P_k(V) = C_k(V)$ ($LP_k(V) = C_k(V)$) (cf. Werner [10]), and V is said to be (locally) k-order affine complete iff $P_{\nu}(V) = OC_{\nu}(V)$ $(LP_k(V) = OC_k(V))$ (cf. Wille [12]).

COROLLARY 1. If a lattice V is locally k-order polynomially complete. then V is simple. In case V is distributive the converse is also true. (Cf. Wille [11], [12].

Proof. The first claim is obvious from Theorem 2, the second one follows from the fact that a distributive lattice V is simple iff $|V| \leq 2$.

COROLLARY 2. $C_{\nu}(V) \neq OF_{\nu}(V)$ for any lattice V with |V| > 1.

Proof. Suppose $C_{\nu}(V) = OF_{\nu}(V)$, then V is simple, hence $F_{\nu}(V)$ $= OF_k(V)$ and therefore |V| must be 1.

THEOREM 3. Let V be an arbitrary lattice. Then $C_{\nu}(V) \subseteq OF_{\nu}(V)$ if and only if there exists a sublattice U of V such that $C_1(U) \subseteq OF_1(U)$ and a $\psi \in C_1(V)$ such that $\psi(V) = U$ and $\psi^2 = \psi$.

Proof. According to the Corollary of Theorem 1 the condition of the theorem is obviously necessary. Therefore, assume that there exist a U and a w as supposed in the theorem. Then there is a function $f \in C_1(U)$ such that $f \notin OF_1(U)$. We define a mapping $g \in F_1(V)$ by $g(x) := f(\psi(x))$, $x \in V$. As it is easy to check, $g \in C_1(V)$, but since $\psi(x) = x$ for all $x \in U$, $g \notin OF_1(V)$. By the Corollary of Theorem 1 this implies $C_k(V) \not\equiv OF_k(V)$.

COROLLARY 1. Let V be an arbitrary lattice. If there exists an interval [b,a] of V such that $C_1([b,a]) \not\equiv OF_1([b,a])$, then $C_k(V) \not\equiv OF_k(V)$.

Proof. Take U = [b, a] and define ψ by

$$\psi(x) := (a \cap x) \cup b, \quad x \in V;$$

then the statement follows from Theorem 3.

In the following an interval [b, a] of V with b < a is called a *proper interval*.

COROLLARY 2. Let V be an arbitrary lattice. If V contains a proper interval which is a Boolean lattice, then $C_k(V) \neq OF_k(V)$.

Proof. Let U be a proper interval of V which is a Boolean lattice, then $C_1(U) \notin OF_1(U)$ since for the mapping $f \in F_1(U)$ defined by $f(x) := x^*$, $x \in U$, where x^* denotes the relative complement of x in $U, f \in C_1(U)$, but $f \notin OF_1(U)$, as one can easily see. So the statement of Corollary 2 follows from Corollary 1.

Corollary 3. If a lattice V contains a proper subdirectly irreducible interval, then $C_k(V) \not\equiv OF_k(V)$.

Proof. This is a consequence of Corollary 1 and the remark after Theorem 8 in Dorninger and Nöbauer [3].

Let U be a bounded lattice (with bounds 0 and 1) and U_1 , U_2 sublattices of U such that $U_1 \cap U_2 = \{0,1\}$, $U_1 \cup U_2 = U$, and $x_1 \cap x_2 = 0$, $x_1 \cup x_2 = 1$, for all $x_1 \in U_1 - \{0,1\}$, $x_2 \in U_2 - \{0,1\}$. Then U will be called the disjoint sum of U_1 , U_2 .

COROLLARY 4. If a lattice V contains an interval U = [b, a] which is the disjoint sum of two bounded lattices U_1 , U_2 with $|U_1|$, $|U_2| \ge 3$, then $C_k(V) \not\equiv OF_k(V)$.

Proof. If $|U_1| = 3$, then $C_k(V) \not\equiv OF_k(V)$ by Corollary 2, thus we may assume that $|U_1| \geqslant 4$. Let $a_1, b_1 \in U_1$ such that $b < a_1 < a, b < b_1 < a$ and $a_1 \not\leqslant b_1$, and let $f \in F_1(U)$ be defined by

$$f(x) := egin{cases} a_1, & ext{if } x = b, \\ b_1, & ext{otherwise.} \end{cases}$$

We show that $f \in C_1(U)$, i.e. $(x,y) \in \Theta$ implies $\big(f(x),f(y)\big) \in \Theta$ for any congruence Θ on U. If $x,y \neq b$ or x=y=b, this is obvious, thus by the symmetry of Θ it suffices to show that $(x,b) \in \Theta$ and $x \neq b$ implies $\big(f(x),f(b)\big) \in \Theta$, i.e. $(b_1,a_1) \in \Theta$. If there is an $x \neq b$ with $(x,b) \in \Theta$, a straightforward computation shows that $\Theta = U \times U$ or $\Theta = (U_1 - \{a\})^2 \cup (U_2 - \{b\})^2$ or $\Theta = (U_1 - \{b\})^2 \cup (U_2 - \{a\})^2$, whence $(b_1,a_1) \in \Theta$. Therefore, $f \in C_1(U)$ but $f \notin OF_1(U)$. From this we can conclude our claim by Corollary 1.

3

Next we show that in case of distributive lattices the converse of Corollary 2 of Theorem 3 is also true.

THEOREM 4. Let V be a distributive lattice. Then $C_k(V) \not\equiv OF_k(V)$ if and only if V contains a proper interval which is a Boolean lattice.

Proof. The "if-part" of our assertion follows from Corollary 2 of Theorem 3. Now suppose that $C_k(V) \not\equiv OF_k(V)$. Then by the Corollary of Theorem 1 there exists an $f \in C_1(V)$ such that $f \not\in OF_1(V)$. Let $a, b \in V$ such that a > b and $f(a) \not \geqslant f(b)$. We define a function $g \in F_1(V)$ by

$$g(x) := (f(a) \cup f(x)) \cap (f(a) \cup f(b)), \quad x \in V.$$

Obviously, $g \in C_1(V)$ and $g(a) = f(a) < f(a) \cup f(b) = g(b)$. Next we consider the function $h \in F_1([b, a])$ which is defined by

$$h(x) := (a \cap g(x)) \cup b, \quad x \in [b, a].$$

Since V satisfies the congruence extension property, $h \in C_1([b,a])$. We claim that h(a) < h(b). Since $h(a) \leq h(b)$, it suffices to prove that $h(a) \neq h(b)$.

Suppose that $a \cup g(a) \neq a \cup g(b)$; then $a \cup g(a) < a \cup g(b)$, and therefore there exists a prime ideal P of V such that $a \cup g(a) \in P$ and $a \cup g(b) \notin P$. If Θ_P denotes the congruence on V induced by P, i.e. $\Theta_P = P^2 \cup (V - P)^2$, then $(a,b) \in \Theta_P$ and hence $(a \cup g(a), a \cup g(b)) \in \Theta_P$ since $g \in C_1(V)$, a contradiction. Therefore, $a \cup g(a) = a \cup g(b)$. Since $a \cup g(a) = a \cup g(b)$ and $a \cap g(a) = a \cap g(b)$ cannot hold simultaneously, $a \cap g(a) \neq a \cap g(b)$, whence $a \cap g(a) < a \cap g(b)$. Setting $g_1(x) := a \cap g(x)$ and applying the dual of the preceding arguments to $g_1(x)$ and b instead of g(x) and a, it immediately follows that $h(a) \neq h(b)$. Therefore, h is a function such that $h \in C_1([b,a])$ but $h \notin OF_1([b,a])$. From this one can conclude, by Grätzer [4], that [b,a] contains a proper interval U which is a Boolean lattice. Clearly, U is also an interval of V.

Theorem 4 in connection with the following Theorem 5 is a generalization of a result of Grätzer [4].

Theorem 5. $LP_k(V) = OC_k(V)$ for any distributive lattice V, i.e. all distributive lattices are locally k-order affine complete.

Proof. Since $LP_k(V) \subseteq OC_k(V)$, it suffices to show that $OC_k(V) \subseteq LP_k(V)$. So let $f \in OC_k(V)$ and $\mathfrak{x}_1, \ldots, \mathfrak{x}_n \in V^k$ with n a positive integer. Choose $a, b \in V$ such that $\{\mathfrak{x}_1, \ldots, \mathfrak{x}_n\} \cup \{f(\mathfrak{x}_1), \ldots, f(\mathfrak{x}_n)\} \subseteq [b, a]$ and define $g \in F_k([b, a])$ by

$$g(\mathfrak{x}) := (a \cap f(\mathfrak{x})) \cup b, \quad \mathfrak{x} \in ([b, a])^k.$$

103

Then $g(x_i)=f(x_i), \ i=1,\ldots,n,$ and, since V satisfies the congruence extension property, $g\in OC_k([b,a])$. Hence by Grätzer [4], $g\in P_k([b,a])$, i.e. $g(x_1,\ldots,x_k)=w(a_1,\ldots,a_m,x_1,\ldots,x_k)$ for all $(x_1,\ldots,x_k)\in ([b,a])^k$, where w is a word in $a_1,\ldots,a_m\in [b,a]$ and x_1,\ldots,x_k . Let $\hat{g}\in F_k(V)$ be defined by

$$\hat{g}(x_1,\ldots,x_k) = w(a_1,\ldots,a_m,x_1,\ldots,x_k), \quad (x_1,\ldots,x_k) \in V^k,$$

then $\hat{g} \in P_k(V)$ and $\hat{g}(x) = g(x)$ for all $x \in ([b, a])^k$, hence

$$\hat{g}(\mathbf{x}_i) = g(\mathbf{x}_i) = f(\mathbf{x}_i), \quad i = 1, \dots, k.$$

From this we can conclude $f \in LP_k(V)$.

COROLLARY 1. A distributive lattice V is locally k-affine complete if and only if V does not contain a proper interval which is a Boolean lattice. (Cf. Grätzer [4].)

Proof. Follows from Theorem 4 and Theorem 5.

COROLLARY 2. A countable distributive lattice V is locally k-affine complete if and only if it does not contain an interval which is prime or a free Boolean algebra with countably many free generators.

Proof. The "only if-part" is clear by Theorem 4.

Suppose that $LP_k(V) \neq C_k(V)$; then by Theorem 5 $C_k(V) \not\equiv OF_k(V)$. Theorem 4 implies that V must contain a proper interval U which is a finite or countable Boolean lattice. If U does not contain a prime interval, then U is a countable Boolean lattice without any atoms. It is well known (cf. e.g. Grätzer [5], p. 112) that up to isomorphisms there exists exactly one countable Boolean lattice with no atoms. Since a free Boolean algebra with countably many free generators also has no atoms, U is a free Boolean algebra with countably many free generators.

COROLLARY 3. A distributive lattice V is k-affine complete if and only if it is 1-affine complete.

Proof. If V is k-affine complete, then it is 1-affine complete (cf. Nobauer [8]). If, on the other hand, V is 1-affine complete, then $P_1(V) = LP_1(V) = OC_1(V) = C_1(V)$. By Dorninger [2] (Theorem 1), $P_1(V) = LP_1(V)$ implies $P_k(V) = LP_k(V)$, by Theorem 5 $LP_k(V) = OC_k(V)$, and by the Corollary to Theorem 1, $OC_1(V) = C_1(V)$ implies $OC_k(V) = C_k(V)$. Thus we infer $P_k(V) = C_k(V)$.

COROLLARY 4. A chain V is k-affine complete if and only if V does not contain a prime interval. (Cf. Grätzer [4].)

Proof. The necessity follows from Theorem 4. If, on the other

hand, V does not contain a prime interval, then by Dorninger and Nöbauer [3] (Theorem 9) V is 1-affine complete, whence by Corollary 3 V is k-affine complete.

4

Last we consider (finite) direct products: Let V be the direct product of two lattices U and W, then (by Nöbauer [8] and Dorninger and Nöbauer [3]) there exists an isomorphism μ from $C_k(V)$ onto $C_k(U) \times C_k(W)$ which assigns to a function $f \in C_k(V)$ a pair $(g, h) \in C_k(U) \times C_k(W)$ such that

$$f((x_1, y_1), \ldots, (x_k, y_k)) = (g(x_1, \ldots, x_k), h(y_1, \ldots, y_k)),$$

for all $(x_1,\ldots,x_k)\in U^k$, $(y_1,\ldots,y_k)\in W^k$. This isomorphism μ is called decomposition isomorphism. As it is easy to see, $f\in OC_k(V)$ if and only if $\mu(f)\in OC_k(U)\times OC_k(W)$. Therefore, we have

THEOREM 6. Let U and W be lattices and $V = U \times W$. Then the decomposition isomorphism μ induces an isomorphism from $OC_k(V)$ onto $OC_k(U) \times OC_k(W)$.

COROLLARY 1. $V = U \times W$ is locally k-order affine complete if and only if U and W are, and V is k-order affine complete only if U and W are; in case that U, W are bounded the converse of the latter statement is also true.

COROLLARY 2. Let $V = U \times W$. Then $C_k(V) \subseteq OF_k(V)$ if and only if $C_k(U) \subseteq OF_k(U)$ and $C_k(W) \subseteq OF_k(W)$.

The proofs of Corollary 1 and 2 can be given by similar arguments as in Nöbauer [8] (proof of Lemma 5) or Dorninger and Nöbauer [3] (proof of Corollary 1 of Theorem 2) using Theorem 6, Theorem 6 of Dorninger and Nöbauer [3] and Hilfssatz 4 of Dorninger [1].

THEOREM 7. Let U, W be distributive lattices with |U|, |W| > 1, and $V = U \times W$. Then $P_k(V) = OC_k(V)$ if and only if U and W are bounded.

Proof. The "if-part" follows from Grätzer [4] or from Theorem 5 and Dorninger and Nöbauer [3] (Theorem 7). Now suppose that $P_k(V) = OC_k(V)$. If μ denotes the decomposition isomorphism from $C_k(V)$ onto $C_k(U) \times C_k(W)$, then

$$\begin{split} \mu\big(P_k(U\times W)\big) &\subseteq P_k(U)\times P_k(W) \subseteq \mathit{OC}_k(U)\times \mathit{OC}_k(W) \\ &= \mu\big(\mathit{OC}_k(U\times W)\big), \end{split}$$

the last equality holding by Theorem 6. From this we can conclude that $\mu(P_k(U\times W))=P_k(U)\times P_k(W)$, whence U and W are bounded (cf. Dorninger and Nöbauer [3], Theorem 6).

cm[©]

References

- D. Dorninger, Über die Anzahl von Polynomen und Polynomfunktionen auf endlichen Verbänden, J. Reine Angew. Math. 273 (1975), 199-205.
- [2] -, Local polynomial functions on distributive lattices, An. Acad. brasil. Ciênc., 50 (4) (1978), 433-437.
- [3] D. Dorninger and W. Nöbauer, Local polynomial functions on lattices and universal algebras, Colloq. Math. 42 (1980), 83-93.
- [4] G. Grätzer, Boolean functions on distributive lattices, Acta Math. Acad. Sci. Hung. 15 (1964), 195-201.
- [5] -, Lattice theory, Freeman and Company, San Francisco 1971.
- [6] H. Lausch and W. Nöbauer, Algebra of polynomials, North-Holland, Amsterdam-London 1973.
- [7] -, -, Funktionen auf endlichen Gruppen, Publ. Math. Debrecen 23 (1973), 53-61.
- [8] W. Nöbauer, Über die affin vollständigen, endlich erzeugbaren Moduln, Monatsh. Math. 82 (1976), 187-198.
- [9] D. Schweigert, Über endliche, ordnungspolynomvollständige Verbände, Monatsh. Math. 78 (1974), 68-76.
- [10] H. Werner, Produkte von Kongruenzklassengeometrien universeller Algebren, Math. Z. 121 (1971), 111-140.
- [11] R. Wille, Eine Charakterisierung endlicher, ordnungspolynomvollständiger Verbände, Arch. Math. 28 (1977), 557-560.
- [12] -, Über endliche, ordnungsaffinvollständige Verbände, Math. Z. 155 (1977), 103-107.

Presented to the Semester Universal Algebra and Applications (February 15 – June 9, 1978) UNIVERSAL ALGEBRA AND APPLICATIONS BANACH CENTER PUBLICATIONS, VOLUME 9 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1982

PROJECTABLE KERNEL OF A LATTICE ORDERED GROUP

JÁN JAKUBÍK

Mathematical Institute of Technical University, Košice, Czechoslovakia

Let $\mathscr K$ and $\mathscr G$ be non-empty classes of lattice ordered groups. Consider the following condition for $\mathscr K$ and $\mathscr G$:

- (a) For each $G \in \mathcal{G}$ there exists a convex l-subgroup H of G such that (i) H belongs to \mathcal{K} , and (ii) whenever H_1 is a convex l-subgroup of G with $H_1 \in \mathcal{K}$, then $H_2 \subseteq H$.
- If (a) is valid, then we express this fact by saying that $(\mathscr{K}, \mathscr{G})$ -kernels do exist. Under the denotations as in (a), the lattice ordered group H is said to be the $(\mathscr{K}, \mathscr{G})$ -kernel of G. Let \mathscr{G}_1 be the class of all lattice ordered groups; the $(\mathscr{K}, \mathscr{G}_1)$ -kernels will be denoted as \mathscr{K} -kernels.

The existence of (%, %)-kernels were investigated by several authors (cf. Byrd and Lloyd [3], Černák [4], Conrad [5], Gavalcová [6], Holland [7], Jakubík [8], [10], [11], [12], Kenny [14], Martinez [15], Redfield [16]). Let us mention the following typical results:

- (i) Let $\mathscr X$ be a variety of lattice ordered groups. Then $\mathscr K$ -kernels do exist. (Cf. Holland [7].)
- (ii) Let \mathcal{X}_1 be the class of all archimedean lattice ordered groups. Then \mathcal{X}_1 -kernels do exist. (Cf. Redfield [16].)
- (iii) Let \mathcal{X}_2 be the class of all complete lattice ordered groups. Then \mathcal{X}_2 -kernels do exist. (Cf. Jakubík [8].)

The following negative result is easy to verify (cf. Example 2 below):

(iv) Let \mathcal{K}_0 be the class of orthogonally complete lattice ordered groups. Then \mathcal{K}_0 -kernels do not exist.

In this paper the following result will be established:

(v) Let \mathcal{K}_3 and \mathcal{K}_4 be the class of all strongly projectable or projectable lattice ordered groups, respectively. Then \mathcal{K}_3 -kernels and \mathcal{K}_4 -kernels do exist.

Let us remark that neither of the classes \mathscr{K}_i (i=1,2,3,4) is a variety.