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ISOLATED TREES IN A RANDOM GRAPH

1. Intreduction. Let G, , be a random graph with »n labelled nodes,
where each of the (;) possible edges occurs with the same probability p

(0 < p < 1) independently of all other edges.

The main purpose of this note is to give the exact probability distri-
bution of the number 7, of isolated trees of order k in @, ,, i.e. trees of
order & which are isolated subgraphs of G, ,. Some other properties of
induced trees (not necessarily isolated) in a random graph have been con-
sidered in [7], where bounds on the size of the maximal induced tree in
@G, ,, i.c. such a tree which is not properly contained in any other tree,
are established. For a review of the results on random graphs see [6].

Erdés and Rényi [1] have considered the asymptotic properties
of the random variable 7,, but for a random graph of different kind,
which is defined as follows.

Assume that »n labelled nodes are given. Let us choose at random N
(nl))
N
Ppossible choices of these edges is equiprobable and let us denote such
a random graph by @, y. It is evident that the number of edges in G, y
is known, whereas the number of edges in @, , is a random variable with

edges among the n, = (Z) possible edges, so that each of the (

n,p
expectation (72?’) P.

It is also well known (see, e.g., [9]) that asymptotically, i.e. as » — oo,
in most cases there is no essential difference between @, y and @, , if

we put
)

This follows from the fact that if n is large, then the number of edges
in @, , with such a p does not differ significantly from N. All theorems
about the random variable 7, in [1] are of asymptotic character. We shall
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show that some of these theorems follow immediately from our main
result as well.

Let P, ,(A4) denote the probability that a random graph @, , has
some property A. As usual, for every « and every natural m we set

(@) = @(@—1) ... (@—m+1), (@), =1,

and let [x] denote the greatest integer not greater than .

2. Exact results. The following theorem is valid:

THEOREM 1. If m = [n/k] and =, is the number of isolated trees of

order k (k>1) in &, ,, then
(1) Pn,p(Tk =1) = Z (_1)1( i )Si+j (¢=0,1,...,m),
j=0
where 8, =1,
W | G \” 1
(2) 8, = (r)‘k (7:7) ¢, s§s= 9~kn—(r_2|_ >k2 (r=1,2,...,m),

and 1, is the probability that a set of k labelled nodes spans a tree, given by
(3) tk — kk—2pk—lq(k—l)(k—2)/2.

Proof. Let » and k be fixed. Denote by 4; (1 <j<<m) the event
that the j-th k-element subset of the n-element set of nodes is an isolated
tree of G, ,, and let B; be the event that exactly ¢ events occur among
the events 4,, 4,,..., 4,,. It is clear that

(4) P, (v, = i) = Pr(B)).
Now, if j; # j, # ... # j;, then

Pr(Alej2 Aji) = t;;qs',
where

s = ik(n—ik)+ (;) K = ikn — (Z;Fl) k.

Thus it is easily checked that for ¢+ = 1,2,..., m we obtain

('”’)i' i 8
S’i = Z PI(AJIAJZ ces A]l) = ’l;!(k!k)l tkq ’

where the summation is extended over all ¢-tuples of pairwise node-disjoint
trees of order ¥ which can be formed using n labelled nodes. Now, putting

8, = 1 and taking into account equality (4), we obtain our thesis from the
well-known Jordan’s theorem (see, e.g., [4]).

From the result above we get
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COROLLARY. The first and the second moments of the random variable
T, are given by

(5) E(rk) — (;:) tqu(n—k)

and

(6) E(}) = E(rk)[1_+ (n; k) tqu(n—ﬂc)]’
respectively.

Proof. Formulas (5) and (6) follow from (2) and from the relation
(see, e.g., [3]) my = i!8;, where u;, is the i-th factorial moment of the
random variable .

Remark 1. For &k = 1, i.e. for the number of isolated nodes, for-
mulas (1), (5) and (6) have been obtained by Frank ([2], Chapter 7).

The numerical values of P, ,(7; = 7) appear in Table 1, from which
one can see how the edge probability p influences P, ,(7; = ). It should

be noted that for p < 0.005 for p > 0.1 the values of P, ,(r, = 0) are
near 1 for all £ > 2.

TABLE 1
I i Edge probability p
0.005 0.02 0.05 0.1

2 0 0.27104 0.07231 0.25247 0.79596
1 0.38981 0.20946 0.33636 0.17606
2 0.23836 0.28355 0.23582 0.02473
3 0.08126 0.23506 0.11485 0.00290
4 0.01703 0.13132 0.04319 0.00031
| 0.00228 0.05126 0.01317 0.00003
3 1 0 0.88193 0.46388 0.58050 0.94358
1 0.11294 0.38453 | 0.30853 0.05369
2 0.00503 0.12833 | 0.08977 0.00259
I3 0.00010 0.02138 | 0.01821 0.00013
4 0 0.98371 0.74541 ~ 0.74985 0.97940
1 0.01622 0.23079 | 0.21242 0.02007
R 0.00007 0.02298 0.03402 0.00051
5 0 0.99756 0.87991 0.83577 0.99080
| 1 0.00244 0.11737 0.14857 0.00903

If » is large, the number of terms in (1) increases rapidly, so it may
be convenient to use the following recurrence formula:

ProperTY 1. If m = [n/k], then

m
Pp(n = 0) =1— D 8P, 4 (1 = 0),
=1

Where 8; is given by (2).
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Proof. This follows from the fact that for ¢ = 0,1, ..., m the for-
mula

Pn,p(Tk = 7’) = Sipn—ik,p(rk = 0)

holds, since the probability that in @, , there exist exactly ¢ isolated
trees each of order k can be expressed by the probability that ¢k specified
nodes span a forest and no isolated trees of order k exist among the re-
maining n—<¢k nodes.

Now we derive the lower and upper bounds for P, ,(z, > 1). Using
the inequalities (see, e.g., [4])

9

2s+1

(7 29(—1?(1”)Sﬁj<1nmuk=ir<43<—1ﬁtj”)SHN
i=0 j=0

valid for any integer s > 0, one can obtain

SI_SZ < Pn,])(‘[k 2 1) < Sl'
Thus
ProrERTY 2. We have
n _ 1(n—k —
(8) mﬂn>u>hﬁfwmb_5(k)%wzﬂ
and
n (n—k

(9) P, (1,>1)< (k)‘kq'”‘ o)

where 1, is given by (3).

Remark 2. If P, (C) denotes the probability of connectedness
of G, ,, then the lower bound on 1—P, ,(C) is the probability that at
least one of the nodes 1,2,...,7n is connected to no other node, i.e.
P,,(ty=21)<1-P, (C). So putting k¥ = 1 into (8) we obtain the lower
bound on 1—P, ,(C), which has been first derived by Gilbert [5].

Now we give another lower bound for the probability P, ,(7; > 1),

which follows from the so-called strong second moment inequality (see
Matula [8]):
If £ is a non-negative integer-valued random variable, then
E*(§)

Pr(é>1)> - :
r(é= )>E(§2)

Thus, taking into account formulas (5) and (6), one can obtain
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n (n—k) .
[

1 +(’” —k_ 7") t, qk(n—2k)

PROPERTY 3. We have

(10) Pn,p(rk = 1) =

Y

where t, is given by (3).
It is easily checked that (10) is better than (8) only if

(11) (n ; k) tk qk(n—2k) >1

holds.
Let us show also that Properties 2 and 3 can be used for the investi-
gation of the size y of the largest isolated tree in @, ,. We have evidently

P, (r=>2) = np(U (75 = ZP

k>=z

Thus from (9) we get

n ek
P, ,(y=2)< Z(k)tqu( ky

k>=>z

In order to obtain the lower bound it is sufficient only to notice
that

Pn,p(y 2 Z) > Pn,p(Tz = 1)7

and according to condition (11) one can estimate P, (7, > 1) using either
(8) or (10).

To illustrate the considerations above we have computed the following
values of the lower and upper bounds on P, ,(y >z) for » = 15 and p
= 0.05:

0.8935 < Pi; . 05(7’ =1)<1,
0.6117 < Pygposly > 2) < 1,
0.4111 < Pys0.05(y =2 3) < 1,
0.2285 << Pys 0,05 (¥ = 4) < 0.5496,
0.1300 < Py5,95(y = 5) < 0.3046,
0.0758 < Py; 4.05(y = 6) < 0.1719,
0.0443 < Py5 o o5(y = 7) < 0.0958.

The lower bounds on Py, (y>1) and Py s(y > 2) have been
computed using formula (10). In all other cases we have used Property 2.

7 — Zastos, Mat. 17.2
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3. Asymptotic properties. Now let us turn to the case where the number
of nodes of G, , tends to infinity. If the edge probability p is a constant,
then from Property 2 for any k> 1 it follows that P, ,(z; = 0) —1 as
n — oco. Thus a random graph @, , has, with probability 1, no isolated
trees. The situation changes if the edge probability p depends on =, i.e.
p = p(n), and tends to zero as n — co. As a matter of fact, after Erdos and
Rényi [1] we can formulate theorems describing properties of 7,, but
with respect to a random graph @, ,.

THEOREM 2 (Erdoés and Rényi). If

(12) limpn*®*-D = o (0 < p < ),
then
Me™*
BmP, (7, = i) = —~— (i = 0,1,...),
n—oo 7!
where
k—17.k-2
0"k
THEOREM 3 (Erdos and Rényi). If
1 k—1
(14) np == logn + - loglogn+y+o0(1),
where —oo < y < + oo, then
1 ,—n
. .. ue .
LmP, (7, = i) = o (z =0,1,...),
where
' e~ kv
1 -
(15) B=r

In other words, in both cases the number of isolated trees of order
k contained in @, , has in the limit for # — oo the Poisson distribution
with expectations 4 and u, respectively. Now we give a little different
proofs of Theorems 2 and 3 which follow immediately from Theorem 1.

Proof of Theorem 2. Taking into account
(n)y, = (L+o(1))n* and 1—p = exp(—p+0(p?),

we infer from (2) and (3) that

. . 1 [ kF2
a9 s (5%

;
nFpk-! e"".‘”) (1+ O (iknp?)).
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Further, by assumption (12), we have pn — 0 as n — oo, so finally

i—>00

Where 4 is given by (13). Now, according to inequalities (7), for any fixed
value $ > 0 we have

P ,
T2 (Y G mntTin, =
j=0
J PR Py
< limsupP, , (7, = ) < 7,—2 (—1)"7‘—.
n—>00 . j=0 3

Since s can be chosen arbitrarily large, we infer that the limit
limP, , (7, = 1)
n—oo .

exists and equals

pu o M i,—A
WP, ,(r, = §) = 5 > (<195 =2
n—>oo ’ 2! =

3T T
Thus Theorem 2 is proved.
Proof of Theorem 3. From (14) we get
knp = (1+o0(1))logn,
and, consequently, -

kk-—2

1
x n*p*lexp( — knp) ~ T exp (logn-]— (k—1)loglogn — knp)

1
~ exp(—ky).
Setting this into (16) we have
‘ui

llmS,- = ;!— ’

n—>oo

“.There u is given by (15), and the proof is completed by the use of inequali-
ties (7) exactly as in the proof of Theorem 2.
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Z. PALKA (Poznai)

IZOLOWANE DRZEWA W GRAFIE LOSOWYM

STRESZCZENIE

Oznaczmy przez G, ;,, 0 < p < 1, graf losowy okreslony na zbiorze wierzcholkéw
{1,2,...,n}, w ktéorym kazda z (;”) mozliwyeh krawedzi wystepuje z prawdopodo-

biedstwem p niezaleznie jedna od drugiej. W pracy podano wyniki dotyczace rozkladu
prawdopodobienstwa liczby izolowanych drzew o tym samym wymiarze w Gy p.
Wyznaczono réwniez oszacowanie dolne i gérne dla prawdopodobienstwa, iz wymiar
najwiekszego izolowanego drzewa w grafie losowym jest co najmniej réwny danej
wielkoSci. Podano przyklady ilustrujace omawiane zagadnienia.



