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MATHEMATICAL DESCRIPTION OF ADHESION OF LYMPHOCYTES
FLOWING THROUGH A GLASS BEAD COLUMN

Investigation of phenomena associated with the retention of cells in
model structures simulating certain traits of the microcirculation network
during the cell flow through the channels of this system is important for
two reasons. On one hand, processes playing an important role in the
life cycle of cells circulating in the blood and lymph, particularly as regards
various functions of organs and tissues such as lungs, spleen lymphatic
nodes and others, are involved. On the other hand, model studies may
contribute to a better knowledge of the physical and physico-chemical
Phenomena which are basic for processes of cell adhesion, e.g., passing
of cells through narrow vessels, interaction between cells.

In this paper we attempt to describe the retention of cells (lympho-
cytes) in the glass bead column from the mathematical point of view.
Other aspects of the problem have been discussed in [1], [2], [4], [8].

A cell suspension of constant density and constant velocity flows
through a glass tube which is filled with small glass beads. The diameter
of the glass tube is about 12 mm and the experiments were carried out
with 5 lengths of the column: 1.2, 1.6, 2.0, 2.4, and 2.8 ¢cm. The diameters
of the beads vary from 150 to 300 pm. A single lymphocyte may be con-
sidered as a sphere of diameter of about 8 um. During perfusion some cells
are stopped on the surface of glass beads. We make the following as-
sumptions about this phenomenon:

a. On the surface of the glass beads there are hypothetical active
centres which retain the cells flowing through the bed. The number of
these sites in the column is finite.

b. In the process of retaining the cells on the surface of the beads.
each cell occupies one site which further takes no part in the process.
The maximal number of cells which may be retained in the bead bed
corresponds to the number of sites (active centres) in the column.

¢. During perfusion, the adhesion properties of cells, the properties
of the bead surface and the properties of the medium do not change.
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d. The number of cells retained on the bead bed per time unit depends
thus on the concentration of the inflowing cells, the number of active
centres and on the adhesion properties of the cells.

e. The packing of the beads in the column is homogeneous. Thus
the maximal number of cells stopped on each cross-section of the column
by a plane perpendicular to the axis of the tube is constant.

The mathematical problem is to find a differential equation describing
the velocity of retention of cells in every layer perpendicular to the axis
of the tube.

The most general description of the phenomenon in the layer is
given by the differential equation
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where ¢ = g(x, t) is the suspension concentration in the layer of coordinate
x (i.e. the distance of the layer from the entry of the column is z) at the
moment ¢, A,, denotes the maximal capacity of the layer (it is assumed
that 4,, is independent of x), Adr = A(x,t)dr is the number of cells
captured in the layer at the level  up to the moment £, and the quantity
A (x, t) is the density of captured cells up to the moment ¢ at the level .

The mathematical description presented above should be supplemented
by some quantitative postulates concerning the adhesion process. Some
similarities to physico-chemical aspects of the process are suggested by
the equation

1)
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where a is a constant number, independent of x and ¢, v is the mean linear
velocity of the flow of cellular suspension into the packing and § is the

mean area of the cross-section of the bed. If » is constant and if §(z) is the
area of the cross-section at the level x, then
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where a is the length of the column.
The second equation describing the process is the equation of transport

through the medium:
1 04 og 99
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The foregoing equations are considered in the domain {z > 0,¢ > z/t}
with the boundary conditions ¢(0,?) = g, = const and A(z,z/v) = 0.
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For the column of the length x the experimental results are expres-
sed by

Svg(x, 1)

W(z,t) =1 Sog,

’

which gives the rate of cell retention W at the moment ¢. The function
W(z,t) derived from (1) and (2) with the boundary condition specified
above takes the form

(exp{adx} —1)exp{anz/v}exp{ — ant}

(3) W(x,t) = 1+exp{aAnlx}exp{anw/’v}eXp{—ant} )

On the other hand, we have

c(x)e™"

(3" W(xz,t) = 1—}—c(a7)e"’”
Wwhere c(x) = (exp{ad 28} —1)exp{g,2S} and b = g,v8.

It has been shown that the curves of the form (3) do not fit to the
experimental data [3]. Namely, for every x (column length) there exist
two numbers o« and A4, such that the curve (3) approximates well the
experimental curve, but do not exist universal numbers a and 4,; good
for all considered x. Then, to find a function which describes the empirical
data with good approximation, we generalize the form (3’) so that the
coefficient b changes in dependence on the variable x (bed length). There-
fore, we consider the approximation of experimental curves of the form
0( $) G—b(x)t

(4) W(z,1t) = 1+o(@e "

If the curves represented by (4) approximate the experimental ones,
then the parameter b must essentially depend on .

For every « we found two parameters, b and ¢, such that the mean-
Square error between the experimental curve and that of the form (4)
IS minimal. We used the procedure described by Kreczmar [6] and the
calculations were performed on a GIER computer in the Computer Centre
of the University of Warsaw.

Fig. 1 shows the experimental and theoretical curves. In Figs. 2
and 3 the dependence of parameters b and ¢ on z (theoretical and experi-
lental) is presented. With a good approximation we can assume that

(5) b(w) — 0.31‘6_0‘2“ and c(m) — 3.1(63_1)6—0.28::.

Starting from equations (2) and (4) the differential equation of the
thin layer may be found.
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Fig. 1. Comparison of experimental (circles) and theoretical (continuous lines) curves
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Since 1—W (xz,t) = g(x, t)/g,, We have

Jo
1-++ec(w)e @ "

(6) g =91 =
Hence, computing the partial derivatives dg/ot and dg/ox, and putting
them in (2) we get
04 c(x) e~ @ I"” ¢ ()
a [1+ c¢(x)e "N (@)
Dividing (7) by g(«, t) (i.e. using (6)) we obtain
(8)
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Integrating (7) with respect to ¢ and taking into account

limA (x, 1) = Ay,

t—o0
we get
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Ay —A —g) = —
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Subtracting (9) from (8) and taking into account (6) we get the

differential equation of the thin layer:
0A g b’ () 9o

(10) P b(x)(Ay—A4)+gv b (@) log P

The boundary conditions are the same as for the linear equation (2).
Since we did not use the form (5) of the functions b(x) and ¢(z), equation
(10) is valid for any functions b(x) and ¢(z). In the case where b(z) = const,
equation (10) takes the form (1). The function on the right-hand side
of (10) depends explicitly on .

It can be proved that the right-hand side of equation (10) depends es-
sentially on «, i.e. there exists no equivalent form of (10) such that its
right-hand side does not depend explicitly on z.

THEOREM. The value 04 |0t is not defined only by the variables g and
A, — A, i.e. there exists no function H (g, Ay — A) of two variables such that
oA

5 H(g, Apyy—A4).
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Proof. We assume b(x) and c¢(x) are of the form
b(x) = e and c¢(x) = a(e®—1)e~"*,
where 1, f, a are some constants.
Multiplying equation (9) by g, and using (6) we get
b(2)(Ay—A)+b(x)(go—9)

() g , g\ _b@ . g
=Y (1_ E)_’W’ (””(1_ go) "0 Fw) €y,

Dividing the last equation by b(zx) and taking into account that
b'(z)/b(x) = —p we obtain

1 ' (%) BYo 9o
— A,—A— — - _ ¢ _ FI0 oBz100 20 .
5 [(Aa—A4)—(g9,—9)] b@)o@) U 9)+Bt(go—g)+ —— ¢7log p
Let
1
G(@,1,9) = — (Ay—A).
Then
¢’ () 1 B 9o
G(z,t =————(go— t(go—9)— — (go— = elog =—.
(2,1, 9) b (@)o(@) (9o—9)+Ft(go—9) — — (90— 9) + 9o €™ log .
Formula (6) can be reversed with respect to ¢. Then ¢ = t(x, g) and
(11) glz, t(x,9)) =g for all z and g.
Differentiating equation (11) with respect to # we obtain
og og ot
12 A T AU
12) ox + ot ox
Set

F(x) = G(my t(x, 9), g)-

Differentiating the last equality with respect to # and using (12)
we get

dF 0@ oG @t oG | 9 ag/ax)
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For g close enough to g, the term

logg, —logg
" g—g
is close to 1. We recall that #(x, g) is the time at which the concentration

at the level z is equal to g. Evidently, if g — g,, then ¢ = (2, g) > + o
for any x> 0. Consequently,

dF |dx — +o00 as g —> ¢,
for every z > 0. Therefore,

o dFr
T () >0 for every >0
x

if g is close enough to g,. On the other hand, it is easy to see that

. _dF
Iim— () = —oo.
x—0 T

Therefore, there exists an x, such that

ar 0

Az (%) =
and dF /dr changes its sign at x,. It means that for some values § and
@ there exist at least two solutions (z,t) of equations § = ¢g(z,?) and
F = @(x, t, ). Since the function b(x) is one-to-one, it follows from equa-
tion (10) that the derivative 04 /ét is not defined by the number of free
Places G = v~ !(4,,—A) and the density g. This completes the proof.
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We do not claim that equation (10) is the only one which describes the
real process. Since the curves of the form (4) with the suitable functions
b(x) and c(z) approximate very well the experimental curves (together
with the first derivatives), practically we can consider the solution of
equation (10) as a very good approximation of the real process. Of course,
if we took another good approximation of experimental data, we would
obtain an equation different from (10). Perhaps we would have some
difficulties with finding a so simple final form.

On the right-hand side of (10) there are two terms. For every consid-
ered length x there is a moment such that the contribution of every term
is not less than 1/3 of the whole value of the right-hand side. So no one
term can be omitted.

The Theorem gives us an interesting conclusion concerning the in-
vestigated process. Since the right-hand side of (10) depends explicitly on
&, in the real equation the same phenomenon must occur. It means that
the layers in the column do not act independently, i.e. the adhesion process
is not a direct sum of the processes in each layer. We observe a more
complex picture, namely the action of every layer depends on its place in
the column. This dependence distinguishes the adhesion process of cells
in the glass bead column from the adhesion process occurring in geology
(so-called colmatage process). In the colmatage process the column acts
as a direct sum of layers, i.e. the differential equation describing the
process does not depend explicitly on z ([6], [7]).

The present state of knowledge of adhesion does not allow us to draw
any further conclusions. Perhaps the obtained equations could suggest
some directions of experiments, but this will be the matter of future.

References

[11 L. E. Blumenson, Dynamic adhesion and separation of cells tn vitro, I. Mathe-
matical analysis of experimental system, J. Cell. Physiol. 70 (1967), p. 7-22.

[2] A. 8. G. Curtis, The cell surface, its molecular role in morphogenesis, Logos
Press, London 1967.

{3] J. Doroszewski, J. Jakubas and W. Szlenk, Mathematical model of dynamic
adhesion of lymphocytes on a glass beads column, Bull. Math. Biology 38 (1976),
p. 659-669.

[4] J. Hubert, A. Lenda and A. Zuber, A solution of the dispersion of absorption
equation with linear absorption isotherm, Nucleonica 16 (1971), p. 5-6.

[6] H. Kowaleczyniska,J.Jakubas and J. Doroszewski, Adhesion of rat lympho-
cyles and erythrocytes to glass examined in dynamic conditions, Bull. Acad. Polon.
Sci., Sér. Sci. Biol., 9 (1973), p. 577-584.

[6] A. Kreczmar, Estimation of non-linear parameters in the mean square approx-
imation, Reports of the Warsaw University Computer Centre No. 33, 1972.



Adhesion of lymphocytes 291

{71 A. Trzaska, New kinelics equations of the colmatage process and their applications,
Archiwum Gornictwa 17 (1972), p. 361-384.

[8] L. Weiss, Short term inieractions between cell surfaces, p. 355-405 in: Progress
in Surface Science (ed. G. Davison), Sydney 1972.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WARSAW
00-901 WARSZAWA

Received om 17. 8. 1977,
revised version on 5. 6. 1979

J. DOROSZE WSKI, J. JAKUBAS i W, SZLENK (Warszawa)

MATEMATYCZNY OPIS ADHEZJI LIMFOCYTOW,
PRZEPLYWAJACYCH PRZEZ KOLUMNE KULEK SZKLANYCH

STRESZCZENIE

Celem pracy jest znalezienie réwnania rézniczkowego, opisujacego proces adhezji
limfocytow do szkla w zawiesinie przeplywajacej przez kolumne kulek szklanych.
Punktem wyjécia sg eksperymentalnie znalezione zaleznosci stezenia zawiesiny od
czasu, mierzone po wyj$ciu zawiesiny z kolumny. Znalezione réwnanie pozwala na
wyciagnigecie wniosku, ze proces adhezji w dowolnej warstwie kolumny i w dowolnej
chwili nie jest tylko funkcja stezenia zawiesiny i stanu nasycenia warstwy, lecz zalezy
explicite od polozenia tej warstwy w kolumnie.



