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OPTIMAL CHOICE PROBLEM WITH BACKWARD SOLICITATION

0. Introduction. This paper deals with a generalized choosing problem
which originated as the beauty contest problem, the secretary problem
or the dowry problem. The basic statement of each of these original
Problems is that an investigator is to view a group of N objects sequentially.

Each of the objects has some characteristic. Let x,, z,, ..., #y denote
characteristics of these objects, assuming that the N values are different
S0 that the investigator observes sequentially X,, X,,..., X, where

X,, X,,..., Xy is a permutation of z,,x,,...,zy. We assume that all
Permutations are equally likely.
Let 2, denote the absolute rank of the object with characteristic
&Ly, o i.e. |
2, = card {1l <t < N: o, < @3} -

If the object is viewed, the investigator must either accept or reject
it; and, once rejected, the object cannot be reconsidered. The investigator
can make only one choice, and the payoff function has the value 1 if he
chooses the absolutely first object and 0 otherwise. Thus, his objective
Is to use a stopping policy which maximizes the probability of choosing
the best object. These kind of problems have been discussed by Gilbert
and Mosteller [2] and others referred to in that article. The optimal pro-
cedure for such a problem is to reject the first s* —1 objects, where s* is
the value of s which maximizes

N
s—1 1
N k—1’
k=s

P(s,N) =

and to accept the first relatively best thereafter, i.e. to accept the object
8’y where s’ > s* and s’ is the smallest s for which s > s* and X, < X; for
1=1,2,...,s*—1. It has been shown that s*/N tends to ¢~* as N tends
to infinity, as does the probability of choosing the best object.

In paper [2], the problem of choosing the object with the absolute
Tank 1 or 2 is also investigated. It has been shown that the optimal strat-
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egy for this problem is given by two constants s; and s, in the following
way: the first s; —1 objects are rejected, next the first one which is the
best is chosen, but beginning with the s,-th object the second one best
among the objects examined so far is also chosen. The constants s, and
8, are chosen to maximize the probability of choosing the first or the
second Dbest, i.c.

2(s;—1 "631 1 8. —1)(s, — 8
P(sy,8,; N) = (fN )Zi_1+(1 ) (81 2)+
1=8)

N(N -1)
2(s, —1)(s,—2) [ 1 1
+ N (32—1 N N—1)'

If N > oo, then s,/N — a, where a is the solution of the equation
€' = 3x/2, 5,/N - f = 2/3 and

P(sy,8,; N) — 2aln—§—|—a(a—ﬂ)+2a(1——ﬁ).

Other versions of the secretary problem were considered by Chow et
al. [1], Gusein-Zade [3], and Muceci [5], [6]. Yang [7] has generalized the
classical secretary problem in which the absolutely first object should
be chosen to admit a stochastically successful procurement of previous
interviewees, but each has a certain probability of refusing the offer.
Recently, Karni and Schwartz [4] have dealt with optimal stopping
rules for a sampling process with uncertain recall when the probability
of refusing is exponential. In this paper we deal with the secretary problem
in which the absolutely first or second object should be chosen and it is
possible to solicit previously investigated objects with some probability
of success.

Let

Y;(k) = card{1 <v < k: X; < X}

The random variable Y;(k) will be called the current relative rank
of the j-th examined object at the moment k (j = 1, 2, ..., k). The object
with the relative rank Y;(k) =l is called the I-th candidate as long as
any other object has the current relative rank equal to I.

Let t, denote the relative (to k) position of the current I-th candi-
date, i.e.

te = k—8[Y1(k), Yo(k), ..., Tp(k)],

where 8;[Y,(k), X,(k), ..., X, (k)] = j iff ¥;(k) =1 and we assume that
i, = oo if an unsuccessful attempt has been made to procure the (k—t%)-th
object. Suppose we are in the situation described by the coordinates
(8, t3, t7). If an attempt is made to procure the first (second) candidate, this
attempt will be successtul with probability p(t) (p(£)). We sup-
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Dose that p(0) =1, p(o0) = 0 and p (k) is non-increasing in k. The assump-
tion p(oc0) = 0 implies that an object which has been unavailable remains
unavailable thereafter. In any situation we are able to attempt to procure
the first or the second candidate or to obtain the next object without
Solicitation of the current first or the second one. If at the moment s an
attempt is made to procure the first (second) candidate and she refuses
the offer, then we can immediately try to choose the second (first) one.
The procedure ends if an object is chosen or at the moment N.

1. Basic recursive formulae. Supposc the observations X,, X,, ..., X,
have been made and ¢, = %, 2 = l. So the investigator is in the situation
(s, k,1). We assume that the probability of obtaining the required object
in this situation is: w,(s, k, 1) if the next object without solicitation of
the current candidates is taken, u;(s, k, 1) if the current first candidate is
solicited, w; (s, k, I) if the current second candidate is solicited.

Let

(1) u(s, k, 1) = max{u\s, k, 1), u(s, k,1), ui(s, &, 1)}.

We adopt the following strategy: if w(s,k,l) = w.(s, %k, 1), then
the next object without solicitation is taken; if w(s, k,1) = uj(s, %, 1),
then the ¢-th candidate is solicited, ¢ = 1, 2. (It is obvious that only the
first or second candidate is able to be the absolutely first or second object.)
We can write the following simple recursive formulae for all s, %, I:

2)  w(s, k, 1) = ;%1—[u(s+1,k+1,0)—l—u(s+1,0,k+1)]+

s_
+ STl u(s+1,k+1,14+1),
(3) ull;(sy k,l) = p(k)[g.(s, 1) +9.(s, 1)} + (l—p(k))u(sy oo, 1)
8(2N —s—1)

= p(k) N(N-1) +(1_p(k))u(sa 00, 1),

(4) up (s, %,1) = p(1)gs(s, 2)+ (1 —p (D) u(s, k, o)
—1

- 20) 5 =gy + =2 @)u(e,E, ),

(5) w(N,k,l) =1—(1—p(k)(L—p(1)-

~ Here g,(s,j) is the probability that the current relative j-th object
18 the absolutely a-th one at the moment s:

52)05)

[+

ga(s7j) =

8 — Zastos. Mat. 17.3
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These equations are a consequence cf the assumption that all permu-
tations of the characteristics », (¢ =1,2,...,N) are equally likely.

We can obtain (2) in the following way. If we have the situation
(s, k,1) and the next object is taken for investigation without solicita-
tion of any current candidate, then this object has the current relative
rank Y,.,(s+1). The random variable Y, ,(s+1) has the uniform distri-
bution. If Y. , (s+1) =1, then the new situation is (s+1,0,k+1);
if Y.,.,(s+1) = 2, then the new situation is (s+1, k+1, 0); if ¥,.,(s+1)
# 1, 2, then the new situation is (s +1, k+1, 141). These facts imply (2).

Formulae (3), (4) and (5) are obtained by similar arguments.

If t; = o and ## = oo, we have by induction, using (2) and (5),

4

)y 0, c© j, 00, 0
“ oy oo, o) = olo—1) 31 J'(J'—)l—)’-(;b(—Jz) g

j=8+1

For s = N—1, by (2) we have

1 N-—-2
u(N —1, o0, ) A [w(N, 0, c0)+u(N, oo, 0)]+

u(N, oo, 00)

1
N
Then (6) is proved for s = N —1.

Let us assume that (6) is fulfilled for ¢t = N—-1,N—2,...,8+1.
Then, using (2) and the induction assumption, we have

u(8, oo, 00)

[#(N, 0, c0)+u(N, oo, 0)].

S

1 -1
= STl [u(s+1,0, co)+u(s+1, o0, 0)]+ STl u(s+1, oo, o0)

[u(s+1,0, co)+u(s+1, oo, 0)]+

N
s—1 u(j’O’ 00)—!—%(], °°70)
+gy s 2 iG—1)(—2)

s+1

j=8+2

N
— _ u(j, 0, oo)+u(j, o, 0)
- 1),.;;1 iG-DG-2

The system of equations (1)-(5) can be solved recursively to yield the
best strategy if the set of values p(k) for ¥k =1,2,..., N—1 is given.

Some general remarks about the optimal strategy are made in the next
section.

2. Analysis of recursive formulae. For all proofs we assume N > 3.

THEOREM 1. There exists an s, such that if s <s,, then u(s, oo, 1)
= Uy(8, 0o, 1) for all 1.
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Proof. Write
B(8, 00, 1) = u(s, oo, l)—ulzz(s’ 00, 1).

Then, for finite I,

Uy (s, oo, 1)— up (s, oo, 1) ——_}_:;—B(s—l—l 0o, 1 4+1)+
1 8(s—1)
+ s+1 [u(3+1, 0’ °°)+'u(3+11 oo, 0)]+ m‘ p(l+1)+
-1 8(s—1)
—Tl*(l—P(l—i—l))“(s—l—l, 0, oo)—P(l)w::—g —

_(1_p(l))'“’(37 00, ).
Using (6) we obtain

—1
(7) w8, 0o, ))—ui(s, oo, 1) =%J-r—1-B(s+1, 00, 1+1)+

+s(s—1)[p(1+1)b(s+1)—p 1) b(s)],
where
1 1

b(s) = N 1)  se-1) u(s, oo, 00).

Let
8, = min{3 << s<< N:b(s) > 0}.
Since b(s) is an increasing function in s, b(N)> 0 for ¥ >3 and

?’ (2) < 0, the required s, exists. For s < s, we have b(s) < 0; since b(s) is
Increasing in s and p(l) is non-increasing in I, we get

b(s+1)p(L+1)—b(s)p() > 0

B(s+1, co,14+1) is non-negative, and therefore the right-hand
8ide of (7) is non-negative for all I and s < s,. This conclusion completes
the proof.

LEMMA 1. The inequalities

(8a) w(s, k, ) >u(s, k+1,1), u(s,k,1) > u(s, oo, 1);
(8b) w(s, k, 1) >u(s, b, 1+1), (s, k, 1) > u(s, b, );
(8e) Up(8, Ty 1) = (s, k+1,10),  u(s, k, 1) > up(s, 0o, 1);
(8d) us(8, by 1) > ugls, ky U4+1), (s, k, 1) > uy(s, k, )

hold for s = 1,2,..., N and k,1 =0,1,2,...,s—1.
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Proof. The first inequality is true because the sets of strategies
in these two cases are the same and the first candidate in the situation
(sy k, 1) is more available than in the situation (s, k+1, 1) (by the mono-
tonicity of p(k)). The remaining inequalities hold by the same argument.

THEOREM 2. There exists an s, such that if s < s, then u,(s,k,1)
> up(s, k, ).

Proof. Let us investigate the difference wu(s,k,l)—uy(s, k,1):

u(s, k, l)——u},(s, k,1)

_ 8(2N —s—1)
= (8, k, 1) —u(s, oo,l)—p(k)[ N(N—1) —u(s, °°7l)]'
Write
. $(2N —s—1)
p(s,1) = NN —1) —u(s, oo, 1).

The function ¢ (s, oo) is increasing in s, ¢ (1, o) < 0, and ¢ (N, o) > 0.
Let

8, = min{3<s< N: ¢(s, o©) > 0}.

From (8b) we have ¢(s,1) < ¢(s, ©) <0 for s < s,. Therefore the
required inequality holds if

(9) uy(s, ky 1) —u(s, 0o, 1) > 0.

If u(s, oo,1) = uy(s, o,1), then (9) holds by (8c). If u(s, oo,l)
= uy(s, o0, 1) and s < s,, then

us(s, k, 1) —up(s, oo, 1)
s(s—1)

= ug(8, b, 1) —u(s, oo, w)—p(l)[m

—u(s, w0, )]
and (9) holds by (8¢), (8d) and by the inequality s(s—1)b(s) < ¢(s, 00)-
This completes the proof of Theorem 2.

THEOREM 3. If u(s, %, 1) # u.(s, k, 1) and w(s, k, oo) % us (s, k, o)
then wg(s, k, 1) < uy(s, k, ).

Proof. From (3) and (4) it follows that

$(2N —s—1)
N(N-1)

8(s—1)
Ny —(1—p(1)u(s, k, )

uy(8, by 1) —up(s, k, 1) = p(k)

+ (1 —p(k))u(s, o0, 1) —p(l)
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for all s, %, 1. It u(s, oco,l) = up(s, co,1) and u(s, k, oo) = u,(s, k, oo0),
then from (3) and (4) we obtain

28(N —s)

up(8, %, 1) —up(s, k, 1) = p(k)p(l) -1 = 0.

If u(s, co,1) = u,(s, oo, 1) and u(s, k, o0) = uy(s, k, o), then
00—, b, 1) > p(R)pd) 2 =8 S g
( vy b p p (N-—l) = Y,

because in this ease u(s, oo,l) > ui(s, co, ). This completes the proof.
Theorems 1-3 imply the following

COROLLARY. In the optimal procedure for the considered problem we
should not solicit any object to some moment s; and we should not solicit
the second candidate to some moment s, > 8.

Proof. If s<s,, then s(s—1)b(s) < ¢(s, 0) <0 and by (4) we
have

(10) up(8, ky V) —uy(s, &, 1)

s(s—-1)
N_(J\T——f) —u(s,k, 00)]
= Uy(8, k, 00)—u(s, k, co)—p()s(s—1)b(s) >0,

= wls, b, D—uls, b, o) —p (1)

because from Theorem 2 for s < s, we get u(s,k, oo) = u,(s, k, o).
Consequently, for s < s, we have u(s, k,1) = u(s, k, 1).

Let s, <s<s,. If u(s, %, co) = u,(s, %k, co), then from (10) and
Lemma 1 we obtain

(s, by 1) —ug(s, k, 1) = uy(s, ky 1) —ug(s, &, 00)—p(l)s(s—1)b(s) > 0.

If u(s, k, o©) = up(s, k, co) and (s, k,l) # u,(s, k,1), then from
Theorem 3 we infer that u} (s, k, 1) > uz (s, k, 1) and wu,(8, k, 1) > ui(s, k, 1).
Consequently, for s < s, we have w(s, k, 1) > u;(s, k, l). This completes
the proof of the Corollary.

Write

2N—1) _ 2(N-s+1) B
1) e(s) = 2(3_1 o3 = a—s o WD =

Let s, = min{s: ¢(s+2) >1}
THEOREM 4. Let p(k) > 0 for each finite k. If there exists a v such
that © is the smallest 8 > max (s, 8,) satisfying

(12) p(k+1) < 1—ec(s+1)
p(k) 1—c(s+2)

for all k < oo,
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then solicitation to the first candidate should be made; if she refuses, then
solicitation to the second candidate should be made whenever the game does
not stop before the moment <.

Proof. Since [1—ec¢(s+1)]/[1—c(s+2)] is an increasing funetion
for s > s,, inequality (12) is fulfilled for s > r. We can immediately verify
that for all k¥ < oo and all I the inequality

u(N—1,k,0) <wup(N—1,E%,1)
holds. Write

§(2N —s—-1)
N(N -1)

—1
HL=pWIPO gy +

1 —pE)L—p@®)u(s, o, ).

uy(8, k, 1) is the probability that we obtain the required object if
in the position (s, k,!) we solicit the first candidate; if she refuses, we
solicit the second one. For the proof of Theorem 4 we have to show that
(s, k, 1) < uy(s, k,1) for s > 7. We prove this inequality by backward
induction. For s = N —1, from (13), (2), (10) and (12) we obtain imme-
diately

U(N —1,k, 1) —uy(N—1,k,1)

N—-4
N

(A3)  wuy(s, %,1) = p(k)

L—p®E)1—pO)—

N-2

(1= p(E+D) 1 —p(+D)

N-—-2
<(—-pk) —F—[(1—e¥ +1))p(I+1)—(L—e(N))p (] <O.
Let us assume for induction that
(14) “f(syk;l)gub(sakyl)
for all k¥, and 8 = N—1,N-—2,...,t+1.
From (2) and (13) we have

1
up(ty &y 1) —uy(t, k1) =_t—+_1[u(t+1, 0, k+1)+u(t+1,k+1,0)]+

t@N—t-1)

t—1
+m u(t+1,k+1,1+1)—p(k) NN 1)

—(1—p()2®) “H’) — (1 —p®)(1—p@)ult, o, o).

N(N—1
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By (14) we obtain

24(N —1—1)
u,(t k l)—ub(t k l N -]—m (k+1)_
bt — N(N-—1)
N(N—l) (1— P(k-l-l))(l P l-l-l))[ W u(t+1, oo, oo)]——

HN—1) | =
(M) vy N(N 1 (1—p(®)1—p1)x

X[l N1
t(t—1)

u(t, oo, oo)]

For ¢ > max(s,, $;)

2t(N —t—1)(1—e(t+1)) 2t(N—t)< 2

N(N-1)1—e¢(t+2) N(®HN-1) = N

Indeed, the left-hand side of this inequality is an increasing function
in t and for ¢t = N —1 this function is equal to —2/N. Therefore, by the
monotonicity of p(k), by (11), (12) and the induction assumption that
u(s, k,l) = uwy(s, k,1) we get

Up(ty ky 1) —up (2, Ky 1)

2t(N—t—1)(1—c(t+1))_ _ 2t(N —1)
STt yEap—eury) OO *

N(N-1)
t(t—1)
¥ —1) 1—pE)[L=c@+D)1—p V) —(1—p+1))(1—e(t+2))]

< (12 ) {5 + 7y [E—ot+D) — (L —et+ )]+

t(t— 1)
N —

[(l+1)(1 c(t+2))—p(1) (1—c(t+1))]}
=(1- (k))—m——[p(l+l)(1—c(t+2)) p()(1—e(t+1)).

The induction stops at ¢ = v. Thus Theorem 4 is proved.
THEOREM 5. If

p(l+1)
p(0) ~ N—2

(15) for all 1 < o

and the first candidate has refused the offer, then the optimal strategy is to
atiempt no procurement of the second onme until the N objects are investi-
gated,
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Proof. It suffices to show that wu, (s, co,l) > uj(s, co,1) for all
l< coand s = 3,4, ..., N—1. From (15), (2) and (4) we obtain
y N-2 N—-4
(N —1, oo, l) —up(N —1, oo, 1) = TP(H‘l)———N—P(Z)

Let us assume for backward induction that w.(s, oo, 1) > uj(s, o, 1)
foralll< coand s = N—1,N—2,...,t+1. Equation (2) and the above
assumption give us

uf(t 00, l)— ui(% oo, 1)

t(t—1) : . t(t—1)
‘,;m g ) 05 )+ s o0, 01+ e PN 1)
N
t(t—1) 3 t(t—1) . .
—p(l) ———(1—p( v : y 0, o y 0, 0
PO gy | p()),;:la(a—l)(a—Z) [4(j, 0, o) +u(j, oo, 0)]
N
1 %(j, 0, co)+u(j, °°70)]
= —pMVt(t -1 o —
P00 3, ,2+ iG-1G-2)
t(t—1)
+—-N(N_1) p+N—1).
Write
wy{ty 00, \)—Ug(t, 00,1)
10 = G- DN @—01p®
Then
N
p(l+N—1) u(j, 0, o)+ u(j, oo, 0)
= * 14+ N(N-1
== FFW-Y) Y =

j=t+1
f(t) is a decreasing function in {. We have
pU+N—t-1) pG+X-8
p(l) ?({l)
N(N-1)
t(t—1)(t+1)
By (15) and by the inequality

fE+1)—f(t) =

[4(1+1, 0, o) +u(t+1, o0, O)].

w(t+1,0, co)+u(t+1, oo, 0)> 2(+1)

we obtain

fe+1)—f(t) =

p(l+N—t—1) ( N—4) 2(N-1)
) [ .
() N-—_2 t(t—1)
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Since p (1) is non-increasing, we have

2 2(N —1)
N—2  t(it-—1)

(16) fE4+1)—f(t) < <
Formula (16) implies the following inequalities: f(3)> f(4)>...
.= f(N —1) > 0. Thus Theorem 5 is proved.

3. Example. We deal with the case p(k) = p = const for all & # 0
and k& # oo.

THEOREM 6. Under the above assumption the optimal strategy is to
Droceed to stage s; —1 without solicitation; solicit the first candidate as she
appears among the remaining N —s,—1 objects, but beginning with the
$o-th object, as the second candidate appears, solicit the first candidate; if she
refuses, choose the second one. If the game does not stop before stage N, solicit
the first candidate; if she refuses, solicit the second one. The values of s,
and s, (8, < 8,) are those which maximize

(17)  P(sy, 555 N)
s, —1 85_1121\7 i1 (s,—1) (32—2)2 oN—j—1
TN & j-1 N(N-—1) (G-1)(—2)

331

.
(8:—1)(s:—2) [ 2N —j—1 1_ 1]
TR Z PioG-a TPl

(8:—1)(5:—2) ,
ooy -]

and the probability of oblaining the required object is P(s,, s;; N).
Proof. We have to show that

(18)  wy(s, k,1) > wp(s, k,1) forall k#0,1+#0,3<s<N-—1,
(19) uy(8,0,1) > up(s,0,1) for all 1 iff s <s,,

(20) (8, ky 0) = up(s, k,0) for all k 0 iff s < s,

(21)  wy(s, &, 0) < uy(s, k,0) for all k # oo iff s> s, (5; < 8s),

(22) uy(8, 00, 0) < up(8, 0,0) for s>s,

First we show that
(23) u (8, 00, 1) > uj(s, c0,1) forl #0,3<s<N—1.

For s = N—1 we have

2
u (N -1, oo, l)—uz(N—1, o0,1) = Fp>0.
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We assume for backward induction that w(s, co, 1) > uz(s, oo, 1) for
8§ =N-1,N-2,...,,t+1. From (2) and (4) we obtain

Az
: 0 .
up(t, oo, l)—’ui(t, o0, 1) = t(t—1) Y %(j, 0, oo)+u(j, co, 0)

& JE-1(G—-2)
L t=1) 0= t
Y —1) P—pm — (1 —p)u(t, oo, )

N
- _ u(j, 0, c0)+u(j, oo, 0)
=P ) e G

Inequality (18) is proved for k¥ = oo, 1 % 0, 3 <s < N—1.
Let ¥ 20,1 # 0, s = N—1. We have
uf(-N_17 ka l)_ullz(N_ly k7 l)

2 n N-2
N N

j=t+1

o 2 N—-2
[l—(1—pf]—p—(1— p)[ L ¥=2 ] 0.

N

Let us assume that (18) is valid for s = N—-1,N—-2,...,t+1.
From (2), (3) and (23) we obtain

ety by 1) —up (8, ky 1)

N
u(],O k+j—1) u(jyk‘l‘j_t, 0)]
= -1)
== [Z TR N iy

j=l+1 j=t+1
t(t—1) \ 12N —1-1)
+———N(N_1) A-A-p)l-» TN—1)
N
\ %(j, 0, c0)+u(j, oo, 0) t(t—1)
—(1—p)t(t—1 —p(l—p) ———.
. ),.%1 ii—ng-a 0PI
By (1) we have
u(j, 0, k+j—t) = u(§,0,k+j—1) =pj(j——1) +Q@ —p)u(j, 0, )
’ ) = “p ’ b4 .N(N—l) ? ? ?
. . . . ) (2N —j—1 .
uli, kki—t, 00> 40, k+i—1,0) = p LI ra—piugs, e, 0
and, consequently,
t(t— O 2(N-1) 2N

Up(ty By ) —uy (2, by 1) > m (G—-1)(j—2) t—1

J=t+1
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Write

v(f) = y ,2(N_,1) —2 Nt for 3Kt N-1.
S G-1G—2) -l

The function v(f) is constant and v(¥ —1) = 0 so that »(¢) = 0 for
3<t< N—1. Hence u, (s, k,1) > uy(s, k,1) for all Kk #0, 1 #0, 3<s
< N -1.

Now we show that (19) is fulfilled. From (2), (3) and (18) we obtain

1 . u(j’()’j—s)"'_u(j’j_s;_(ﬁ
uy(s, 0, ) —ul(s, 0,1) = s(s—l)j; SGoDi—5) +
s(s—1) . 8$(2N —s—-1)
TN 1—-@1—p)]l— ¥y-1)
Write
. uf(sy()’l)—ull;(saoyl)
969) =~ N =)
Then
N
u(j,0,j—8)+u(j,j—s,0)
g6 = 1),.; iG-nG-2

TR R e
P s—1

The function g(s) is decreasing for 3 < s < N —1. We have

w(s+1,0,1)+u(s+1,1,0) 2(¥-—1)
(s+1)s(s—1) s(s—1)

g(8)—g(s+1) = N(N 1)

By (1) we obtain
w(s+1,0,1)+u(s+1,1,0)> w(s+1,0,1)+ui(s+1,1,0)
2(s +1) (N —1)
T NWN-1)
whence g(s8)—g(s+1) > 0. Since g(N —1) = —(1—p)® < 0, there exists
an 8, such that (19) is fulfilled.

For the proof of (20) let us observe that if s < 8,, then from (2), (4)
and from the proof of (19) we get

1 %, 0,5 —8)+u(j, =3, 0)
Uy (8, ky 0)—u2(s, k, 0) = s(s—1) 2 D69

s(s—1) s(s—1)
N(N—1) N(N-1)

+[1—@1—-p)] > u,(s, 0, 1) —uy(s,0,1) > 0.
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Now we verify (22). From (2), (4) and (18) we obtain

(j, 0, co)+u(j, oo, 0)

u(s, 00, 0)—wuy(s, 0, 0) = s(s—1) L J(G-1)(3—2)

j=s+1
s(s—1)
~w@—n P
Write
_ uf(37 0070)'—“12;(37 oo, O)
W) = ey N —1)
Then
,0 00 , 00, 0
wio) = ¥y -1y Y 40 T g,

j=s+1
w(s) is a decreasing function in s, w(N) < 0, and w(s;) > 0 by (18)-(21).
Hence there exists an s, such that w,(s, oo, 0) < ui(s, o0, 0) iff s>,
and s,>s,.
Let us investigate the difference

(24)
N
_ u(j,0,k+j—s8)+u(j,k+j—s,0)
uy(s, k&, 0)—ul(s, k, 0) = s(s—l)jgl 0G5 +
s(s— 8(2N —s—1)
N(.N—l) A—-@1-2)1-p N 1) —(1—p)u(s, oo, 0).
If s <s,, then u(s, o, 0) = u,(s, o, 0) and
N
1 _ u(j, 0, k+j—8)—u(j, 0, co)
uy(s, &, 0)— (s, &, 0) = 3(8—1)[j=,2+1 g +
O w(j; k+i—s, 0)—u(j, oo,O)]
+
R h, J(I-1)(—-2)
N
(3,0, o0)+u(j, oo, 0) 28(N""3)]
. . —1 —
+ s ) 2R GNG-9) ¥
N
w(j,0,k+j—8)—u(j, 0, o)
> s(s—1 — .
>t ),-=82+1[ JO-10G-2) *
(J, k+.7""8" 0)+u(j, oo, 0)]
iG—-1)(G—2)

N
s(s—1) 2(N -1) 2(N—s)
P FE-D [Z e
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By (22), for s > s, we have u(s, oo, 0) = u;(s, o0, 0) and, by (24),

N
u(jy 0, k+j—s)+u(j, k+j—s, 0
s,y 0) = wls, y 0) = ss—1) D 0 ;(j—l)(j(—hm —

j=8+1

. 2s(N—s
-1 VTP yyy
Let
uf(sy k7 0)_'“!17(37 k; 0)
s(s—1)/N(N—-1)

h(s) =

For s > s, the function h(s) is decreasing. Indeed,

w(s+1,0, k+1)+u(s+1,k+1,0)  2(N—1)

h(s)—h(s+1) = N(N-1) (s+1)(s—1)s p 8(s—1)
S N—1) (3_|_1 0,%k4+1) +u(8+1 k+1, 0) 2(N—1)
(s+1)(s 1) #e—1)

=g(s)—9g(s+1)=>0
From (24) we have h(s,) > 0. Moreover,

N—4 , N—4
h(N —1) =(1—p)( — N_2)<0 it p< T

Consequently, if p < (N —4)/(N —2), then there exists an s,> s,
(and s, > s,) such that (22) is fulfilled.
The probability P(s,, s,; N) of obtaining the required object for
fixed s, and s, is given by the formula
82—
(25)  P(sy, 805 B) = Y P{T,(j) = LITili) # 1,8 < <GHoa(, D+

ji=8

N
+920i L1+ D) P{T,(G) = LIYi() # 1,8 <i <
j=8

Y,(5) # 2,8, <9 <j}[g.(J, D +9.05, DI+

+ 5 PLY,(j) = 21 T,6) # 1, 6<i<j; Y, #2,8,<i<j}x
J=32
X{plg.(j, 1) +9g:(j, NI+ (1 — —p)9:(j,2)} +
+P{Y;(j) # 1,8 <j<N; Y;(j) # 2,8 <j< N}[1-(1-p)]

89—1

_Z [9:(5, 1) +92(5, 1)1~

j=8;

i
(—1)
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N
O . (8:—1)(s2.—2)
(G, D+9:0, D] ——————
+2, (925 1)+ 920G, D1 =+
N
, , : oy (81—1)(s2—2)
+ 1 71 2 ;1 1-— 2 72 Y .
,-;sg {pl9:(4,1)+9.03, DI+ A —p)g:(3, 2)} G-)G—2) T
(8 —1)(s:—2) 2
+ NN —1) 1-1-p)],
where

G2)3=)

ga(87j) = N
(5}

Formulae (25) and (17) are equivalent.
If lim §,/N = a and lim 8,/N = B, then
N->o00

N->oo

limP (8,,8;; N) = 2aln% +a(a—p)+2a(1—p)(1+p)+

n—o0

1
+2pa/31n—'§ +af[1—(1—p)].
The solution a*, f* of the set of equations

2
7 —2+2pnf—(1—p) =0,

2(1—pp)inf—2lna+2a+2p—2(1+p)f—B(L—p) = 0

maximizes the asymptotic probability of obtaining the required object.
If p = 0, then the solution of the problem is equivalent to the solution
given in [1] and [2] for a similar problem without solicitation.

4. Remark. The method described above may be extended to the
Problem in which one of the g best applicants is required with possibility
of backward solicitation. The calculations in such a problem are more
complicated.

Acknowledgement. The author is grateful to Professor Stanisiaw
Trybula and the referee for their helpful comments.

References

(11 Y. 8. Chow, S. Moriguti, H. Robbins and S. M. Samuels, Optimal selection
based on relative rank (the “Secretary Problem™), Isracl J. Math. 2 (1964), p. 81-90.

[2] J. P. Gilbert and F. Mosteller, Recognizing the maximum of a sequence
J. Amer. Statist. Assoc. 61 (1966), p. 35-73.



(31

[4]
(5]

[6]
(7]

Optimal choice problem 471

S. M. Gusein-Zade (C. M. Tyceiir-3ane), 3adaua ewibopa u onmumaivitoe npasuio
OCMIAHOBKU NOCAEO08AMEALHOCIMU HE3ABUCUMBIX UucnsimaHuil, Teop. BEPOATHOCT. W NPUMEHEH.
11 (1966), p. 534-537.

E. Karni and A. Schwartz, Two theorems on optimal stopping with backward
solicitation, J. Appl. Probability 14 (1977), p. 869-875.

A. G. Mucci, Differential equations and optimal choice problems, Ann. Statist.
1 (1973), p. 104-113.

— On a class of secretary problems, Ann. Probability 1 (1973), p. 417-427.

M. C. K. Yang, Recognizing the maximum of a random sequence based on relative
rank with backward solicitation, J. Appl. Probability 11 (1974), p. 504-512.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCLAW
$0-370 WROCLAW

Received on 12. 7. 1978;
revised version on 5. 10. 1979

K. SZAJO WSKI (Wroclaw)

OPTYMALNE POSZUKIWANIE NAJLEPSZYCH OBIEKTOW
Z MOZLIWOSCIA POWROTU

STRESZCZENIE

W pracy rozpatrzono modyfikacje ,problemu sekretarki”, gdy wybiera sie

Jjeden z dwu najlepszych obiektéw z maksymalnym prawdopodobienstwem i mozliwy
jest powrét do zbadanych obiektéw. Proba wyboru obiektu, ktéory byl wezeéniej
ba.da.ny, moze zakoriczyé sie sukcesem lub porazks. Specjalny przypadek, ze stalym
Prawdopodobienistwem odmowy, zostal rozwazony dokladnie.



