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1. Introduction

We consider a system of the form

Q) afi(ur, ..., u)ul =0,

i=1,..,ni=1,..,s=1,...,m=1,

where the summation is performed over repeated indices. Our consider-
ations may be extended to the general nonhomogeneous quasilinear systems
(see [6], [7], [8]) but in the case of (1) the geometrical features of the
method are more clear. By assumption, m >1, the system (1) may be
overdetermined. It allows one to apply our considerations to quasilinear
systems of higher order, which may be reduced to a system of first order.

Our chief examples in the present lectures are systems describing
inviseid, isentropie, compressible gas flow.

c
o+u’o s+ "y dives =0,

{2}

wl+u'uly koo, =0, 6=1,2,8;8=1,2,3
and

u"ca+~c-divu =0,
3) =k

wuly+kec, =0, 0=1,2,8; s=1,2,3

where » = (', 42, 48) is the flow velocity, ¢ the sound speed, and 0 < %
= consb. The unknown functions U = (¢, w* u? u®) depend in (2) on

[59]
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(t, o1, 22, #*) — the nonsteady flow and in (3) on (w*, 2%, 4%) — the steady
ﬂow".[‘he other example is the system describing the steady two-dimensionat
flow of ideal plastic material:

01 —T{0 10820+ 0,25026) = o (wWuir+ ulugz),

02— T(0,18in26 — 6,2¢0820) = o (wuit +uulz),
) (k2 - ul1)sin20 + (w1 —ule) cos 26 = 0,

il =0,

where g, b = const, 4 = (u!, u?) is the flow velocity; o, 0 are functions
defining the stress tensor. The unknown functions depend on (a*, 2%).
We assume that the solutions of (1) u: @ - Rl are defined in a domuin
G < B"and u e 0*(6). The coefficients of’ have to be continuously differen-
tiable.
We introduce two cones of characteristic vectors:

RS A(W) = {1 = (I, oy A): Tank]af ()& < 1},
B> I(w) ={y = (9, ..., ¥"): rank|af(u)y’|l < n};

A — the characteristic cone of parametrization.
I' — the characteristic cone of the sets of values.
For Aed,y el we write 1 =y iff:

a'dy’ =0, s=1,...,m,

where the summation is performed over repeated indices. The adjointness
A = y means that y is the right null vector of the characteristic vector 4.
We call the system (1) nonelliptic if I', 4 5= 0.
For example, in the case of the system (3) we have:

R o A(U): (u, A [(w, 2)* —e2]A]*] = 0,
where U = (¢, ul, u?, u8), A = (Ay, Aa, Ay), (u, A) = u'l,,
R I'(U) = TYTO)uI*(T),
(u, 7)*—e*p|* = 0,
ky®c+(u,p) =0,
where y = (y% v% 9%, ¥%), ¥ = (%, %, ¥®).

Moreover, for y e I we have

() v(T): IYT): 0 =0,

yai=7.
A gsystem of independent functions

F,u), e=1,...,r<1

icm
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is called a system of independent first integrals of the system (1) for the infinite
class K of solutions iff: .
(w: G >F, 6eEK) = (F(u(@)eg =0).

a=1,.,.,1
Hence, denoting by H;_, the following (I —7)-dimensional manifold:
RoH, . Fu=0, a=1,..r,

we may write: w: G — H,_,. That means, H,_, represents the set of valnes
of the infinite class of solutions considered.

In nonlinear mathematical physies (gas dynamics) one encounters
very interesting and important first integrals of this form. The example
is the classical Bernoulli manifold for the system (3) given by two first
integrals:

2 2 —
R* 5 H,(M): l ful?+ ko = 2, M = const,
% =0.

The corresponding class K (HZ(M)) of solutions of the system (3)

Uz, 22, %) = (¢, u*, u?, »%) consists of functions satisfying:

M— lu]z )ll‘.!

Up =0, 0=( A

and

M—fu®
( Pl

—uiu’) wi=0, 4,j=1,2,

(6)

Uz — w1 =0,

where 67 is the Kronecker symbol.

The system (6) is elliptic if %-1(M —|u|®) > |u|* and hyperbolic if
k1 (M —|u|?) < |u),, and the class ~K(Hg(M)) is infinite. The class
K(HZ(M)) was of great importance in the development of supersonic
gas dynamics becanse it is broad enough to include solutions of interesting
boundary value problems and it allows a quite simple qualitative analysis
(see [17). This is based on the following geometrical method of construction
of the solution U e K (H,(M)).

It may be shown that the tangential space of H, is spanned by two
characteristic vectors y:

TU(HZ(M)) ={;}’(U)7 J’(U)L ZEFI(U)y UeH,(M).

Hence H,(M) contains two families of curves h, h = HZ(.M),E tangent
to the field y(U). 1 ¢
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i
Moreover, there exist two linear independent vectors A(U) e A(TU),
U e Hy(M) such that

i i
(A1) 29, 0) = A(U) = y(U)-
Now, for each (*-mapping V: {#* = 0} — H,(M) we have in {z = 0}
i
two families of curves € whose normal spaces satisfy the following condi-
tion:
i i
N, (C) = [A(V(=))], ,j=1,2,

i i .
where 1 = (44, };). The required method of solution is formulated in the
following theorem:

TrEOREM 1. Bvery solution U e K (H,(M)
the following two steps:
1. We find the - mappmg U {x® = 0} = H (M) such that for ecach

i FE G,

) may be constructed in

curve C < {#® = 0} there ewists a curve h o Hy (M) satisfying:
107: C’ - h ,
2. We extend 107 on R® by putting

U@) = Up), o=s+3,

where ¢ = (0,0,1), —co<s << 4 o0.

The above theorem enables one to construct solutions of boundary
value problems in the class K (HZ(M )) in the way as follows: first we
obtain the set of values of the required solution and then we construct
in a quite simple way the appropriate parametrization.

The importance of this theorem may be illustrated by the fact that
the book [1]is based on Theorem 1 and an analogous one for the system (2)
concerning the Bernoulli manifold H, = {* = u® = 0} c R

There arise the following questions. Do there exist other “Bernoulli
manifolds” for the system (3)? Do there exist general methods allowing
the construction of all. “Bernoulli manifolds” for the system. (1)?

The chief purpose of the present lectures is to give answers to these
questions.

2. The Bernoulli manifolds

Consider the r-dimensional manifolds H, = R’ together with its tangent
space of the form:

T.(H,) = [17’(“)7 EEES)

2’(“)]’

icm
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where y (%) are C*-functions and y( ) e I'(u). Moreove1 assume that for

each pomt % € H, there exist mdependent vectors A (u) € A{w) such that

k3
Alw) v—y(u), i=1,...,7,

and Z (u) are O'-functions. Hente H, containg v families of curves h « H,
tangent to the fields 'y( o).

‘We introduce the followmg notation:

=1 4+1

1 4 r
(A1) = [Aw), ..., A(w)],  [Afil(w) = sy Ay sy A1

Let Z,_,(u) denote the (n—r)-dimensional linear space such that
for w e H,:
R = 2, (u) L[A](w).
There exists an r-dimensional manifold I, < R* such that for €L,
w e H,:(1)
dim[2
T(L) = [?(m’ %),

n—r{%); To(L,
1 0(@, w)]

w)] =1,

where  ¢(x, w) 1[A/1](w)

It M « R™is a linear space, then by M7, p e R*, we shall denote
the plane such that p e M, and T(M?) = I

In order to obtain a general formulation of Theorem 1 for the system
(1) et us observe that each C'-mapping »: L, — H, defines on L, the ¢'-
vector fields a(m v(@ )) #0, el (4 =1,...,7). Hence L, contains 7

families of cmves C < L, (L, plays the role of the manifold {#® = 0}
in Theorem 1). Consider now for some neighbourhood D(L,) = B of L,
the ¢"-mapping
u: D{L,) - H,
constructed in the following two steps:
1. We find a mapping u: L, —H, such that for each curve C c L,

corresponding to o there ex1sts a curve h < H, such that
w: C —h.
0 12

2. We extend the mapping Y to the neighbourhood D (L,) by putting:

s
o

u () for -

(p) veZi_ (u(p).

(1) The existence is understood in the local sense. That is to say, L, may be
small and it may exist only for small enough pieces of H,.
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Our question is, when does the mapping %(x) represent a solution
of (1)? To answer it we infroduce in R™ the following (% —# -+1)-dimen-
sional manifolds:

Corpr = u—l(b) or Cn—r+1 = U DX (%(_p))-
‘ pel
;  We ghall say that the mapping « has the 4-property if the manifolds
'C,_,,; are developable, i.e.
1
N,(C,_ 1) =const for wxeX?_, (z&(p)), f=1,...,7,

‘The following generalization of Theorem 1 is valid.
TarorREM 2. The mapping w: D(L,) — H, is a solution of the system (1)
if w has the A-property.
TrEeOREM 3. If for manifold H, the condition
i
A (u)
Oy (u)
7
s fulfiled for weH,,4 #j,4,§ =1,...,r, then every mapping w: D(L,)
> H, obtained by the procedure described in steps 1,2 has the A-properiy.

We shall call H, a Bernoulls manifold if (7) is fulfiled. The manifolds
H,(M) are obviously Bernoulli manifolds. The class of solutions of 1)
obtained for a Bernoulli manifold H, by proceeding as deseribed in steps
1, 2 will be denoted by K (H,).

Bernoulli manifolds have the so-called conie property, which in some
cases enables one to find a simple parametrization of subsets of H,, thus
leading to the solution.

Let y € B* be a fixed point and D = B" be a region having the prop-
erty that through each point of D there passes only one plane X¥_ (u),
w € H,. Then for the conical mapping

(7

= L ,5" e[1)(u)

Yoo (F) Lu for we ¥ _(u), weH,
Uoon: D - H,,
the following theorem holds.

TEEOREM 4. If there ewists at least one solution we K (H,) such that
the mapping w: D — H, is one-to-one, then Ugen 18 6 SOLULION ANA Ueor, € K (H,).

3. Existence of Bernoulli manifolds

(a) One-dimensional Bernoulli manifolds H,. H,-manifolds are curves
in B tangent to vectors y € I'(u). We have for v e H,

Llu)2y(u) = Au)e A(w), R*> 5, () LA(u).
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The condition (7) is fulfiled, as we have only one A(u). I, = R"
is an arbitrary curve satisfying the condition

Am X, ,(u), T,(I,)] = n.

The construction of the solutions u e K (H,) may be performed in the
following two steps:

1. We take an arbitrary mapping w,: L, — H,.
2. We extend u, to the neighbourhood of I, as follows:

@) Zup) for o e 22, (ulp)).

The assumption of Theorem 4 is fulfiled and iy, € K (H,).
(b) Hy = R for two independent variables (n = 2):

8 T,(H) = [ly(u); 27'(%)], v el'(u),

i

Zn—r(%) = 20 (Pomts)7 L2 = ‘R27 Cn-r+1 = Cl = C.

Hence the problem of existence of H, for n = 2 reduces to the problem
of existence of manifolds satisfying (8). The construction of u e K (H,)
reduces to the step 2, which is equivalent to the solution of a hyperbolic
system of two equations with two dependent and two independent variables.

ExAvMpIE 1. For the system
01— k(0100820 0,25in26) = 0,
0,2 —k(0,18in26 — 0,2c08260) = 0,
9
@) (22 + 1) 8in 26 + (uli — ul2) c0s26 = 0,
'”’;1 +Iu’:2):2 =0,
describing the steady two-dimensional slow flows of ideal plastic material
(see (4)), putting U = (u?, 42, o, 6) we have:
1
(cos B, sinf) = A(T) = y(U, o, a?) = (—altanb, o, a?k, a?)
1
where —oo < g%, a2 < + o0,
2
(—sing, cos8) = A(T) = (T, f', f) = (Fcot6, f', —p%%, £
2
where —oo < 1, f2 < +oo.
The construction of the manifold
Hy: U=U(Yy 12, Us= 4

5 — Banach Center t. X
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leads to the linear hyperbolic system of equations
uh = —uhtanf, op = kb,
wle = uleotl, o2 = —kfz2.

Fach solution may be obtained by Theorem 2. )

Tn the case of fast plastic flows deseribed by (4) there do not exist
H, manifolds for which u(s%, 7% # const, w?(zl, 7%) # const.

BxAMPLE 2. For the system describing the inviscid isentropic compre-
sible, steady plane flow:

w08+ % divy =0,

wuls LT o =0,
where 8 =1,2, s =1,2, the solutions U = (e, ut, u?) .are mappings
U: R® — R*; only the classical Bernoulli manifolds do exist:
R o Hy: [uP+ket =M.
(¢) Hy-manifolds for the system (3). There exist an infinite set of
Bernoulli manifolds H, for the system (3) such that -

w2+ Te? = M,

(10)  H, = Hy(M):

ud =0.

The construction of Hy: U = U(z?, v2) such thab
U eI”(U(t)) (t=1,2)

leads to a hyperbolic system of the form

Uagz =f(U, Ua, Un), .

which gives the existence of manifolds satistying (10). For those Hymani-
folds we have Uy € K(H,).

4. The problem of a nozzle changing one uniform flow
into an other without shocks

In this part we give an application of Theorems 2 and 3 to the solution
of a certain boundary value problem for the system (3).

A mozale is a surface W < R (wall of the nozzle) cutting E® into two
unbounded sets, one of which is of the form

M =N,UNUN,

icm
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where N is a bounded domain and N,, ¥, arve unbounded cylinders. s
We seek such nozzles for which there exist solutions of (3) U(x) =
(e(@), w(w)) e C3(I) satistying the following conditions:

zeW,

(@) = 4 = const,
k3

(,n) =0,

»eN;,

where # is the normal vector to the surface W. (1(M) denotes the class
of ('-functions with weak discontinuities.

This is a global nonlinear problem important in practice. Because
of the nonellipticity of (3), for an arbitrary given nozzle there dobs not
exist, in general, a solution U satisfying the required conditions (shocks).

Using the cone property of the H,-manifolds for the system (3),
we obtain a great class of nozzles and corresponding solutions of our
boundary value problem.
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