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We are interested in the question whether T is a mapping onfo R™
if (18) holds.
A simple consequence of our theorem is

THEOREM A. Let T: R™ — R™ be a polynomial mapping such that for
all @, VT (x) is positively definite. Then T' is o mapping onto R™.

Proof. By Theorem 1 the range of 7' is linear and hence closed. By (18),
it is open and, therefore, all R™
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0. Introduction

The first three sections of this contribution are devoted to the question
of the regularity of solutions of scalar variational inequalities with obstacles,
that is, to problems of the type:

(01) FindueK={peHy(2)] v=v in Q} such that

n

2 (@ (, w, V), Bu—8,0) <O

i=0

for all ve K.

Here £ is a bounded open subset of R", H;(Q) the usual Sobolev
space of functions % which have a generalized gradient in L2(£2) and vanish
on 90 in the generalized sense. The sealar product in L*(Q) is denoted
by (+, *), ie. (w,#) = [wzds; &, denotes the identity map. The inequality
sign v > ¢ in the definition of K is to be understood in the sense of HY,
of. [25] or [37], or in the sense “almost everywhere” (which may be quite
different).

We shall assnme natural growth and ellipticity conditions for the
functions a;, cf. §1 and §2. For a sufficiently smooth obstacle y, say,
for p e H**(Q) (ie. v having bounded second derivatives), the question
of the regularity of solutions of (0.1) has been essentially solved. From the
general regularity theory due to Brézis-Stampacchia [8] one obtains that
w e H*(Q) for all p < oo, and the final step yielding u e H**(Q) was
performed in [15], [16], [21], [9]. It is well known that the further regularity
condition u € 02(Q) is false, in general. Cf. also [2], [24], [26], [27], [37]
for many other results on regularity and historical remarks.
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The results on the regularity of u are not so complete in-the case of
an obstacle y being less regular, say, for ¢ e (%(Q) or e C""(Q); 0 < a
<1, 0< B < 1. Here (“(2) is the space of funetions on £ which satisty
an interior Holder condition with exponent a; and ¢'*# is defined by an
analogous condition imposed on the first derivatives of the functions.
The study of the regularity of solutions u of (0.1) have recently achieved
some importance because of the theory of quasi-variational inequalities,
i.e. variational inequalities where the obstacle depends on the unknown
funetion, cf. [2], [3] for examples. The implicit obstacles in the theory
of quasi-variational inequalities have a priori a less degree of regularity
and thus it is of importance to have regularity theorems for variational
inequalities with obstacles having rather meagre regularity properties.
The most surprising result in this direction seems to be the one announced
in [20]. It states that the solution of an elliptic variational inequality
with a discontinuous monotone obstacle (more generally, a one sided
Holder continunous obstacle) is Holder continuous.

In this paper (§1-§3) we present regularity results for (0.1) with
obstacles in C* or ¢*+° These results will be used for the study of guasi-
variational inequalities, cf. [20], but are also of interest in themselves.
In §1 we prove that the solutions of (0.1) are Holder continuous with
some exponent u € 10, 1[ if p e C* for some a. Different sets of conditions
are considered; note that we treat also the case of the lower order term
ay(w, w, Vu) having quadratic growth in Pu. In §2 we present results
of the type like that y e C* implies % e (?% 0 < a<<1. In § 3 we restrict
attention to the case of the Laplacian and obtain a corresponding con-
clusion for €', 0 < a<< 1.

We do not discuss the obstacle problem for non-linear systems of
variational obstacle, since the question of regularity of solutions is not
solved satisfactorily yet, even in the case of equations, i.e without obstacles.
In the case of two dimensions, C'**regularity results for the solution
of systems of variational inequalities with a non-diagonal principal part
have been first presented in [18]. Furthermore, we do not discuss questions
concerning other types of obstacles, e.g. thin obstacles, boundary obstacles,
or obstacles for Vu.

The last section (§4) is devoted to a discussion of the regularity
properties of solutions of the polyharmonie variational inequality. We
present a simple proof of the boundednesy of the second derivatives of
the biharmonic variational inequality, assuming only that the second
derivatives of the obstacle are bounded from below. Throughout the paper,
we shall use the following notations and conventions:

"[ = integration over Q.

H™? () = Sobolev space.

The elements of H™#(Q) are equivalence classes of real valued functions
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which are defined in 2 up to a set of m-p-capacity zero and have generalized
derivations in L* up to order m (or up to a set of n-dimensional Lebesgue
measure zero). Two functions lie in the same equivalence class if they
coincide in £ except on a set of m-p-capacity zero (or of measure 2€r0,
respectively). If we consider the elements of H™?(0Q) as (classes of) fune-
tions defined up to capacity zero we may understand the inequality
w2y (uweH™(Q) in the sense “everywhere in Q except a set of m-p-
capacity zero”. The space Hi»?(Q) denotes the closure of the test functions
with respect to the H™?-norm. If w e H»*(2), we consider % also as a
function in H™?(R™) which vanishes ‘outside Q.

For open subsets 2,, 2, we write 2, c = £, if the closure 2, of 2,
is contained in 0,.

Bp(z) = ball in R" of radius r with center z.

In the estimates considered in subsequent sections we shall frequently
use the same letters K, K,, K etc. for different constants (a constant
= a number which does not depend on the relevant parameters).

The m-p-capacity (m-p-capE) of a closed set E is defined as

it { [17"pl7ds| g€ C3(@), 9> 1 on B}
and, for an arbitrary set E,‘
m-p-cap B = sup{m-p-capK| K c H, K closed}.

Here @ is a ball containing B; m-p-cap¥ depends also on @ (which is not
relevant).

1. On the continuity of solutions of scalar variational inequalities
with obstacles

In this section we consider scalar variational inequalities of the type

(11) Find veK = {v e H})(Q)| v= v in H*} such that
n
2 (as(o, u, V), du—B) <0

i=0
for all v € K such that u—v e L°(Q).

Here we assume the following conditions concerning the data 2, a;, p:
(1.2)  Q is a bounded open subset of R™.
(L3) wpeC(@).

The funetions a;: 2 xR xR" — R have the following properties:

(L4)  ayw, p,n) is measurable with respect to x e Q and continuous
with respect to {u,n) € R X R™
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(1.8)  There is o constant K = Ky such that for all 3 € 2, ne R", w e R,
<0, '

Iai(“’7“777)]<K17’]H'K7 i=\1,...,n
and

lao(@, u, n)| < Kl7*+ K.

(1.6)  There are constamts ¢ = ¢{0) >0 and K = Ky such that for all
e, neR" ueck, ju <0
n
a; (@, u, 1), = olnl* =K.
i=1
It is well known that the conditions (1.4)-(1.6) gnarantee the local
Holder continuity of bounded weak solutions of the egquation

~Z@ia¢‘(w,u, Vu)+ao(®, u, Vu) =0,

i=1

of. the book of LadyZenskaya-Ural’ceva [23]. As regards the Holder
continuity of % up to the boundary of 2 the following condition is sufficient
in the case of equations:

(L.7) 8 is Lipschitz continuous.

We shall also be concerned with a weaker Wiener-type condition:

(1.8)
< R,,

inf { [17gi2az| ¢ € 07 (Bog(wr), p=1 on CQ—BR(J;O)}> o R 2.

There are positive numbers ¢, and R, such that for oll €02, 0 < R

(Integration runs over the support of ¢; CQ = R"—Q.)

At is can be seen by simple counterexamples, the solution u of (1.1)
need not be bounded in L%, even in the case of an equation. This is due
to the fact that we allow a quadratic growth of aq(z, 4, Vu) in Pau.

Thus we first present a theorem which asserts the boundedness of
the solutions of (1.1) under the additional assumptions (1.9)—~(1.11) given
below. Then we continue the discussion about the continuity of solutions
of (1L.1).

The additional conditions are as follows:

(1.9)  There is a constant K such that for oll we Q, n e R"™, u e R,

s (@y gy M < K|+ Kipl+E, =1,...,n,
and

lao(@, gy M| < K2+ K2+ K.

icm
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(1.10)  There are constants ¢y > 0 and K such that for all z € 2, 5« R",
ueR,
n
Zai(w: By )N = Coln2—Kuf*— K.
i1
(1.11)  There are constamis ¢, < ¢, (cf. (1.10)) and K such that for all

zel,neR", nekR,
(@, py Mp = —ofnl*—Klul—K.
Condition (1.11) is called a “one-sided condition”.

TuEoREM 1.1. Under the assumptions (1.2), (1.3), (1.9)~«(1.11), every
solution u of (1.1) is essentially bounded on .

Remarks. (1) There are many generalizations and variants of (1.9)-
{1.11) which still yield the boundedness of %, for example those involving
Sobolev’s inequnality.

(i) The proof of Theorem 1.1 implies also an a priori-estimate
for « in terms of the data.

(iii) It suffices to assume that ¢ is bounded from above.

Proof of Theorem 1.1. Let % and 6 be numbers such that >0

Ezypon 2, L>0.
Vrite ;
s = max (u(z) —k, O)/(l+ dmax (u(x) —%, 0)).
Then the function v defined by
V=Y — gy
is contained in HI{Q). The zero boundary condition is satisfied since
4 e Hy(Q) and k > 0. Furthermore, »—u € L*(Q), and for ¢ = &(k, 6) > 0
the function { —emax({—%, 0)/ (1 + dmax({—F, 0)) is monotone increasing
in {. Hence we obtain, in view of u >y,

v y—emax(p—k, 0)/(L+ dmax(p—F, 0)),

and, therefore, v € K.
Thus we may insert the above function v into the variational inequal-
ity, obtaining

(1.12) 2(“{(‘; %, Vu), 31‘“1;&)"“("‘0( %y U, ) 0.
iz

We estimate the second summand by using the one-sided condition
(1.11): :

a5 (0, u(@), Vu(@))u(2) > —o| Vu()2— Klu(e):— K.
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‘We multiply the last inequality by the factor
a(®) = ugs (@) fu(@), u(x) #0.
Since %> 0, we have
; 0< a(r) <1
(even for negative u(z)). This yields
ay (1, w (@), V(@) ue(2) = —al V()P — Kigs ()| w (@) — Ky,
where x, is the characteristic function of the set
A, = {®e 2| u@) >k}

We apply this estimate to inequality (1.12). Then the term agu,
disappears and we may pass to the limit é — 0. We obtain

(1.13) 2(a¢(~, w, Vu), aiuk)—clf] Vu|2xktlm<Kfzbk1%|dw—K1A,c|

=1

where u, = max(u—Fk, 0), 14;] = Lebesgue measure of 4.
The first term in (1.13) is estimated via the coerciveness condition
(1.10) and we obtain

(co—cl)fquklzdw< K!Ak[+Kfuk|u[dm+Kf |20 .

(Recall that ¢g—e¢y > 0.)
We rewrite and estimate the term [ uty,do in the following way:

fmxkdw =fu§da@+2kfuxkdw—kzmkl <f%f;dw+k2]Akl+%f wly s

and hence
fuzxkdw < 2fu?cdw+2702|Ak].

The term [ u|ulds is treated in a similar fashion. Thus we conclude thab

[ 17200 < Bt Ayl + E [wido.
According to Sobolev’s inequality,
( f u?c”dm)w <K f | Vo, | 2

wherey = n/(n—2)forn > 2and y > 1, sayy = 2,forn = 2. Consequently
(f ufc’dm)w< K| 4y +E [ uido.

By Holder’s inequality,

f uide < |4z ( f uﬁc”dm)l/”.

icm®
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For k> Eky = ky(llull,) we have

KlAkll"lh’ < %
and we conclude that
(1.14) ([urao)” < KW 4.
Using again Holder’s inequality we obtain

fukdm < |4, ven (fu}";’dm)zm

and in view of (1.14)
(1.15) [wde < KBIA, 0 =1/2-1/(2y) >0, k> k.

Now, a lemma from [23] (Lemma 5.1, Section 2, p. 71), states that
(1.15) implies the boundedness of % from above by a constant depending
on K, ky, o, and ful,.

Since % > y on Q, we infer that u is also bounded from below on 2.
This completes the proof of the theorem.

Proof of Remark (iii) to Theorem 1.1. In the above proof we used only
the fact that there exists a constant &, such that k> y, on 2 and we
saw that the solution u of (1.1) is bounded from above. No further regu-
larity of y is needed. The boundedness of « from below follows, since
every solution u of (1.1) is also a supersolution, i.e.,

n

D (@, 80)+ (a0, 9) >0 for  9eCF(Q), ¢>0.

i=1

‘We now turn to the discussion of the continuily of bounded solutions
of (1.1). Theorem 1.2 below asserts the interior Holder continuity of w,
provided that :

(1.16) e HY?(Q)  for some p > n,

and the Holder continuity of  up to the (regular) boundary of Q if (1.16)
holds and if

(117)  p< —ay <0 in g neighbourhood of 82 with a certain constant a,.
Condition (1.17) may be replaced by:
(X.18)  The set K contains a function
1o € CF (@) NH P (2)
with suitable constants a € 10, 1[, p > n.

‘We consider this result (as well as Theorem 1.1) as a corollary to
the general theory of quasilinear elliptic equations [23], [29], since the

“techniques of proof can be adapted easily. The question whether « remains
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continwous when (1.16) is replaced by the condition v e C(2), is more
difficult, but it has an affirmative answer (¢f. Theorem 1.3 where an
additional regularity condition is assumed).

TrzorEM 1.2. Under the assumptions (1.2)-(1.6) and (1.16) every
solution u € L°(2) of (L.1) is locally Holder continuous in 2 with an exponent
ael0,1[. If, in addition, the assumptions (1.7) and (L.17) or (1.18) hold,
the solution u is Holder continuwous wp to the boundary of 2.

Remark. The proof yields an a priori-estimate for the Holder norm
in terms of the data and |l -

Proof. Let B, = 2 be a ball of radius ¢ and let
M =essmax{(u—y)®@)| zeB}, m= essmin {(u — v) ()| © € B,}.

Sinee u e K, we have m >0, and for 1 e [m, M] the minimum and the
maximum of the two numbers (u—w) (), | satisty:

(1.19) min{(u—y)(@),} =0, max{{v—1y)(@), 3>0 for zeB,.
Let 7 be a Lipschitz continuous function such thatj
suppr = B,, 0<v<1, =1 on B,_,, and | V7| < (00),

where B,_,, is concentrie to B,, 0 < o <1.
For e R define:

[E =max{{—1,0}, [{} =min{{-1,0}.
By (1.19)
v = u—[u—yl =y, vi=u—tu—yl =y
Thus o,, v, € K and we may insert the functions v,, v, into the variational

inequality, obtaining

) (ai('auy Vu), 3¢(Tz[u—w]?))<0»

k3

From this we conclude by a routine analysis, employing the con-
ditions (1.5), (1.6) and u € L™, that

(120) [ \Vu—VyPrde <K [ 1Vitrda+ K [ PrPlE—p—12do+

+EK|4,|+ K flg Py — Vyl2lu—yp —T|v%de,

where A;, = {& € B,| w(®)—y () >1 (or <)} and f 1 denotes integration
over A;.
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The last summand in (1.20) arises from the term
ao( -, 4, V)T u—ylE.
We set 6 = (2K)~* and consider only those numbers I which satisfy
M—-1<8 or m—1>= —34.
Then (1.20) implies

f o VU= Vylrds < K [ | Pvietde+ K [, |Veltlu—p—1dn+ KAy -
Since Vy e L?, p > n, we may estimate
[ | Vpltedn < KA,
Using the properties of v we arrive at the inequality
ey [, | Pu—Vylde < E|4,[' = + K (o0) 2| A |max;, (u—p—1)

7 < E(L+ 0% " Pmax, (u—y— D)2
for le[M—6, M], or | e[m,m+d].

Here max;, denotes the maximum (respectively, the minimum}
over the set A4;,.

Inequality (1.21) is just the statement that the function w—y is
contained in the class

Q(Q, ”'“""W“m: K} 6: 1/11)

a§ defined in the book of La&yienskaya,—Ural’ceva [23], Section 2.6,
p. 81. Therefore, by Theorem 6.1, Section 2.6, p. 90, from [23], the function
% — 1, and hence u, is Holder continuous on interior domains.

The proof of the boundary regularity presents further technical
difficulties and is carried only under an additional natural assumption
(1.22), (1.23) below, concerning the principal part of the differential
operator. Condition (1.22) allows us to treat the case of an obstacle 2
which is merely continuous. This is done in Theorem 1.3 below.

In subsequent considerations we need additional differentiability
and ellipticity conditions:

(1.22)  The partial derivatives

(@ gy 1) = (0]0me) @ (2, gy 1)
ewist for e Q, peR, neR" i,k =1,..., % and are continuous n (@, n)
€ R xR", and measurable in » < Q.

n

(1.23) > ag o, 1y ) &b > ol

fE=1
for all we R, peR, neR, &= (&, -..., &) e R", with a certain constant
o> 0.
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TrEoREM 1.3. Under the assumptions (1.2)~(1.6), (1..2.2), (1.23) every
solution uw € L®(R2) of (L.1) is continuous in Q. If, in addition, the assump-
tions (1.8) and (1.18) are fulfilled, then w e 0(Q).

Note that we assume no more regularity of the obstacle » than the
mere continuity.

Tor the proof of Theorem 1.3 we need

Lenia 1.1, Under the assumptions (1.2)—(1.6), (1.22), (1.23) every
solution w e L®(Q) satisfies the inequalities

[I7u@) o —aP e < K, n>3,
(1.24)
f\V%(m)|21lnlw—z][dm<K, n =2,

uniformly for all z€ Qy < = Q with K = X (£,) denoting o constant depending
only on the data. If (1.8) and (1.18) are fulfilled, then (1.24) <s satisfied for
ze .

Remark. The assumption € €(2) in Lemma 1.1 can be replaced
by the assumption that v is bounded from above.

1
Proof of Lemma 1.1. Let ay,(@) = [ ay (@, u(@), tVu(@))dt for ze
0
and a,(#) = 6, for e R"—Q, oy =1 for 4 =5k, 0y =0 for ¢ ;é T
i, b=1,...,m Let @ > > 2 be a fixed ball. We define the regularized
Green function G, = G5, 2 € £, by the conditions: G, e Hy(Q) and

K

N (aalup, 08)g = 1B\ [ 9ds, 9 eCT(Q).

1,k=1

Here the parentheses (-, -), denote the scalar product in L*(@); the symbol
[, denotes integration over B, (2). The assumptions (1.22), (1.23) guamn?:ee
that such a function @, exists and we shall make use of the following
properties of G, = G5:

GQELOQ(Q)7 G(:>0’
(1.25) V@, - V& weakly in I°(Q), 1<s<nf(n —1) (g = 0),
(1.26) G, —~ G strongly in I'(Q), 1<r<n/(n—2) (0—0).

Here G = @7 is the continuous Green function defined by G e Hy*(Q),
1< s< n/(n—1), and

D) (w309, 08 = 9(2), 9 0F(Q),

4y k=1

iom®
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((v, w)g = [quwda). The function G satisfies the inequalities

(1.27) de—2 "< @) < Elp—2", >3,

(1.28) o|lnjz—z2|| <G (s) < K |lmjz—2||, = =2,

for all  in a neighbourhood of 2, with some constants K, ¢ > 0. For the
proofs cf. [38].

We first treat the local part of Lemma 1.1.

Let 7 be a nonnegative Lipschitz continuous function with support
in O, assume 7 = 1 in a neighbourhood of 2z an let % be an upper bound
of . Let ¢ > 1 be a number; it will be specified later on. We observe that
for small & = &(|lul,, %, 0, g, ete.) > 0 the function f defined by

F(Q) = [—e®Q[L k], [ = |E[7'E,
is monotone increasing in {. Hence f(u(z)) = f(y(#)) > p(») and
Uy 1= u—er?G, [u— kP e K.
We insert this function #, into the variational inequality (1.1) and cancel
the factor &> 0, obtaining

n

(1.29) Z(ai(-, %y V), 0(v*G, [u—K1D) + (ao(*5 %, Vu), 226, [u—Fk]Y) <0.
1=1
‘We now use the identity

n
oy u, Vi) = 2 @00+ ;- u, 0),
i=1

nsert this into (1.29) and estimate the lower order terms via the growth
conditions (1.5). This yields
130) ) (aqdyu, 8,(v26,[u—kI)
i k=1
<K, [ 1Vu] u—k @ atdo+ K [ | Vultlu— G sde+ K,

The constants K and K, are uniform for z2¢€ 2, ¢ —0.

In order to obtain (1.30) we used the fact that (1.25), (1.26) imply a
uniform bound for [&,dx, [|VG,|ds, and that u e L™, a,(-, u, 0) € L™ ete.

From the ellipticity condition (1.23) and Young’s inequality (2ab
< ea*+&-10%) we conclude

3

@131) D (audy, 8(°6, [u—F]0)

4, k=1

> (g— oo [ 1Vultlu— k|06 do+

+(g+1) 2 (04405 (10— Bl2H17%),, 0,G,) — K.

iyk=1

7 — Banach Center t. X
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By the definition of &, the second summand on the right hand side of
(1.81) is non-negative and can be dropped. This yields

(132)  (¢—1) [ IVultlu— ke Grde
<K, [1Vu] ju—b176, w0+ K [ |Vultlu— k%620 + K, .

(We passed from ¢ 'K, to K, ete.). We apply Young's inequality to the
firgt term on the right hand side of (1.32) and obtain

(1.33)  (g— ) [1Vultlu—kP"Gr2do < E [ 172l — TG 2d0 4 K,

uniforinly for ¢ - 0, 2 € 2. The constant K does not depend on ¢. We now
choose the number ¢ so as to have

¢—% > Klu—Flo+1
and we conclude

(1.34) f | Ve — 0@, dn < K.
Passing to the limit ¢ — 0 we obtain
{1.35) f | Vul2u— k| Gerdn < B

uniformly for ze Q.
Inequality (1.34) implies that

(1.36) IF 1'171612612124@; <K, 10 (00
where [, denotes integration over the set
{weQ||u—Tk{(z)>1}.

‘We look once more at (1.33) and now we choose ¢ = 1. This yields

[ 17up6rdn < K [ 1Vupiu — k|G rtdo+ K

<KL [ |Vup@rdo+ K [, | Vulp6r2do + K
and in view of (1.36)
[ 1Vup6edn < K1 [ | PupGada+E, (o —0).
Taking I = $K~! we obtain the uniform bound
f | Vul?@,v2de < K

and the local result (1.24) follows by passing to the limit ¢ — 0 and by
(1.27), (1.28). .
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The estimate (1.24) up to the boundary follows easily if we consider
the test function

U = u—e,[u—u,l?, ¢g>1,

which belongs to K for small ¢ > 0. Note that w—u, = 0 outside of Q.
One has to proceed as before, replacing the termy [w—%] by the term
[4— %,]. Since u, is not necessarily a constant function, there oceur certain
error terms of the type K [[Vu,| | VG,|dw, K [|Vu,|?G,dv in our calculations
and estimates. However, these terms are bounded uniformly because of
(1.25) and (1.26) and our assumption Fu,eLP,p >n. The lemma is
proved.

Proof of Theorem 1.3. We first prove the interior continuity. Let
be a Lipschitz continuous funetion such that

suppr = Bop(?) = 2, 0<7<1, [F7[< R, v =1 on Bg(z).
Let &, be the function defined in the proof of Lemma, 1.1,andlet g € Hi (2)N
NL2(Q), g > 0, be afunction, to be defined later on. Sinee u > yp (in H(Q),
or “a.e.”), we conclude that for small ¢ = (g, g) > 0
(L37)  w(@)—er?(@) g (@) G, () (u(2) — u(y) —p(w) +9(9) > (@)
for all , y € 2 except a set of capacity zero (or of measure zero if the in-
equality % > v is understood in the sense “almost everywhere?).

Let @p and §p be the average of % and i taken over the set B,z (2) —
—Bg(2). From (1.37) we obtain, by averaging over B,z(¢) —Bg(2) with
respect to y,

(1.38) w— eTGy (u— g —p+ §p) > p.
Since p is continuous on O, we have

lp—grl <8 on  Byp(r), Bk,
where 6 does nct depend on ze 2. From this and (1.38) we conclude
that
(1.39) U—erg@, (b —lip—0) >y, R<R,.
‘We now set g = |u—ip— 5|7, where ¢>1 is an exponent which will
be specified later on. From (1.39) and the fact that suppr = £2 we obtain
that )

v:=1y—er?d,[u—iip— 8 c K

where [-]? is defined as in the proof of Lemma 1.1.

‘We insert the funetion v into the variational inequality (1.1) and obtain,
after cancelling &> 0,

n

(1.40) Das(-, u, V), 8(226, [u—iip— 619) < 0.

=0
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We split the principal part of the differential operator as in the proof
of Lemma 1.1. This yields

14 D (ande 8,(v2@, [u — iy — 619)

%, k=1

<Zﬁl(a’¢(‘7 Uy 0), O4(v*6 [ —fip— 619) + (a0 (-, %, Vu), 726, [u — G — OT7).
a

The first summand on the right hand side of (1.41) can be estimated
by KR, 0 < f <1, since a;(-,u,0) L™, uel% |Vi|<E™ and 6.1,
< K,, 1<s < nf(n—1), uniformly as ¢ - 0. The second summand can
be estimated via the growth condition (1.5). The left hand side of (1.41)
is estimated from below using the ellipticity eondition (1.23). Thus we
arrive at the inequality

(142)  goo [ | Vullu—fip— 0“7 s%G do +

HgHD D) (agdilu— g O, 8,(s6,)

%, k=1
< ERP+ K [ Vo2t — g — 81%5°G, do.
‘We use the identity

n
3 (0l —ip— 31%), 06) = |Bl 2 [, lu—iip— 81+ do

4, k=1

where [, denotes integration over the ball B,(2) = Br(#). With this, we
estimate the second summand in (1.42) from below by

(q+1) B [ I —ilig— 87" d — K [ 17ul ju— i — 819 VoG dec —
' —E [lu—itg— 0 | V1] | VG, do.
Thus we obtain (employing also Young’s inequality)

(1.43)
(q—D 0o [ | Pultlu— i — 010G @+ (¢-+1) 2 B,| =2 [ lu— i — 8" do

<ER+E [ |Vultlu—iig—8|%Gdo-+
FE [ lu— il 81V [ VG| 7el1G,) da,
0->0,2e 2,0 < R Ry, Byp(2) = L.

By the properties of = and @, it is known ([22], [38]) that A LCARY
+|Pz*@,)do is bounded uniformly.
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Since w € L, @, < KG + K (cf. [38]), the terms [ | Fu|*@, are uniformly
bounded for ¢ — 0,z € 2. Therefore we deduce from (1.43) that

(1.44) (q—i)c,,f]Vu[Z[u——'ﬁle‘“lﬁGedm+(q+1)—1]139|-1f2 0 — i | T+ o
S K+ K [ |Vulplu—fig| %6 do+ K [ =gl (1 72| | PG|+ V1126, dw,

R< R;.

‘We apply the same trick as in the proof of Lemma 1.1. We first choose g
large enough to have (g—%¢,) > 2K, and obtain the bound

[ 17l — g2 26, dw < Ko+ K [ [u—figl2(| Vel| PG,y +| Pr]2G,) do.
This implies
[, 17ule2G, a0 < Ko+ K [ [u—agl2(| V1] | VG, | +| V2°6,) dw

where [; denotes integration over the set 4, = {& € B,g(s)| |u—dgl(w) >1}.
‘We then use (1.44) again, with ¢ =1 and I = }¢,/K. This results in the
inequality

(148) [ |Vul*Gde+|B,| [ ju—iglde
S K8+K [ lu—gl (V7] | PG|+ Vr]*6,) do.

Note that we splitted the integral K f | V|2 [u— G g | 726G g into two inbegrals,
the one over .4;, the other one over 2— 4;, and we proceeded estimating
as in the proof of Lemma 1.1.

Passing to the limit ¢ — 0 we conclude from (1.45) that

(146) [ |Pule2Gde + |u(2) — figl®
< KS+K [ lu—iigl?(|Ve] | VG| +|Vr]*6) do.

By (1.27) we have |Vz]*¢ < KR, Vv =0 on Bg(2). (We do not treat
the case n = 2 separately, since it can be reduced to the case n = 3 via
a dummy variable.) Furthermore, by a simple trick one can derive the
estimate

(L47T) f |4 — G2 V7] | PG| de < ER™™ f 1 — i 5]2% (Big(2) — By (2)) dw +
\
+ XK [ |PupGy(Bun(#) —Bgp (#) do

where y(M) is the characteristic function of a set M. (1.47) follows from
the inequality

[ lw—aigl2 77| | VG
< [ lu— g2V |p2 B "o+ [ ju—ugl?| VG2R""*y(B,z— Bg) dar.
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The second summand of the last inequality is estimated by the right
hand side of (1.47). This estimate follows from the identity

0
Z (“ikak(\'“—'ﬁR‘zG%z)y 9,6) =0,
1, k=1
where ¥ =1 on B,p(2) —Bg(2), 7
Vi < KR™.
Employing ellipticity and Young’s inequality we obtain (1.47).
Thus we arrive at the inequality

(1.48)

=0 on Bpy(z) and R"—B,x(?), and

(149) [ [VulPGodo+|u (o) — gl

<Ko+ KR [ ju—igldo+ K [ | Vul*Gdo

for Lehesgue points z € 2, By (2) « @, B < E,. Here J,, denotes integration
over B,z (2)— Bg;(2)-
By Poincaré’s inequality

f* [ —dig )20 < KR2f* |V |2dw
and we can simplify (1.49) to

(1.50) [ VuPG o +u(@) =i S KO+ K [ |Vuls6do

where [, denotes integration over Bp(2).

TUsing the “hole-filling-trick” [39] we conclude hom (1.50) that

e | VulGdn < 8+ 0, |VulrGds, 6 =K/(E+1)<1.

On replacing B by 2R this becomes

(1.51) [pIVulGan< 646 o V012G .

From (1.51) we obtain by iteration

[ VulPGdn < Ky +(R[Ro)* | z, | VUGd0,  R<Ro <R,

with « certaﬁl constant a = a(f) e 10, 1[. Choosing R small enough, we

hence conclude

(152) [, |PuGdo< Ks, R<R;, Bgy?) < 2, uniformly for ze L.

Applying this to (1.50) we obtain

(1.53) lu(e)—iiglt< K8, R<R,, By (e)c 2

g
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for Lebesgue points # € 2 and
(1.54) —u(2)] < Ko + |iig(y) — Uig(9)],
R < Ry,

fu(y)
BR@ () UB (z 2,

where uy(y) denotes the mean value of # over the set Byp(y)— Bg(¥)-

If |y —3| < R, we can estimate
g (y) — ip(3))* KB [ |PuPde < K [ | VulGde < K6
and we conclude from (1.54), for a given § > 0, that
lu(y) —u(e)] < 2K,8", R<R,, Bg{y)UBp(s) = 2

for Lebesgue points 4, 2 € 2. This proves the statement about the interior
continuity of «. The continuity of % up to the boundary follows from
Lemma 1.2 below. We are stating it in a separate lemma, because we
need this fact also in further sections.

LeMMA 1.2. Under the assumptions (1.2), (1.4)—(1.6), (1.8) and (1.18)
every solution u e L™ () s continuous at the points of 08.

Note that we do not assume any regularity of the obstacle besideg
the existence of the function u, in condition (1.18). If p<< —gy< 0 in
a neighbourhood of 82 and yp is bounded from above, then such a function
a, exists and Lemma 1.2 implies that the solution « of (1.1) does not touch
the obstacle vy in a neighbourhood of 6. This neighbourhood can be chosen
uniformly for all obstacles p with & common upper bound and a common
neighbourhood U(4L2) where p << —a,.

Proof of Lemma 1.2. Let &,, 7, and [£]] be defined as in the foregoing
proof. Then, for small ¢ > 0, the function

v =u—s?Gu—-ulekK, q>1,

is an admissible variation. We insert this function ¢ into the variational
inequality and we obtain, just as in the proof of the interior continuity
and the boundedness of [|Fu|*Gdz, that

[ | Vul2Gm -+ (2) — 1, (2)]
<KR‘*+KL | Vza[gG‘tlm—;—KR“"f* (26— o) 2.

The symbol [, denotes integration over Byy(2)— Bg(2).

The difference in the proofs consists in the fact that u, is not necess-
arily constant and the error terms of the type [| Vuo| | V& |v2dwm, [|Vuo|2G+dw
ete. oceur. However, these terms can be estimated by KRF, since Vu, e L?
for some p >n and V@ e I for all r < nf(n--1). Since %—u, = 0 on 9Q
and 2Q satisfies the Wiener condition (1.18), we may apply Poincaré’s

{1.55)
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inequality and conclude that
f* 06— a2 < Ksz* |V — Vaso|2der < KR f* | Va2 de + KRP
for those ze 2 for which B;z(2)nC2 s 0. Thus (1.55) is simplified to

(1.56) fze | Vu2Gdm + u (2) — uo(2))2 < KR+ K f*l Vu |G do.

(Recall that clz—2 "< G(2) < Klw—2*™, n > 3.)
From (1.56) we obtain via the hole-filling technique that

[p|VulPGin < K B°, R<R,

for some « €10, 1[, provided that By, (2)NCQ +# @.
Using (1.56) again, we conclude that

[u(z) —ue(2)| < KR?, R Ry8,
for some y e 10, 1[. Since u, € O(2) and %, = 0 on 92, the lemma follows.

Remarks. (1) The proofs of Theorem 1.3 and Lemma 1.2 give also an
& priori bound for the modulus of continuity of the solution . In particu-
lar, if {y} is a family of equicontinuous obstacles, then the corresponding
solutions to (1.1) are equicontinuous in the interior of 2. This holds up
to the boundary if the functions u, are uniformly bounded in C°*NH’ L2 P >n.

{ii) There exist also other results on the continuity of the solutions
to variational inequalities (1.1) if the obstacle is merely continuous but,
to the author’s best knowledge, not in the case where a(z, w, Vu) hag
quadratic growth in Pu.

If we require that the obstacle w be Holder continuous,

(1.57) p e CH(Q)

for some p e 10, 1], then the proof of Theorem 1.3 yields also the Hélder
continuity of w with some exponent a 10, u]. Furthermore, inequality
(1.51), with & = HR*, yields

(1.58) f g | VU6 de < KB

where G() =G (%) = Jo—2/>" for n>3, and G(z) = ||z —el| for
n = 2.

The constant K in (1.57) is uniform for 0 < B < Byzelyc < 2.
The results extend up to the boundary of @ if (1.8) and (1.18) hold.
Summing up, we arrive at the following

TewoREM 1.4. Under the assumptions (1.2)~(1.6), (1.22), (1.23) and
(L.B7), every solution u e L=(RQ) of (1.1) is Holder continuous in Q and
satisfies (1.58). If, in addition, the assumptions (1.8) and (1.18) are fulfilled,
then w is Holder continuous up 1o the boundary and (1.58) holds uniformly
Jor ze Q.
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2. (®-regularity results if the obstacle is in (%, 0 <a<1

Again we consider the variational inequality

(21) Pind weK:= {v e Hy(Q)| v=p in Q) such that

n .
2 (as( 5w, V), B~ 00) + (a(+, w, Pu), u—v) <0 for all ve K.
i=1
Regarding the obstacle y we shall assume
v e0*(@)

The purpose of this section is to establish that (2.2) implies, under
suitable conditions, the Holder continuity of a solution % of (2.1) with
the same Holder exponent a. Results of this type have been already obtained
by Biroli [3], [6]. The present results are more general than those in [5],
[6]; as far as nonlinearity is concerned. The technique of proof is different
and yields a certain interesting additional result on the differentiability
of the solution « of (1). For applications the results are important, in par-
ticular, in the case of a = 1. For earlier results cf. also [25].

The assumptions on the functions «; (differentiability, growth, ellip-
ticity) are the following:
(2.3)  The functions a;(%, u, p) are differentiable in (x, u, p) € 2 x R X R",
©=0,1,...,n .

(2.4)

(2.2) for a certain ae10,1].

The derivatives ay(x, %, D), @,(z,u,p) and W (@, U, p) are

_measurable in = and continuous in (u,p), + =0,1,...,%.

(2.5)  There ewisis a constant K, such that

laz(@, w, )|+l (2, %, P)| + o (@, v, p)| < Kolp|+ Kq,
|0 (5, %, B)| + 180z (25 %, P+ 180y (@, w, )| < EolplP+ Kq,
sy (@, 4, p)] < K,
[op (@, %, P)| < Kolp| + Kq
for all e @, [u|< 0, peR", i=1,...,n.

(2.6)  There ewists a constant ¢ = ¢(C) > 0 such that

Z (@, 1w, ) £, > ol &I
1 k=1
Jor all e R, we @, W<, peR" where o, = (0/0p;)a;.

‘We first state a theoreni about the interior regularity of bounded sol-
utions w of (2.1). If p < ¢, << 0 on 02 and 02 e (*, then the results of §1 and
Theorem 2.1 below yield global O°regularity. After giving the proof of
Theorem 2.1 we study the boundary regularity if » < 0 on 22.
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TrmorEa 2.1. Under the asswmplions (2.2)~(2.6) every solution
e I®(Q) of (2.1) is Holder continuous n 0 with the emponent a from (2.2).
TFurthermore, the interior 0°-norms of u are uniformly bounded if the constamts
O = |l Eg, ¢(C) in (2.5) and (2.6) are umiformly bounded.
From the proof we shall see the following additional differentiability
‘property:
COROLLARY T0 THEoREM 2.1. Let v be Lipschitz continuous on Q
and let
M = sup{Dypis)| o, 2+heeQ, >0}, e cR" le| =1,
My =int{Dp@)| o, 5+he e, h> 0}, ecR" 6] =1,
where Dyp(@) = b= (p(@+he) — (). Then
[(eV)u—Mz], € Hio(£2)
where [£]. = max(£,0), [£}- = min(&, 0).
Remark. The differentiability assumptions on the a; are not optimal.
For example, one could also include lower order terms which are merely
in Z=. :
We shall use the abbreviations:
Daw(w) = kb (w(@-+he)—w(a)), Dipw(@) = B (w (@) — w (& — he))
for ec R le| =1, h> 0.
Tor the proof of Theorem 2.1 we need the following simple
Lemva 2.1, Let u, p, v be real functions such that
w=y ae in 2
and 0 <1< ae in Q. Let ae]0,1] be given and let
M = sup{D&yp(@)| h>0; v,04+he e Q} < o0,
M; = int{D&yp(@) b >0; o, 5+hee £} > o0
for all e € R, |e| =1. Then the fumctions wi defined by
up = w4+ 3D, (r (R DG —h M, Y,

w, = %+ 30D g {r [R°Dgyu — ML}

—eh

I

Il

satisfy the inegquality
(2.7 ui (%) > y (@)

for almost all z in £ such that x-+he, © € L.

If the inequalities u > v and 0 < v << 1 hold in Q ewmcept a set of capacity
zero then (2.7) holds for all @ as above exoept a set of capacity zero (which
may depend on k).
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Proof of Lemma 2.1. We have for m,0+he e 2
ui (#) = (@) +3v{(®) [0 (5 -+ he) —w(w) — B"M] ], —
—37 (@ — he) [u{w) —u(z—he)— h°M]], .

Since the terms [{—u(2) —h*M]], and —[u(x)—L—h"M;], are mono-
tone increasing in £, and sinee % > o, a.e. in 2, we conclude that for almost
all o, v+ he € 2,

wyf (8) = w(®@) +Hiv (@) [p(@+ he) —u(o) —°MF ], —
—iv(w—he) [u(w) —p(r —he) —B°M[ ], =: {u(a)),
where
(&) = §+du(@) [p(@+Te) — E B M) —
—v(»—he)[£—p(w—he) =B M7 ], .
Now, the function ¢ is monotone increasing, as it can be easily seen by

ealculating its one-sided derivatives. Hence ¢ (u(2)) > ¢ (p(®)) and

wi (2) = ¢lp(@) = p(@)+d(@),

where

24(w) = v(0) [p(@+he) —p(@) —h"M; ], —

— (@ —he) [p(2) — plo—he) —L"M]],

for almost all z € Q with 2+hee Q.

From the definition of M} we see that

p(@+he)—p(@) <hMF,  p(o)—yp(e—he) <h M}
Thix yields d(z)> 0 and hence
ug (%) 2 p(®),

which was to be shown. A similar argument works for #; and for the
“capacity-formulation”. The lemma is proved.
We prove Theorem 2.1 first for the case of the Laplacian, i.e., for

@8)  — Y0 u, Pu)tao(,u, Vi) = — du+f(-), feH"™(D)

=1
where the key-idea of the proof can be easily seen.

Proof of Theorem 2.1 in the case of (2.8). Let &, e L*nHy*(Q) be the
solution of the equation

—4G, = 8, where 8, = |B,|"%(B,(®0);
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% (B,{#,)) is the characteristic function of the ball B,(#,) = 2 with radius p
and centre %, € 2. By Lemma 2.1

43 1= -+ eh" DL (PORDGu — My ],) € K,

where ¢ = ¢({, p) > 0, { € C°(2), { = 1in a neighbourhood of @,. Inserting
wf into the variational inequality we obtain (writing down only the
case %)

—(Puy V(D2 (06, [D5— 1)) < —(f, D2n( 06, [Dsu—MF1,)-

Here we have cancelled the factor h**
By partial summation we obtain

2.9)  (VDhu, V(06 [Diu—MF1,)) < (D& f, 026, [ Diu—M}],)

for 0 < b < ho(0R2, £). We rewrite the lett hand side of (2.9) and estiniate
the right hand side. This gives

(210) [ |VDGul6 5 de -+ (VIDGu—M; 4, V(26,))

< If b, ol 1221 D% — ML |4 Nl 5

where |¢(@)|, = [z(2)] i Dju(s)> M and [¢(#)], =0 otherwise. We
now use the identity

@11) (VIDGu—MFR, V(56,)) = (V(EDGu—ME ), V) +44 +3B,
where ’
(212) A =(V|Dhu—Mi,q, Ve
> —3 [ IVDGul 6 2 do—2 [ |Dou— M3 16, Ve %
and
(2.13) B = —(IDau—M71%, VEVE,).
From the definition of &, we obtain
(214)  [B [, ID5u— M} e = (V(2Dau—MFR), V&),
where [, denotes integration over B, (). From (2.10)~(2.13) we get
1 [ IVDGal’ 6,020+ |B,| [ D& — ¥ Ldo
< [Lflh,mHGelhllleD?h%—M;"l+llw+f VeI DG — M L6, do -+
(DG — M, VEEVE,).
We now pass to the limit ¢ -+ 0 and observe that

G, > G weakly in H*(Q) (¢ —>0).

©
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Here @ is the Green function of —4, i.e.,
(V6, Vo) = g(@), ¢elP(Q), GeHY'(Q).

Taking into account that Dju e L°(Q,), 2, = = @, V¢ € L™, we obtain
for points #, € 2,

(215) | 2 [1VD5ulL 06 A+ (D () — M} 5,85 ()

< KN D5u —MF | o+ [1VE[21D5u— M7 1A G do-+ 3 (| D5u— M}, V22V6).
From Lemma 1.3 we conclude that

(2.16) [ 1DGu—M}EGds < E

uniformly for 0 < h < k,, where J denotes integration over suppl. We
- proceed by estimating

(1DG — M 1L, VERVE)
< 101DG% — M | Moo [ 1D — M || VT | VG
< NEIDw — M | ol Vel (f 1761267 )™ [\ Doy — 305 P+ )
< K| VoS D0 — M | -
We used the faet that [| V@ 2¢~'°dz < K, andf]De,,u M6 dr < K,

according to Theorem 1.4, for some o€ ]0, 1[ Choosing a point #, e 2
such that

C(@o)| DZu (00) — M3 | = 1D —MF |4 [l
we arrive at the inequality
1 [ 1VDgm )% 026 do -+ H1E 1 Dou —MF I
, < K1 DG — M|l + BN V2ol [ Dt~ MF | [
from which we infer that
11 Dgu—MF |l < K
uniformly for % — 0, |¢] = 1. Similarly we obtain
IE1 05w — M7 [l < K.

The theorem (in case of (2.8)) follows.

The corollary follows by the following consideration. Taking into
account that a =1 and that Theorem 2.1 implies Fu e LZ,(2), we obtain
from (2.10) )

f | VDyul do <
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uniformly for % ->0, l¢] =1. The symbol f » denotes integration over
Q, < < Q. Thus

sup{ [ Dl — M1, dpdal g € OF(R0), 17ol<
and

sup{ [T(eV)u—M 1, 0pdal g € OF (20), IVgla <

1< E, ‘ i=1,..

o My

1}<K, i=1,...,0.

The corollary follows.

Proof of Theorem 2.1 in the general case. We use a similar variation
i as before, namely

° (06, [ Dgu— 1 M),) e K,

teHY (Q), suppl c < 2,0<I<1; however, this .time G, = G,(-, 2}
is the Green function of the operator

wE 1= U+ eh”

L= _‘Zai(aikak)i

where

. .
217)  ay(®) = faik(m%—hte, tu (24 bte) + (1L —tyu () , TV u(@+ hte) +
0

+A —1) Pu(z))dt,
Q(my 4, p) = (0[0py) &,
We have @, e Hy(2)nL*(Q) and

n

D (088, 00) = 1B [ pla)ds,

i, k=1 Be(”)

‘We insert the above function u; into the variational inequality (2.1}
(we do not treat the case u;, which is analogous) and we obtain

i, , D).

g e CP(Q).

D (Daa(-, u, Va), 0,(026,[Dga— M 1,)) <0

i=0

0y = identity. This yields

n
(2.18) D (a8 D, 2

4y fom=l
where

(CZG [Deh "M:]+)) +Ae+Be+ 02+D2+E9 < 0’

n
A, = D e D, 8,(0%6, [Diu—M71,)),

=1

ll

2 10 0(0%6, [Dou—M51,)),
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n

Oy =D (a8 D, 236G, [Diu—1IF1,),

k=1
D, = (anDeyu, £*G, [ Dgu—MF1,),
B, = B0y, 036G, [D5u—M1,).
Here a, (%), ag(x) is defined as in (2.17),

@ (@, 4, p) = (0] 0u)a,

(@, 14,p), 4=0,...,n.

‘We rewrite the first summdnd in (2.18) and estimate it from below-
via ellipticity:

n
N (008D, 0,(06, [Dou—M;1,)
i, k=1

n

>e [ |VDgui6,0%dm+} 2 (@200 (C (D —M}1,)2, 0,6,)+F,+F,,

i, k=1

where

Fy= D) (050D, Go[ Dy~ M} 1,002,

i, k=1

k3
Fy = — D (auDgu—MF1EL0,L, 08,).
i, k=1
Here |Dgul’ is defined as in the proof before.
We take into account that @, eL*(2,—U(2)), where 2, < &
and U(z) is a neighbourhood of 2, and that the L®-bound of &, taken

over .Q2,— U(z) remains bounded as ¢ - 0. Thus we may estimate the-
term F, by

——flVDh'u1+GC2dm K, f|1)g,,u — MPR\ P

-z f | VD%l 6y t%dn — Ky,

where K, remains bounded for o -0, 0 < h < hy. Recall that V{ =

in U(2). Since [VG,}ly; oy < K, we may also estimate the term F, by

Fy> —Kole1 D5 — M | o [ 1D — M L VL) ™
= "‘KllIClDeh“"“leq—”oo- '
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Thus we arrive at the inequality

(2.19) 2( w0 Dty 046, [DGu— M 1,))

B k=
> [ VDo Gida+1B [ 0G5 do—
— ISV DG — I |y o — K.

Here f . denotes integration over B,(2).

We now estimate the terms 4,, ..., B,, uniformly for ¢ — 0,  — 0,
#z e Q). To this end, we use the growth conditions (2.5) for the funetions
Oy, @, €te., and also the C*-regularity results of §1, which establish
that

(2.20) f | Vujtls —eP~"*ds < K,

{at least locally) with x >0 and K, denoting some constants.
Bstimation of A,. By (2.5) and Holder’s inequality,

14yl <eo f VDGl 6,00 + K () l21 D5l I [, (| Pul?+1)6,do+
DG a8 DG — |y ls [, (1Pl +1)| VG, |+
FE21DG0— M7 | o f, (1 7ul+1) DGl | V2|6 dor -

- Here f . denotes integration over supp{.

By (2.20) the quantities [, (|Vu|*+1)G,do and T Vul+1)[V@,ldz
are small if the support of £ is contained in a ball with radius su;Efwlently
small. (Bstimate (f,|Vul |I7Geldm)2<f*[l7u|2(r"+"dmf | V6,267 ~°dw and
[ |VG, 1267 %4z via the definition of @,.)

Thus we obtain for every &, ¢, > 0

(221) 4,1 <eo [ | PDGULE Ldn-+ ol Do — MF|, |+ K (&, 1),

provided that the support of { is chosen sufficiently small (in accordance
with &, ). Note that we estimate |V{|¢, < K{(e,), since F{ = 0 in U(2).
The term [,|Vu| |D3ulde can be estimated by K [V |2d.

Hstimation of B,. This term behaves slightly better than the term A,
and can be estlmated similarly. This yields

(222)  |B,| <& [ |VDGu G20+t D50 — M | | -+ K (a9, 7).
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Hstimation of C,, D,, H,. By {2.5) and Holder’s inequality we obtain
[Ogl + [Dg[ + ]‘EQ[ < Eof I VDZhu]iGePdm»}—
K (o) i1 DG — M5 (412 [, (1 V]2 41) 6 do+
B o (181 D50) oo +L)IE D — M| o [, (1P 1) G-
As before we conclude, for £ & CP(Q) with support sufficiently small,
that
(2.23) |G|+ 1D, + 18,
< oo [ IVDGuL6 L2 + e[| D3yt — M5 | |+ K (50, &)
From (2.18), (2.19), (2.21), (2.22) and (2.23) we see that
(c/2—3ao)f|VDghu]iG",Czdw—HBgl—lfg L2\ Dgu — M} do —
—4e,|\{] Dgw -Mj|+”§o < K(sgy).
We choose g, and &, small enough (say, g = ¢/12, &, = 1/8) and pass
to the limit ¢ - 0. This yields
(2.24) f [V DGul3 6%+ (L1 Dgu — M|, )2 (2) —31E1 Dgu— M 1L IE < K,
‘We choose 2z e 2, such that
(IDGu —M1,)2(2) = || | D — M}, 1y,
and we obtain from (2.24)
I 1D — M, 1R < 2K,
(Recall that £ =1 in U(2).) In a similar fashion we get
I DG — M7 I < 2K,
This completes the proof of Theorem 2.1.

The corollary follows from (2.24), which implies also an estimate
for [|VDgukaGds.

Remarks. (i) The case of two Holder continuous obstacles vy, v,
v, <% < 9, can be reduced by a partition of unity to the case of one
obstacle if v, <y, and « is already known to be continuous. For the
latter question, cf. § 1.

(ii) If the obstacle is only Hélder continuous with exponent a in
the direction of some unit vector ¢ and if u e * for some g €10, 1[, then
is Holder continnous with exponent o in the direction of e. This holds also
for thin obstacles and “boundary obstacles”

uzyp on o,

8 — Banach Center . X
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Tn the latter case, if »: 8Q ~> R is Lipschitz, the method of proof shows
that the derivatives tangential to 82 are bounded. (Here we assume that
00 is smooth, say, 00 e C2) .

(iii) If 9> 0 on 80, p e H+*(Q), 82 € 0% and K = {v e H{(Q)|v > y}
is not empty, then the method of the proof of Theorem 2.1 shows that
the derivatives of 4 tangential to 82 are bounded. To obtain the regularity
of the normal derivatives, one has to establish certain differential inequali-
ties for the solution « as it has been done in [20], [31].

(iv) If we require the obstacle ¢ to be merely continuous, then one
can still prove that « is continuous, provided that the lower order terms
which are quadratic in Fu (cf. the proof of Theorem 2.1) do not occur.
(Clearly, Theorem 1.3 is much stronger.)

For the simple case of {2.8) we obtain

THEOREM 2.2. Let weK = {v e Hy(Q ){ vy} be a solution of
(Vu, Vu—Vo) < (f, % vek,
where fe H>*(Q) and v e 0(Q). Then ueO(.Q).
For the proof, let 2, = 2 and let
o(h) = o(h, Q) = sup{ly(®-+se)—p(@)| | 3, 0+se €y, 0<s<h,
le] =1,eeR"}.
Define
Dyz(x) = w(h)-Yz(z+ he) —z(w)].

Then the method of the proof of Theorem 2.1 can be easily adapted to the
new situation and it yields an estimate for the modulus of continuity of «;
namely we get

| Dau(w))| < K, @,w+heef,, ¢ =1, ecR".

3. ("**-regularity results for obstacles in (**¢, 0 <a<<1

In this section we consider the simplest elliptic variational inequality
over a bounded domain 2 < R*:

Find weK ={uecHy*(Q) uz vy ae in Q} such that
(3.1) (Vu, Vu—Vo) < (f, u—0)
for all ve K.

Here and in the following (w; 2) = [, weda.

Inequality (3.1) implies that % minimizes

F(Vu, Vu)—(f, u)

on K and vice versa.
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We shall impose the following conditions on the data:

(3.2) 9Q satisfies the Wiener condition (1.8),

(3.3) FeIM=(Q)  for some a0, 1],

which implies A=Y e (*+%(Q),

(3.4) P< —0 <0 in a neighbourhood of 882,
5') p e CHHe(0).

Condition (3.5’) may be replaced by
(38) m =inf{égyp(») h>0, ecR" le| =1; z,5+hee 02} > —oo.
Here §Gw(z) = b 1-° (w(w—!—he)—2w(m)+w(m——he)).

If we leave out (3.5"), we have to assume some regularity of p, say

(3.6") pe0(Q),
or, which is weaker,
(3.6) pell(Q) and K +#0.

Under these assumptions we prove the following

TEEOREM 3.1. Let u be the solution of the wariational inequality (3.1),
whose data satisfy (3.2)~(3.6). Then w e C*+2(Q).

We remind the reader that in our notation e (**°(£) does not
imply » € C***(2). If 02 is smooth enough, then % e (**°(8), since the
solution % of the variational inequality does not touch the obstacle in
a neighbourhood of Q.

Proof. We tirst prove the theorem under the assumption (3.6") instead
of (3.6). From the results of § 1 it follows that » € O(R) and % > vin UN 2,
‘where U is an open neighbourhood of 2. Hence the set I = {# € 2| u()
== ()} is closed and contained in an open subset 2, = = Q with smooth
boundary 82, =« Un L. The assumptions on the dataimply % € C***(UN Q)
for the restriction of % to Un . The proof consists in showing that the
quantities

2 o () = B (w (- he) — 2 () + (3 — Te))

are uniformly bounded for xey, ¢cR" l¢| =1, 0<h<hy:=
$inf{ly,—y.l | ¥, €02, y, € 09Q,}. From this the theorem follows via a
result of the theory of Sobolev—Besov-spaces. The proof of the bounded-
ness of dgu is similar to the author’s proof [15] of the boundedness
of the second derivatives of » in the case where p e (*! and f e (; now,
however, additional technical difficulties arise.
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From (3.1) and the closedness of I we obtain that in the sense of
distributions '

(3.7) —du=Ff  on Q-1
and )
(3.8) ML —f on Q.

To see this, choose v = u-+ep, p € 07 (R —1I), ¢ small, or v =u+g,
PeCP(2), 9>0.
From (3.7) and (3.8) we conclude that

(3.9)  Adhu< —85f on Q,—I, O0<h<hy,eecR" |¢]=1.
‘We solve the equation
—Az=f in Q
and observe that (3.3) implies 2z € (*™¢(R2). From (3.9) we obtain
A8H(u—2) <0 on Q,—1

and from the maximum principle (which is proved by truncation methods
here, cf. [36])

(3.10) w—2)>=py, on £y, O0<h<h,eeR" ¢ =1,
where
uo = inf {6% (u—r)(@)] € 8Q,UI, ecR", || =1, 0 < h< by},
hy = $inf{lyo— 9,1 | Yo € 0QUI, y; & 8Q.}.
Since u >y on 2, we have
B11)  Su>swmm onl, 0<h<h,ecRr, le =1

Since —42 =fin Q and du =fin -1, I < £,, we conclude that
zeO”"(Q % e G (Q—1) and that

Cmax = SUp{0p2(0)| €Ly, ecR", je| =1, 0 <h < Iy} < o,

G 1= 10t {652(2)| 2 €2y, eeR™, |¢| =1, 0 <h < Ry} > —o0,

vy 1= Inf {dpu(w)| © € 02y, ecR", le] =1, 0 < h < By} > —oo.
Recall that by = Finf{lyo—y.| | ¥ € 02UI, y; € 02y} > 0. Thus
(312) o> T 3= M0 — Ly Yo— Lppag} > — 00,

where m is defined in (3.5). From (3.10) and Liemma 3.1 appliedto v : = % —=2
we obtain

2 =A< ~0mau i

where CO(n,a)>0 and &o(@) = A~ (o(@+ he;) —20(z) + v (9 — hey)).
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Hence
Bu(u—2) < —Cln, a)pg— 3 8 (u—2) (j #4,§ =1,...,m)
3
and in view of (8.10) and (3.12)

A< 0p(u—2) << —[n—1+0(n,a)]pg n Q, <t=1,...,n.
Since # e 0**% we see that 6%z is bounded uniformly on @, as b — 0.
The theorem then follows from a result of the theory of Besov-spaces,
cf. [10], p. 229, Theorem 4.1.4. In the case of (3.6") being replaced by
(8.6) we argue via an approximation argument: Let y e L1, v, € K. Since
p < 0 in U(28), there is a test function ¢ € 05°( Q) such that v := g, e K.
‘We extend y outside 2 by —3, and denote by o, the usual modification
operator which convolutes a function with nonnegative mean functions
converging to the Dirac measure (b — 0), e¢f. [1]. Then J,p < 0 in a neigh-
bourhood T, of &0 uniforinly for 0 < k< ¥'. Furthermore J,v € Hy*{Q)
and Jyv = Jpy.

We consider the variational inequality (3.1) with the obstacle .y
instead of p. Since Jyv > Jyp, J,v € Hy*(R), the corresponding admissible
set is non-empty and the variational inequality has a continuous solution
wy, = Jp. Since Jip < —48/2 in a neighbourhood U, of 92, 0 <k < ¥,
the functions w, are uniformly Hoélder continuous in a neighbourhood
U, of 60Q. This was proved in §1, Lemma 1.2. Hence there exist open
sets 2, cc 2, cc 2 such that the sets of coincidence I, = {# € Q| u, (%)
= J,p(®)} are contained in 2, and that |u,—dJ,p| >8>0 on Q—Q,.

Since, further,

Sndpp(@)=m, weldy, ech®, lof =1, O<h<h, 0<k<F,

we may apply the method of proof used in the case of y e 0(L) in order
to obtain a uniform bound for [8f,u;] on Q,.

By well known perturbation theorems on- variational inequalities
(cf. e.g. [4], [28], [30]) it follows that the sequence (u)., tends to the
unique solution u of (3.1) in the weak (or strong) topology of H"“*(%).
This can be proven easily using theorems on weak compactness in H**.
Hence also [0%u| is bounded uniformly on £,, 0 <h < hy. Applying
Theorem 4.1.4 of [10] once more, we infer that u e C**(£,). Since |u— |
> e, > 0 a.6. on 2— 2, we obtain u e 0'**(2 — £2,), and thus the theorem.

It remains to prove

Levma 3.1, Let v € C(Q) nH**(Q) and suppose that Av<0 in Q in
the sense of distributions. Assume Further that for an open subset 2, =< @
we have

o t= int{6%,0(w)| ® € 2y, 6 e Ry o] = 1,0 <h < he} > — o0,

where hy = 3int{|yo—Yal | Yo € 02, Y, € 02}


GUEST


118 J. FREHSE

Then

2 850 < —C(n, a)uy  on Dy, 0<h<hy,
i=1
with C(n, a) being a constant.
Proof. Let @ = Q be the cube with centre #, e 2, and with edges of
length 2k parallel to the coordinate axes. Let @, be the discrete Green
funetion defined by

— A6, = &, GQEHE',Z(Q)7

where §, = |B,|~* on B,(x,), and J, = 0 otherwise, 0 < ¢ < h. The function
@, has the following properties:

(3.13) G,=z0 on@Q,
(3.14) @, e C(D),

(3.15) V8, laq € L*(9Q),
(3.16) vVG,>0 a.e. on 0Q,
(3.17) ' 1o ?VGds = 1,

where »(#) is the inner normal at x € 0Q.
From the hypothesis that 4v < 0 in the sense of distributions we obtain

— (v, V@, <0
and using the definition of ¢, we conclude that
(3.18) f 20 VAo —Ty(m) <O, T {wg) = (8, 0).

' ‘We split the integral over 92 into 2n integrals over the (n —1)-dimen-
sional faces of ¢ and denote by [, ., resp. [_;, the integration over the face
Q. through @)+ he;, resp. w,—he; (¢; = ith unit vector). We want to
examine the term

1
D, :fﬁ vV dy—— ve(xo)—!—f_i VG, dy.
Note that (3.18) implies
(3.19) Y <0

i=1
On account of the symmetry properties of @, we have [ a? Va,dy = 1/2n
and hence
1
(3.20) D, = o [v(@e+ héi)~25e(mo)+@(mo—lzei)]+

+ [ s o —v(@0+he) PG dy + [, [v—v(a,— he) 1976, dy.
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We may split each @, ; and Q_; into two congruent rectangles. We thus get
(n—1)-dimensional rectangular parallelepipeds R, such that
Qui = (@t he;+ B)U (2ot he,—Ry).

On account of symmetry

where f ~q0 denotes integration over x,4he;+R;. Thus we may write
J i B—o(@a £ he) v V6, dy
= fR [0 (@0 = he;+1y) — 20 (@ 4= he;) +- v (2o & he; — y) v VG, dy
.,fR [t+e 820 (20 -+ he;) v VG, dy
> [, W oy PGy = W+ oo (n, a).
Here we used the definition of g, and the notation 6; = &5, € = ¥~y
From the last inequality and (3.20) we obtain
1
Di>5; [0 (@0 + hey) — 2T, () + 0 (o + hey) 1+ 200 (0, @) B H°

and in view of (3.19)

o Z (0@ -+ 5) — 35, (0) - (@0+ h2) ] < — Z1ag0(rm, @) 1+,

Passing to the limit o -0 we obtain
o Z B 0% 0 (@) < —2mgc(n, a) BT,

The lemma follows.

Remarks. (i) D. Kinderlehrer and L. Caffarelli have announced a result
similar to Theorem 3.1, which they obtained independently.

(ii) The generalization of the proof of Theorem 3.1 to operators with
variable coefficients or non-linear operators causes greater difficulties
than in the case a = 1, c¢f. [16], [21], since the symmetry properties
of the Green function which we have used do not hold any more in the
general case. One has to be more careful while splitting the integral over
29).

(iti) Lemma 3.1 and the inequalities (3.10) and (3.12) yield an a priori
bound for the C'*(2,)-norm of %.
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4. Higher order variational inequalities with obstacles

We restrict the discussion to the polyharmonic variational inequality
since this case seems to be sufficiently characteristic to indicate whaﬂ;
regularity properties can be expected in the general case, and not many
results are known anyhow so far. Let 2 be a bounded domain in B® and
V = Hj»*(Q) the closure of the test functions 07 (£) in the norm |-

of the Sobolev space H™*(2), where ™

0l,a = D) 1P ulley  fpolly = (f , wedo)™.

=0
We denote the natural pairing of elements » e V and [ & V* (= dual of V)
by <, v>.

Let g € H™*(Q) be a funetion which represents the boundary condition
and let ¢: 2 — R be a function.

‘We define

’ K={veg+V]v=yin 0}.

The infquality sign in the definition of K can be understood in the sense
of H"”"-‘(Q), of. the definition in [24], p. 155 or in the sense “almost every-
where in Q7. If y is not smooth, the set K and the solution of the vari-

ational inequality (4.1) can of course depend quite strongly on the choice
between these two possibilities.

) Finally, let I € 7* and m eN, m> 2, be given. We consider the vari-
ational inequality:

41) Find ue K such that

for all ve K. A=A, w—v) < <1y u—o)

It is well known that a solution of (4.1) exists if K s §. Setting
? = U+, ey (L), 9= 0, wehave v ¢ K and we deduce from (4.1) that
(=17 d™u—1,¢>> 0.
Hegcg {(—1)"4™u—1 is a measure, cf. [34]. If T is a measure, i.e., if 7
satisfies some weak regularity assumption, we have ’

sup {<I, @] lpl, = 1, 00
and henoe < o il pelP(2)} < oo,

sup{{(—1)" 4™, @3] lpllo, = 1,9 € 0 (Q)} < oo.
By Sobolev’s inequality also

sup {g L{=1y" 0, 4™ u, 9&)[ f]Vq:]""”da} =1,p eog"(g)}< 0o

it ¢ > 0, and by Garding’s inequality in I?, of. 35 i m-1
i » of. [35], we obtain that FA™ 14

e ©
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This holds without any restriction on the obstacle p. We state this
result (which we consider to be well known) as

TaEoREM 4.1. Let u € K be the solution of (4.1). Then
Pty e LMO-U-8  for gl §&70,1[.

Remarks. (i) An a priori bound of the IrY-Snorms of V™™ 'u
in terms of the H™*norm of u can be eagily given.
(ii) Consider the penalty approximation to problem (4.1):

(=)™ Amy e (u—yp)- =1

where ¢ > 0, and (4 —y)_ = min(0, u—y). If, say, p e L% L e I? then u,
exists and one can prove the existence of a uniform bound for the I} -norms
4™ w,l, as & =0, cf. [19].

(ili) The statement in Theorem 4.1 gives rise to the question whether
pam=ly, ¢ Ik for regular obstacles, The answer is affirmativefor m = 1,2,
cf. Theorem 4.2. : .

Another simple method of obtaining a stronger assertion concerning
the differentiability of the solutions to elliptic variational inequalities
with obstacles consists in the classical finite difference procedure; of.
[1], [29] for PDE’, [26] for variational inequalities. Here we impose
the following condition on the obstacle, which allows a one-sided irregularity.

(4.2)  There ewist funciions g; e HM(Q), 1 = 0,...,n, such that for alt
Qcc @ :

n
p>get S Dhg, in @ 0<h<h,
=1

where by = }int{ly,— sl ¥1€ 020, 92 € 00} and
DE'w(w) = bt (w(wthe) —w(@) (& = i-th unit vector)
n
4, = D DDt
in
" Condition (4.2) is satistied if ye H*®(Q).
Ag regards the right hand side of (4.1), we assume:

(4.3) <o =j (for Bi9)y @ €ORX(Q), where fye I*Q).

i=1
‘Under these additional assumption we obtain

. TuEOREM 4.2. Under the assumptions (4.2) and (4.3) the solution
u e K to the variational inequality (4.1) satisfies u e H2 (Q).


GUEST


122 J. FREHSE

Remarks. For obstacles p € H™*1? this thcorem can be found in [26].
In the case where the set Kis defined by a two-sided restriction u; < o < v,
a technique different from that applied in [26] and the one described
here has to be used, cf. [14]. The proof of the differentiability of % on the
boundary gives additional difficulties, which were attacked in [33] for
the boundary obstacle case.

If one wants to prove the analogue of Theorem 4.2 for elliptic oper-
ators with variable coefficients, one has to replace the inequality (4.2)
for A,y by a corresponding one for D} D; y.

Proof of Theorem 4.2. Since % >y in £ (in the sense of H™?® or in the
sense “almost everywhere”), we conclude that

L

1. - .
%+—5;]b2rzﬁh(’lb—‘q))>w in Q,, Qycc @, 0<h<hy,

telP(Q), 0<v<1.
Hence

1 9 | 1 9 ‘ h
Ut oW huzpt+ o h*z (gﬁ—z Digi)

=1

and

1 G
Up = Ut hzrﬁ(Ahu—go—q%| Dk g¢)> v,
and thus wu, € K.
We insert v = u, into the variational inequality (4.1), cancel the
factor (1/2n)h? and obtain

(=1 Amu—1, 72 Ay —go— Zﬂ' Digy<0.
i=1

By routine estimates, this yields a uniform bound for the IL2-norms
D} V™ ul, as h — 0 and thus the theorem.

In the case of the biharmonie variational inequality (m = 2) a more
detailed analysis of the regularity properties of the solution of the vari-
ational inequality can be given. It can be easily seen that the solution
of the biharmonic' variational inequality cannot have continuous third
order derivatives — even in the case of dimension one (n = 1).

In [17] we proved that the second order derivatives are bounded.
A simplification of the proof which extends it to the case of irregular
obstacles is given below. The experts suspect that the second order
derivatives of the solution of the biharmonic variational inequality are
continuous if y is smooth. This was recently proved by A. Friedman and
L. Gaffarelli in the case of two dimensions. They established a logarithmic

icm°®
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estimate for the modulus of continuity. For the proof of the boundedness
of the second order derivatives of the solution we need only the following
one-sided condition on the obstacle .

(4.4)  In every subdomain Q,cc Q we have

; Adyp> —¢yy, O0<h<hy
where Ty = 3t { [y, —9,l| ¥, € 0Qq, ¥, € 22} and ¢y = ¢o(2,) 15 some con-
stant.

Regarding the right hand side of (4.1) we assume:

(#5) Ay o> =D (fir Big)y 9eCP(Q),

=1

where f; e I**(Q) with some 6 > 0.

THEOREM 4.3. Under the assumplions (4.4) and (4.5) the solution
% of the biharmonic variational inequality (4.1), m = 2, has second order
derivatives in Ly, (2). Furthermore, the third order derivatives of w satisfy

(4.6) fgo V302G de < K = K(2), C(eR* Q,cc @,

where Ge(®) = [B—E*~" for m > 2, Gy(a) = |In]o—{|| for n = 2.

Proof. By Theorem 4.2 we know already that v e Hj,(Q). Let o,
denote the usual modification operation which convolutes a function
f with a non-negative mean funection w, e C* with support in B,(0). Leb
Gf = w,+G;. Then G4 > 0, G} € €%, and (Vf, VGE) = w,+f(-—{) for f € H?,
suppf < B,({) (s < expl—p/2 for n = 2).

Finally, let 7 « C5°(2), and = = 1 in a neighbourhood of . Then we get
for 0 < < by = ho(7)

U+ ey @E A (u—yp) =y
if g = g(h, g, ete.) > 0 is chosen to be small enough. Hence and from
{4.5) we obtain

= U+ T G (A0 +6o) = 9
and so u, € K.

‘We insert this function w;, into the variational inequality (4.1), which
vields, after cancelling g >0,

(4.7) (AT, Pyt cg)> > 0.

We may solve the equation

»

Aduy =1= D &f;

i=1
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_in a ball containing @ in its interior. The functions f; are equal to zero
outside Q. Since f; € I**%, we have
ag € (P NHS, o = a(d),
and setting z = w-+u, we obtain from (4.7) that
— {44z, TG (Ayz+ 60— L)) < 0.
Since w, u, and # lie in Hi; (L), we may write
(V4e, V(*@}(due+ 00— D) <0
and passing to the limit & -0 we conclude that
(V e, V(2G4 (42+ 00— Aug))) < 0.
We rewrite this in the form
(4.8) [ 1V 4e2G3v2ds+ 4, < By +Co

where
A, = (V Az, v*(dz+-cy— dug) ves),

o = 2 [ |V 45164 45+ 06— Auq ||Vl dw,
0, = [ |7 4211V dug| Gz do.
Since Pz = 0in a neighbourhood of the singularity £, we conclude that
B,< K

(4.9) uwiformly as p —0, (€ 2.

The term 0, is estimated by Young's inequality
(4.10) 0, <3 [ 1V4epPGz?dn+ K,
where K is an upper bound for

f |V Aug|2GE 2 ds.

(Recall that 4, € H>"*°.) Thus we obtain from (4.8), (4.9), (4.10),
(411) [ |Vaep@irido+24,<E  unifornly for ¢ =0, e .

The term A, is rewritten in the following form: |

A, = (V| Ba+ co— polt, 72V63) + (V Az, 7 (uy— Au) VG,

to = Aug(2).
Thus

A, > 3V (21 4o+ 0y—pol?), V) — [ 142+ 6— pol? | Pl 7| VG do —
—1 [ V421G v do — [ 1= dugfre2(69) | V6 do.

1 ©
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(If n = 2, we have to choose the support of 7 to be small enough for (G§)—2
< K’ to hold there.) From the definition of G% we obtain, for suppr < B,({),
s < texp(l), ¢—0,

S0, #72| dztoy— pol2(0) = 3V (24240 — pol?, VGY).
Hence, the inequality (4.11) results in
(4.12) [ 174212635+ 0, 72| A2+ co— pol* < 2K+ D, + B,
where K is given by (4.11) and
D, =2 [ Az 0y —pol*| Vrlz| VGt dor,
B, =2 [ lng— dug|*22(6) [ V6E2da.

Since Vr = 0 in a neighbourhood of the singularity ¢, the term D,
remains bounded as ¢ — 0. Finally, since Au, € 0% u, = Auy(L), the term
|tg— Auo|?(%) behaves like kyjs— Z[** The factor (G)-*|VG§|* behaves like
| —Z|~*. Hence the term ¥, remains bounded as ¢ — 0 and we obtain the
uniform bound

[ 1V Azp@dn+ @, %73 | 2+ co— ml*(0) < E

(4.13)
as g — 0, £ € £,. We pass to the limit ¢ — 0 and conclude that
(4.14) [ 1VaepGan<E, L&,
)
(4.15) Az e IR (Q), AueLi,(2).

From (4.14) we obtain the last statement of the theorem.

The last part of the proof consists in showing that Au e L, implies
A2y e I,. This is done with the help of an idea from the author’s paper
[17]. :

Let
J— @] T, no="b5,6,...
—In |z — |, n = 4,
glo) =
— |z — %l n =3,
[ —ag|2{In B — o] —1), B =2.

By elementary caleulations
g = 0, 0(-— ) ’
in the sense of distributions, where 8(-—a,) is the Dirac functional at the
point @, and ¢, > 0 a constant depending on the dimension.
In [17] we observed that, for j =1, ..., n,
(i —34)g (@) =0,
(i —$4)g (@) = —o,

B FE Byy N =3, 4%y 00y .
T @y, n =2, vk, ¢ = const,
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which can be checked by simple computations.
20, v =11in U(zy),

Thus, for 7 e (% (Q)

7

D, 1= 10, *[(8}—

A FA)g+ele 0y 0<o <),

and $,>0
Therefore, 44 &, € K, and we obtain

—LdAu—1, D> <0
using the funetion u, and z defined above we get
{44z, B> >0
and
(V 42, V(zo,x[(8—14)g+6])) <0

By partial integrations, we may move the operator & —44 to the left
factor and the operation V4 to the right factor. This yields

((5—

where F, contains several error terms which arise while performing the
partial integrations, according to Leibniz rule. However, these error
terms remain bounded as ¢ — 0, cf. [17]. Thus we obtain

34)8, T, x Adg) > E’

e’

[wg 7 (8 —$)2l(z) = — B,
uniformly as ¢ — 0. Henee
j—3d)z> —B, ae. in Q,

ie., the functions &z— 4z are locally uniformly bounded from below.
n
Since 4 = 3 9; and 4z e Lj,(R2), we conclude that &z e L3, (RQ)

=1
and, finally, f,uf e L. (2).

The boundedness of the mixed derivatives 9,0, is shown by an
orthogonal transformation of the problem, which yields the boundedness
of (0;4 8,)?w. This is possible, since A2 is invariant under orthogonal
transformations and the lower order term Z‘ (fir Os(u— )} is transformed
into a similar one.

ERemark. Theorem 4.3 can be extended to operators whose principal
part is the produet of two second order operators with smooth coefficients;
cf. {13].

For applications to engineering problems ef. [12], where also further
references’ can be found.
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Introduction

In this paper we shall speak about existence and nonexistence results
for initial value problems for equations of the form

1) i+ Au+f(lup)u =0, 2= —1, 4 =—%%b—,
where A is the n-dimensional Laplacian and f is a continuous real function.
In the special case f(s) = gs, ¢ = § = const., (1) is the dimensionless
standard form of the nonlinear Schrédinger equation which has been
sometimes called Ginsburg-Landau equation or recently also Zakha-
rov-Shabat equation. The latter notation is due to the fact that Zakharov
and Shabat [18] were the first to see that Canchy’s problem for the spatially
one-dimensional Schrodinger equation can be solved globally by means
of the inverse scattering method. This famous method was discovered by
Gardner, Greene, Kruskal and Miura [4] and firstly applied to Cauchy’s
problem for the Korteweg—de Vries equation. Unfortunately the approach
of Zakharov-Shabat does not seem to generalize neither to higher space
dimensions nor to other functions f than f(s) = gs. Since we are interested
in more general cases we do not go into details of the inverse scattering
method here.

In the last decade, existence and nonexistence results for initial
value problems for (1) have been published by many authors. In this
paper we take into account existence results of Shabat [13], Strauss {15],
Baillon, Cacenave & Figueira [1] and Ginibre-& Velo [5] as well a8
nonexistence results.of Talanov [16], Shabat [18], Zakharov, Sobolev
& Synach [19], Kudrashov [8] and Glassey [6].
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