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ultaneously valid for Kp(z, t) for any k > 1. However, we do not know whether
properties (A;) and (B) are valid for certain special classes of Weil analytic poly-
hedra, e.g. for polyhedra in C* whose skeleton is totally real or for polyhedra in
C* which are defined by n holomorphic functions.

CoNCLUSION. If we join together the results of [6}, 8], [7] and this paper we
obtain the following picture:

Conditions (A,) and (B) hold for Bergman kernel functions of the Jollowing
bounded domains: 1. Plane domains with C®-boundaries; 2. Strictly pseudoconvex
domains with C®-boundaries; 3. Pseudoconvex domains with real analytic bound-
aries; 4. Complete circular strictly starlike domains; 5. Cartesian products of do-
mains belonging to the union of classes 1-4.

Thus our approach to the problem of the smooth extension of biholomorphic
mappings, based on conditions (A,) and (B), seems to be quite universal. How-
ever, there exist at least three important classes of domains, for which we have
no information about the boundary behaviour of their Bergman kernel functions:
pseudoconvex domains with C®-boundaries, strictly pseudoconvex domains with
boundaries of class C*, 2 < k < oo, and analytic polyhedra (see Remark 4). It
is a difficult and important problem to study the boundary behaviour of the Berg-
man kernel function in these cases.

Added in proof. Inapaper: E. Ligocka, The Hélder continuity of the Bergman
projection and proper holomorphic mappings (Studia Math., to appear) it was proved that if D
is a strictly pseudoconvex domain with a boundary of class C*+# then conditions (Ag) and (B)
are ‘valid for D.
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0. Introduction

Let S"~! be the unit sphere in R". The space #(S"~1!) of hyperfunctions on §*~1
is, by definition, the dual space of the space &/(S"-1) of real-analytic functions
on §"~*, For a hyperfunction T € #(S"~1), Hashizame-Kowata—Minemura-Oka-
moto [2] defined the transformation

0.1) Py TeB(S" D= 2, T(E) = (T, exp(i¢, ),

where & = (&4, &, ...,&)e R"and 1 # 0 is a fixed complex number. They show-
ed that the image of #(S""') under the transformation £; is strictly contained
in the space C°(R") of C®-functions fon R" which satisfy the differential equation
0.2 (/—‘e+ (€)= 0,

02 0%

-ﬁ";— + 8—£§ + .. 3 f
4 (5"-1) which contains strictly #(S"~*), using the sequence of spherical harmonic
functions and claimed the transformation #; maps #(S""*) onto C(R"). But
the meaning of 917(.5‘"'1) was obscure for us. In the case n = 2, Helgason [4]
showed that .é(S"“) is the space of “entire functionals”. (See our previous paper
[9] for the details of the case n = 2.) Our aim in this paper is to extend Helga-
son’s result in the case of general n. The space #(S"~) turns out to be the dual
space of the space Exp(§"~*) of the holomorphic functions of exponential type
on the complex sphere $"~1 = {zeC"; z3+2%+ ... +2F =1}

We will consider the following spaces of functions or functionals on the sphere
S"-1: L2(S"-1) is the space of L? functions on S"~%, C®(S"~!) is the space of
C=-functions on $"~* and &/ (§"1)is the space of real-analytic functions on §"~*.
G(S"") is the space of holomorphic functions on the complex sphere $7~ and
Exp(§™-1) is the subspace of 0(S*1) of holomorphic functions of exponential
type. By the restriction of variables, the spaces @(5"~*) and Exp(§"~1) are con-

where 4; = - is the Laplacian. They constructed a space
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sidered as subspaces of &(S"~*). The dual space of C*°($"~") is the space 9'(s"-1)

of distributions on §"~* and the dual space of #/(S7;™*) is the space %(S"1) of

hyperfunctjons on S"~1. 0'(S%"!) and Exp'(S"~!) are the dual spaces of w(jnq)

and Exp(S"~1) respectively and their elements will be called analytic functionals,
Using the bilinear form

©3) : (.8 = SS A() g(@)d2,(w),

H—1
we can consider a function f as a functional g+ (f, 8). Thus we have a chain of
spaces of functions or functionals on S"~1:
04)  Exp(S™1) = 0(8"Y) = L(S*1) = C($"1) o LA($"~1)
c (S < (ST < 0’(§n—1) - Exp'(s;n—l).
It is known that a function f'e L?(S"~*) can be developped in the series of
the spherical harmonic functions:

fl@) =Y Si@),
k=0

where Si(w) is a spherical harmonic function of degree k. We can characterize
the spaces in (0.4) by the behavior of the spherical harmonic development, namely

0.5 feExp(§1) « li;cnsup(k!HS,c||)1/" < o,
08  fe0FH < lmsup(S,l)* =0,
0D fed(S) <« limsup(ISNHF <1,

(0.8) feCm(sy
(0.9) fe L2 (s
0.10)  feg'(s™Y
01D  fem(sY

< ||Sk|| is rapidly decreasing as k — oo,
< (1Selle, €%

<> ||S,]| is slowly increasing as k — o,
= limsup((IS, [ < 1,

©12)  fe@(@) < limsup(IS)'H < e,

©13)  feBxp'(§™) < limsup(ISy|I/k) = 0,

where [1S,11 3 1Sl = sup {ISu(@)l; 0 € 51} or 1S,y = (_§ | A0y (a)) .

We will state the theorems using the norm || ||, but it is clear from Prop-
osition 1.1 that we may replace the norm ||- |l by the norm ||+ |y,-

A part of the above results is not new. The case L2(S"~*) is very classical.
The case C*(S"-%) is due to Seeley [11]. The case H(S""Y) is due to Seeley [12]
and Hashizume-Minemura~Okamoto [3]. I am ignorant of the literature on 9'(S"~%)
but it seems to me that it is not new. The case Z(S"~?) is also due to Hashizume-
Minemura~Okamoto[3]. I # = 2, that is, if "1 is the unit circle in the complex
plane, all isomorphisms above are known (Morimoto [9]). ‘
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The plan of this paper is as follows: In § 1 we recall the definitions and the
properties of spherical harmonic functions. In § 2 we recall the results of the spheri-
cal harmonic development of C=(S"~') and #/(S""*!) and give an idea of proof
to (0.8). In § 3 we treat the case of 2'(S""") and #(§"~*) and prove the equival-
ence (0.10). § 4 is devoted to recall elementary results on holomorphic functions
and analytic functionals on C". A theorem of Martineau [8] on the Fourier-Borel
transformation will be re~ca11ed‘ In §5 we consider the case 0(8"*) and Exp(§"-1),
and more generally @(S"~*(+)) and O(S"~*[r]), and we obtain the results (0.5),
(0.6) and (0.7). As an interesting byproduct, we show the space ¢(S"~*) of holomor-
phic functions on the complex sphere $"~* is canonically isomorphic to the space
C7(R") of harmonic functions on ~the whole Euclidfan space R” (Theorem 5.3).
In § 6 we consider the case 0'(S""*) and Exp’(§"~%), and more generally
(D,(gn-l(,.)) and 0’(S"-*[r]) and prove the equivalences (0.11), (0.12) and (0.13).
In the last section, we will consider the transformation #, and prove, among
others, that the transformation 2, establishes a linear topological isomorphism
of Exp!(§) onto CP(R).

This paper was written during my stay in France in the academic year 1978/79,
I am grateful to Sophia University for a one year’s sabbatical leave of absence,
1 am much obliged to the Departments of Mathematics of University of Nancy
I and University of Lyon I for their kind hospitality. An outline of this paper
was lectured in Semester on Complex Analysis at Stefan Banach International
Mathematical Center in Warsaw, where I had very stimulating discussions with
Professor Jézef Siciak and I could improve my original results and my arguments
using the Lie norm. I would like to thank him for the hospitality and helpful dis-

cussions.

1. Spherical harmonic functions

Let us recall the definitions ‘and the tesults on the spherical harmonic functions.
For the proof we refer the reader to Miiller [10], Chapter IV of Stein—Weiss [14]
or Chapter IX of Vilenkin [15]. Let us consider the umit sphere S"~* in R":
1y st = {xeR"; ||x|| = 1},
where ||x]| = (x2+x%+ ... +xH)V2 is the Buclidean norm of x. A general point
of "1 will be denoted by w, 7, etc. We will write the inner product of R" by
(X, P> = XY +XY2F oo + X, Y. We willdenote by d2, the non-normalized in-
variant measure on S"~* induced by the Lebesgue measure on R". The volume
of §"1 will be denoted by
(1.2) Q, = 2x"2I(n/2)"1.

Let us denote by L3(S"~1) the Hilbert space of square summable functions
on S""! with the following inner product and norm:

(1.3) (= | f@e@d2u@),  1fll, = VD

sn—1

15 Banach Center f. 11


GUEST


226 M. MORIMOTO

Let us denote by H* the space of all homogeneous polynomials of # vari-
ables and of degree k with complex coefficients. We denote by H% the subspace
of H* of harmonic polynomials, The space #*(S"~*) of spherical harmonic func-
tions of degree k is, by definition, the image of HY by the restriction of variables
to S"~1: #*(S""1) = Hj|s»—1. We enumerate the properties of the spherical har-
monic functions, which will be useful in the sequel.

LemMa 1.1. The restriction mapping: HE — #*(S"~Y) is a linear isomorphism;
that is, for every spherical harmonic function Sy € .7{”‘(S""1) there exists a unique
harmonic Izomogeneous polynomial S, e HE such that Sk(w) = Sp(w) for we S"-1,
We will say S, is corresponding to Si.

Lemma 1.2. Let us denote N(n; k) = dim s#*(S"~) = dim H%. Then we know

2k+n—2 (k+n-3 -
(0] = oo,

LevMa 1.3. We have the following linear isomorphisms:

(1.4) N(n; k) =

ko ko ko
@ H¥sn1 = @ HY|sn-1 = @ a#(S").
k=0 k=0 k=0

LemMa 1.4, The spaces #*(S"~1) and #'(S"~Y), k # j, are orthogonal with
respect to the inner product (,)g,.

Let us denote by Py(n; f) the Legendre polynomial of degree k and of di-
mension 7. We know that S(w) = Py(n; {w, T,) is the unique element of H#*(s"~1)
which satisfies the following two conditions:

1) S(zo) =1,

(2) S(4w) = S(w) for every rotation 4 such that Az, = 7,.

Remark. Py(2;t) = cos(kcos™'t) is the Chebyshev polynomial; Py(3;¢) is
the usual Legendre polynomial up to a constant; in general,

k! (n—3)!
(k+n—=3)1
where C{"~®/%(¢) is the Gegenbauer polynomial. (See for example, Vilenkin [15],
p. 459.)

Lemma 1.5. Let || Ly, be the supremum norm on S"~'. Then we have

Py(n;t) = Cr=212(1),

(1.5 I1Pu(n; <5 o) la, = I/F(%c“)’ [1Pu(n; < -, TO)jHLm =1

DeriniTion 1.1, For a continuous function f on $™* (or fe L*(S""Y), we
define

1.6 Sifio) = 2B fp s o, ano),
n Sn—1

In view of the following theorem, we will call S(f; w) the k-th spherical har-
monic component of f.
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TueorReM 1.1. If f is continuous on S"=* or more generally if fis of the class
LI2(S™Y), then Si(f;w) € #*(S"Y) and

.7 flo) = Zskcf; )
=0

in the sense of L*(S"~'). The Hilbert space L*(S"~1) is the direct sum of the spaces
”k( S':_l):

LZ(Sn-l) — }fk(sn—-l)

The application fr+r Si(f; ) is the orthogonal projection of L*(S""1) onto H#* (S"“)'.
We have the Bessel equality:

IR, = > 1ISfs I,
k=0

Especially we have

(1.8) 1S:(fs e, < 11flle,-
PropostTioN 1.1. () If Sy € #*(S"1), we have
N(n; k)

| scopmns <o, manuo,

Sn—1

19 5i) = SSkw) =5

110)  [1Sellze sl/ Nn; ")uskuL, and Sl < VSl
@ii) If fe L*(S"-Y), then we have
(1) XSS VALCLIT I

Proof. Because the mapping fi Si(f; w) is the projection of L?(S"~*) onto
its orthogonal component, we have (1.9). The first inequality of (1.10) results from
(1.9) and (1.5) by Cauchy’s inequality, while the second equality of (1.10) is triv-
ial. (1.11) results from (1.10) and Bessel’s equality. m

Let us denote by As the Laplace-Beltrami operator on the sphere §"~!. We
will use constantly the following results in the sequel:

ProposiTioN 1.2. (i) If f and g are C® functions on S"~*, we have
(112) { 455 gd0, = § f-Asgd0,.
Sn—1 Sn—1

(i) Sy € #*(S"~Y) is an eigenfunction of As of eigenvalue —k(k+n—2); that
is,
(1.13) AsSy(@) = —k(k+n—2)S(w).

15*
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2. C* functions and real-analytic functions on sn-1
Let us recall some results on C® functions and real-analytic functions on $"-1,

Tugorem 2.1 (Seeley [11]). Suppose fe C*(S""1). Let us denote by Sy(f;w)

the k-th spherical harmonic component of f. Then we have
sup {k"|ISe(f; *)lews kK€ Zs} < 0 for any me Z,;

that is, the sequence ||Si(f; Ml is rapidly decreasing.

On the contrary, if we are given a Sequence {S,€H*(S"™%); keZ.} such

w

that the sequence [|Sk(* )i @8 rapidly decreasing, then flw) = k};o Si(w) is a C
function on S"* and we have
@10 S(f; w) = Sifw) forany ke Z,.

Proof. Suppose f€ C=($"~1) and m € Z, is even. We have by Proposition 1.2,
@2 S((~49"*f;0)

_ MO aprporn: o, ©)d9.6)
Fn Sn—1

iv%;_k_)_ S FO)(=Ag)"*Py(n; {w, T))dR,(T)

" sn—1
(k(k+n—2))"2S,(f; w).
Consequently, we get by (1.11) the following estimation:

KIS 0)] < 1S (= A9mf: )] < ]/ E%iﬁu(—ds)"”fm,.

Thanks to Lemma 1.2, we can conclude that the sequence [|Si(f; * Ml is rapidly
decreasing.

N
Suppose now that ||Sy(* Iz, is rapidly decreasing. We put fy(w) = kzo Si().
Then f;v(co) converges uniformly to a continuous function f(w) as N — co. If we
N
fix an even number me Z, , the function (—4dg)"*fy(w) = kz (k(k+n—2))"2S,(w)
=0
also converges uniformly to a continuous function g,(w) as N — co, from which
we can conclude that fe C®(S"1) and (—45)™*f(w) = gu(w) for m = 2,4, ...
(2.1) results from Lemma 1.4. a
DerNrTION 2.1. For fe C*(S"Y) and me Z,, we put

o0
@3) (—49rf@) = Y (kk+n=2))"*S,(f; 0).

k=0
By Theorem 2.1, (—4g)™?f(w) is a C* function. Remark that the topology of
the Fréchet space C*(S"~!) can be given by the system of seminorms

29 =4 (e, meZ,.
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COROLLARY. If f& C°(S""1), then the spherical harmonic development of f,
0
o) = Z Si(f; w), converges in the topology of C®(S"-1).
k=0

Let us denote by Z(S* %) t~he space of the real-analytic functions on S"~1.
We define the complex sphere S"~! by

2.5) St= {zeC3+23+ ... 422 =1}
and put for r > 1
2.6 §1(r) = {z = x+iye 51 |yl < 1G¢—1/n}.

Then §"-! is a complex manifold and its open sets $"~(r), r > 1 form a funda-
mental system of complex neighborhoods of the real-analytic manifold S"~1. Let
us denote by 0(5"-1(r)) the space of holomorphic functions on §"~*(r) equipped
with the topology of the uniform convergence on every compact set of $"~1(r).
The linear topology of &(S"~!) is, by definition, the locally convex inductive
limit of the topology of O(3"~1()), r > 1:

@mn (81 = limind 0 (51 (r)).
r>1
(5"~ is a DFS space. It is known (Lions=Magenes[7]) that we have also the
following linear topological isomorphism:
(2.8) A (8"1) = limind #,(S""1),
k>0

where &/,(S"~?) is the Banach space defined as follows:

Q9 A= {fe Co S5 sup ——|I(~Asy2f]l,, < m}.
meZ, M: h

Using this isomorphism (2.8), Seeley [12] and later Hashizume—Minemura-Oka-
moto [3] proved the following theorem.

TueorREM 2.2. If fe s/ (S"Y), then we have
(2.10) limsup (|ISy(f; )l )™ < 1.
- 00
On the contrary, if a sequence {S, & #*(S"V);keZ,)}) satisfies the con-
dition
(2107 limsup(|Sy(- i) <1,
~+00
m
then flw) = kz Si(w) is a real-analytic function and we have (2.2).
=0
COROLLARY. If fe S (S""Y), then the spherical harmonic development of f,
o0
flw) = kZOSk( f; @) converges in the topology of o (S"™1).

We will not reproduce here their proof, as we will give another proof rely-
ing on the definition formula (2.7). (Theorems 5.1 and 5.2 (i), r = 1.)
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Remark. The results of this section are valid even for a general real-analytic
compact manifold. The references quoted above treat this general case.

3. Distributions and hyperfunctions on S"~*

DErINITION 3.1. A continuous linear functional on the space C*(S"-1) is
called a distribution on S"~*. We will denote by 2'(S""') the space of the dis-
tributions on §"~! and by ¢{ , ) the canonical inner product of duality. A con-
tinuous linear functional on the space =7(S"~*) is called a Ayperfunction on S"-1,
We will denote by #(S"*) the space of the hyperfunctions on $"~* and by (, >
the canonical inner product of duality.

As #(S"1) is dense in C®(S"~1), P'(S""*) can be identified with a subspace
of #(S™1). A function fe L*(S"~*) defines a distribution Ty by the following
formula:

6D (T8> = (B, = | f0)e(@)dQ(w)

Sn—1

for g e C*(S"1). 1t is classical that fi— T} is a continuous injection of L2(S"~1)
into 2'(S"~*). In the sequel, we will consider L2(S"~*) as a subspace of 9'(S"~1)
by this injection. We will denote the distribution T also by f.

Now we have the following sequence of spaces of functions or functionals
on §"1:

3.2 H(S) < C2(S"Y) < L2(S™Y) < 2'(S"1) < B(S*Y).
By Corollary to Theorem 2.1, we have, for T'e 2'(S""') and fe C®(S"~1),

N s NS -
.y = (1. 218,05 ),—;)@, Suf; -

By Definition 1.1, we have

(3.3) (T, 8f; - ) = /T N(g k) S Pun; -, T>)f(1)dgn('t)>
sr—1
- %)‘ S T, Pulns (- 5 DDA AR4(7)

sn—1

= | sur asmae,
where we denoted o
(3.4 S(T;7) = M)
In view of the following theorem, S,(T'; 7) is called the k-th spherical harmonic
component of T. Finally we get

(3.5) (T, f> = Z

k=0 Sr1—1

N(n; k
MEQ,. )<T, Py(n;

§ SuT; 0f(2)d2.(2).
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TreoreM 3.1. Let T be a distribution on S"~*. Then Sy(T; -) € #*(S"1) and
the sequence ||Su(T; *)iL, is slowly increasing; that is, there exists an integer N > 0
such that sup {k~V||SU(T; lrws k€Z,} < 0.

On the contrary, suppose a sequence {S; € H#*(S"~1);k €Z.} is given. If the
sequence ||Sv(- lLe, s slowly increasing, we can define a distribution T by the formula

Tfy= §
k=0 8§"—

and we have

(3.7

Su@)f(@a20) = 3. § Sue)S,(f; )i (@)

Jf=0 Sn—1

(3.6)

Si(T; w) = Si(w)

Proof. By the continuity of T, there ‘exist an integer NeZ, and C;> 0,
j=0,1,2,...,N such that

for every ke Z,.

N

KT,/ <

j=0

for any fe C®(S"~1). Therefore, we have, by Lemma 1.5,

Cli(—dsyPfilr,

ST 01 = NG, By (-, o))
N
< 1N 6, (ki n =D Y113 < )l
n =0

S
N(n; k i
= ]/ —%—)— ZO C; (k(k+n—2))".
n j=
Thanks to Lemma 1.2, we have proved that the sequence |[Si(T; - )llr,, is slowly

increasing.
Let us prove the second part. We have to prove that the mapping

Sk de,
7o 2 1 St
is linear and continuous on C*®(S"-!). But
S Se@f@aye) = const- ] fw)if,@)

is clearly a linear continuous functional on C®(S"~%).
By Proposition 1.2, we have, for any fe C*(S" ) andanyme Z,,

DT § Su)fw)douw) = Z (k(k+n—-2) ™2 § Su(@) (— 49" f(@)d2(@).
k= sr-1

k=1Sn-1
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The second term converges if m > N-+2. We have obtained in this way the follow-
ing inequality:

KT, < Collflle, + Coll(—d)™+ 227,

from which results the continuity of 7' on C®(§"~). (3.7) is a consequence of
Temma 1.4. m

COROLLARY. If T e @'(S"1), then we have

T= Zsk(T; )

in the weak topology of 9'(S"~*). We have also the following formula:

(3.8)

0

(=Y | ST 0)Sif; 0)d2,(e).

fe=0 su-1

(3.9)

In fact, (3.8) is equivalent to (3.5), while (3.9) results from Lemma 1.4.

Now we are going to consider the hyperfunctions on S"~*, Because of Corolla-
ty to Theorem 2.2, the formulas (3.3), (3.4) and (3.5) are also valid for T'e B(S")
and fe(S"2).

TueoreEM 3.2. For T € B(S"~1), we have
(3.10) limsup (ISe(T; Lo )™ < 1.
k-

On the contrary, if a sequence {Sy(w) e H*(S"~V); ke Z,} satisfies the conn
dition
(3.10% lilglsup(llsk(')[le)llk <1,

—0

then we can define a hyperfunction T by the formula (3.6) and the formula (3.7)
is valid..

This theorem was first proved by Hashizume-Minemura-Okamoto [3], where
they proved indeed the theorem for a general real-analytic compact manifold.
In § 6, we will give it a new proof (Theorems 6.1 and 6.2 (ii), r = 1).

Many classical theorems in Miiller [10] can be extended to A(S"1). For
example, we cite the following.

TueOREM 3.3. Let T € B(S"1). Then

o0

(3.11) u(x) = ;,Zrksk(T; ®), xX=rw,r>0,]|o|=1
=0

is @ harmonic functionin B, = {x e R";||x|| < 1}, u(rw) converges to T, asr — 1~0

in the weak topology of B(S"~'). The harmonic function u(x) can be represented
by the Poisson formula:

(3.12)

- 1—|Jx||?
w9 = g (z., T <§Tw>)"/2>'

icm
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4. Holomorphic functions and analytic functionals on C"
Let N be a norm on the complex vector space C". Denote by
.1 Bori;N) = {ze C";N(@) <1}
42) Bir;N] = {ze C";N(2) < 1}
the open and closed N-balls of radius r. (Note ﬁ(oo;N) =C" and ]§[0;N] = {0})
It is clear that E(r;N) is an open convex balanced set of C". In particular, it
is a domain of holomorphy. Let us denote by O(B(r; N)) the space of holo-
morphic functions on B(r; N). It is an FS space with the system of norms ||flle:n»
0< o <r, where
4.3)
Let us define

for 0<r<oo,

for 0<r<ow

1 f 11w = sup{If@)]; z € Blo; N1}

0(Blr; N)) = limind 0(B(~'; N)).
r'>r
It is the space of germs of holomorphic functions on the closed N-ball ﬁ[r;N]
and is a DFS space.
LemmA 4.1. Suppose fe 0(B(r; NY) (resp. & O(BIr; N). Let

(4.4) fz) = ;fk(z)

be the development of the holomorphic function f by the series of homogeneous
polynomials fi, of degree k; that is, fy € H k_ Then we have
4.5) Wllsy < @781 fllen

for every o with 0 < @ < r (resp. for some ¢ with @ > r). In particular,

(4.6) lilglsuP(”kanN)l/k < 1r
(resp.
S timsup (i 1! < 1)

On the contrary, if we have a sequence {fe H*;k EZ+}: which satisfies the
condition (4.6) (resp. (4.7)), then the series (4.4) converges in the topology of

0 (f!(r; N))andfe (D(ﬁ(r; N)) (resp.in the topology of O(Blr;Nl)and fe 0(Blr; N).
In fact, for fe 0(B(r; N)), we have
1
5O =57 §

lt|=e

f2)

1k+1

4.8)

for zeC", N(Z) < 1 and 0 < ¢ < r. The lemma is a consequence of this integral
formula.
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Let A > 0, For an entire function f, we put

4.9) [fllcasm = sup{lf(z)|exp (—4AN(2)); z € C*}

and

(4.10) Xy = {fe 0(C; Hfllcasm < 00}.

Then X,y is a Banach space. Define

.10 Exp(C"; (4; N)) = liil}gonA:;N for 0< A <oo,
4.12) Exp(C"; [4; N]) = liﬂ}iidXA';N for 0<Ad<g®

Exp (C™; (4;N)) is an FS space and Exp(C"; [4; N]) is a DFS space. Remark that
.13 Exp (C"; () = Exp(C™; (0; V),

“4.19) Exp(C") = Exp(C"; [co; N])

are independent of the choice of the norm N. A function in Exp(C") will be called

an entire function of exponential type while a function in Exp(C"; (0)) will be called
an entire function of exponential type zero.

LemmA 4.2, Let fe Exp(C™) and (4.4) be the development of f by homo-
geneous polynomials f; of degree k. If f belongs to Exp (C"; 4; N)) (resp. fe
Exp(C"; [4; N])), then we have

. — A%
il < A Ly 2k

Jor every A" > A (resp. for some A’ with0 <

(4.15)

A' < A). In particular, we have

(416) timsup(k! [|fell:n)"* < 4
(resp.
@17 timsup(k! 1 filli;n) ¥ < 4).

On the contrary,if we have (4.16) (resp. (4.17)), then the series (4.4) converges
in the topology of Exp(C"; (4; N)) and f € Exp(C"; (4; N)) (resp. the series (4.4)
converges in the topology of Exp(C"; [4; N]) and feExp(C"; [4; N]).

Proof. By Lemma 4.1, if fe Exp (C"; (4; N)), we have, for every ¢ > 0 and
A > A,
(4.18)

But we have

Ifellisn < @81 fll s exp(4'0).

. _ , A/k

inf {o~*exp(4'p); ¢ > 0} = Fe"
and Stirling’s formula
(4.19) exp(—1/12) K™%/ 2k < k! < ke~*}/ 2rk.

Hence we get (4.15). The rest of the proof is a routine argument. u
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Remark the following inclusion relations:
Exp (C"; (0)) = Exp(C"; [4; N]) = Exp(C*; (4; N)) = Exp(C")

= 0(C") = 0(B[r;N]) = (D(ﬁ(r;N)) < 0({0}).
By Lemmas 4.1 and 4.2, the polynormals are dense in each of the spaces in (4.20).
Let us denote by 0’ (B(r; N), o (Blr; ND), Exp’(C"; (4; N)) and Exp'(C™; [4; N])

etc. the dual spaces of 0(B(r N), 0(Blr; N], Exp(C"; (4;N)) and Exp(C";
[4; N]), etc. Then the following inclusions can be defined transposing (4.20):

@21 0o} = o' (Br; N)) = 0'(Blr; N)) = 0'(C")
< Exp'(C") = Bxp’ (C"; (4; N)) = Exp'(C"; [4; N]) = Exp’(C™; (0)).
Now let us define the norm N* dual to the norm N by
(4.22) N*(¢) = sup {<¢, 2>; N(2) < 1}.

THrOREM 4.1 (Martineau [8]). Suppose A € C, A # 0. The Fourier-Borel trans-
formation

(4.23)

(4.20)

i Tos (T, exp(ilz, )

establishes the following linear topological isomorphisms:

(4.24) 2,: 0'({0}) = Exp(C"; (0)),

(4.25) 2.: 0 (Blr; N))-= Exp(C"; [|2Ir; N*),
(4.26) #,: 0'(B[r; N]) = Exp (C"; (|1Alr; N¥)),
(4.27) P, 0'(C" = Exp(C"),

(4.28) 2,;: Exp'(C") = 0(C"),

(4.29) #,: Exp’(C"; (4; N)) = O(B[| 4|71 4; N¥]),
(4.30) 2,1 Bxp'(C"; [4; N]) = 0 (B(147*4; N%)),
(4.31) 2, Exp' (C"; (0)) = 0({0}).

5. Holomorphic functions on the complex sphere §i-1

Recall that the complex sphere S"‘l is defined by

Gl S t= (el 2? = 2zt .. o= 1}
= {z = x+iy e C" |xl[>—ly]12 = L,<{x, > = 0}.
‘We have
(5.2) St = S1AR",
Let us denote by
(53) B(r) = {xeRy|lxl <r}, BEFl= {xeR;Ixl<r}
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the open and closed Euclidean balls of radius r. (We put B(co) = R".) Now we
define

(&X)) L(z) = {21 Izjlz_l_{{; IZJIZ)Z_IJZ,:ZJZ‘Z}UZ}”Z
=[x+ Iyl 1=+ 2{ 1x]12]1pl12 = (x, yp2Fi2)e,

LemmA 5.1 (Druzkowski [1]). L(z) is the cross norm of the Euclidean norm
\xll; that is,

m m
65 L@ =inf{) hllixlliz =D Ax, LeCx e R me z}.
J=1

We will call L(z) the Lie norm of z. We define the Lie ball of radius r:
(5.6) B(r) = B(r; L) = {zeCL(z2) <r} for 0<r< oo
X)) Blirl= Bl L= {zeCyLiz)<r} for 0<r< oo.
B(r) is E. Cartan’s classical domain of type 4. (See Hua [5] and Siciak [13].) We
put also
(5.8) S"“(r) = B(r)r\S""1 for 1<r< o,
(5.9 §-1[] = Blrn§=t  for 1 <r <.
Remark that the two definitions (2.6) and (5.8) are identical, for L(x+ i) = [Ix]] 4+
+Iyll if <x,y> = 0.

Let us denote by (D(S" (r)) the space of the holomorphic functions on the

open set §"~1(r) of §"-1 equipped with the topology of uniform convergence on
every compact set of S"~1(r). (D(S""l(r)) is'an FS space.

LeMMA 5.2. The following sequence is exact:
(5.10) 0= #(Bm) > 0B S 0E-1(0) - o,

where 5 (B(r)) = {fe0(B®); f(2) = O for every ze §- 1)} is a closed subspace
of 0(B(r)) ¢ is the canonical tnjectwn and 3 is the restriction mapping.

In fact, by Lemma 5.1, B(r) is a domain of holomorphy. Therefore the lemma
results from Theorem B of Oka-Cartan.

>

LemMA 5.3. We have the following linear topological isomorphism:
(5.11) oS mM)) = 0(BM)F (BO) for 1<rg

In fact, all spaces being FS space, a linear continuous 1somorph1sm is topo-
logical by the closed graph theorem.
Now we put, for 1 < r < oo,

(512) . @(Sn—llr]) - Ilmmd@(S""l(r’))
O(3™1[r]) is a DFS space. As we remarked in § 2, we have
(5 13) M(Sn-_l) — a(sn-]_ [] .
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As the exactness is stable under the inductive limit, taking the inductive
limit in (5.10) we get
COROLLARY. The following sequence is exact:
~ . ~ 8 ~
(5.10) 0~ A(B[r]) — 0(BI]) » 0(S**[])) -0,
where J"(ﬁ[r]) = lin}ind J(ﬁ(r’)). We have also a linear topological isomorphism:

(.11 011D = GBIV/FBE)  for 1<r < .

Define the space Exp(§”~1) to be the image of the space Exp(C™) of the entire
functions of exponential type under the restriction mapping 8. The topology of
Exp(.§"‘1) is defined to be the quotient topology of Exp(C™) by its closed subspace
Fexp(C") = F(C")NExp(C™). By the definition

(5.10") 0 = Fexp(C" — Exp(C™ — Exp(§"-1) - 0
is an exact sequence and
(5.11') EXP(S’I"*I) = Exp(C")/Fexs(CH).

Exp(S‘"“) is a DFS space, being a quotient space of a DFS space by its closed
subspace.

Because S"-* is the real part of $"~ and that §"~!(r) and S"“[r] are con-
nected, the restriction mappings G(S" 1(r)) = C*(§"')and (9(S"‘1[r]) 2 C2(5"™1)
are injective. In the sequel, we will consider the spaces @ (, "“1(1)) and (5"
as subspaces of C®(S"~!) by these restriction mappings y.

We have just defined a chain of spaces of functions as follows:

(5.19  Exp(8) < 081 < 05[] = 0(51(")

o Z(5Y) © Co(S*Y) @ LA(S™Y).
Theorems 5.1 and 5.2 below will characterize the subspaces 0(5"‘1(r)), 0(§"“[r])
and Exp(§"~%) of C*(S"~) by the behavior of the spherical harmonic develop-
ment.

THEOREM 5.1, For f& C*(S"*), we will denote by f(w) = kzosk(w) the spheri-

" cal harmonic development of f; that is, Si(w) is the k-th spherical harmonic compo-

nent of f: Si(w) = Si(f; w).
(i) Suppose 1 <r< . If fe 0(§"‘1(;')), we have

(5.15 “T’?sup(”Sk(')”Lw)”k <
00

(ii) Suppose 1 <r < 0. If f€ 0(.57"‘1[r]), we have

(5.16) IiI;lsup(”Sk(')”Lw)llk < 1/r;
—> 00
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(iii) If fe Exp(5"~Y), we have
(.17) timsup (K [1Si( ) llze )" < 0.

Proof. Let us prove (i). By Lemma 5.2, for any glven function fe 0( "-1(,-))
there exists a holomorphic function F on the Lie ball B(r) such that f = F|gus,.
As B() is balanced, we can develop F by homogeneous polynomials

(5.18) F@) = ka(Z),
k=0

where f, € H* and the convergence is uniform on every compact set of B(r). By
Lemma 4.1, we have for every 1 <o <,

(5.19) [1fl Mo = sup{lf@)|; w € '} < 07" M,
where we put
(5.20) M, = max{[F(z)]; L(z) < e}

Now we have by Definition 1.1,
(5:21) Su(w) = Si(f; w)

= ”Ai%ﬂ S F(D)Py(n; <@, 1))d2,(7)

n sn—1

= XD N nms o, a0, m
" se-1 720

N(n k)

| 50 Bun; <o, 12040,

j=k Sn~1

where, in the last equality, we used Lemmas 1.3 and 1.4.
By (5.19), we get

62) I5:@)| < N@; )Y oM,
=

= N(n; k)Mo~ *(1—o~1)™* for w e §"1,
provided 1 < o < r. Therefore we get
(523) limsup (1S4 )1z )" < V.

¢ being arbitrary with 1 < o <7, we get (5.16).

(iD) is a corollary to- (i). Let us prove (iii). By the definition of Bxp(S"~1),
there exists an entire function F of exponential type such that F|gs—1 = f. Then
there exists 4 > 0 such that ||F|[c,,;, < co. Let (5.18) be the development of F
by homogeneous polynomials. By Lemma 4.2, we get

k
(5:24) o < VI WPl oy
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Therefore using the formula (5.21), we get
N A
(5.25) ISy@)| < N3 ) > Y Znf Pl -
j=k

- k
< N(n; )Y 2x||F| :L)"(‘I:._])Te‘

From Lemma 1.2 and (5.25), we can conclude
limsup (k! 1S Mlre) ¥ < A < 0.
k—+oo

DEerRNITION 5.1. Let us define ‘
(5.26) 0,(B0)) = {fe 0 (B)); 4.f(2) = 0} for 1<r< oo,

(5.27) md(ﬁ[r]) = ]in}ind(DA (ﬁ(r’)) for 1<r<oo,
(5.28) Exp4(C") = {f € Exp(C"); 4.f(z) = 0},

82 62 0%
where 4, 8 -5+ =3 2 . +—é;3—.

04 (B(r)) being a closed subspace of the FS space 0(B(r)) it is an FS space.
04(B[r]) and Exp(C") being closed subspaces of the DFS spaces (D(B[r]) and
Exp(C™), they are DFS spaces.

THEOREM 5.2. Let {Sy € 3#*(S"~Y); k€ Z,} be a sequence of spherical harmo-
nics. We denote by S, the harmonic homogeneous polynomial of degree k corre-
sponding to Sj.

(@) Suppose 1 < r < 0. If the sequence {S,} satisfies the condition (5.15), then
the series

(5.29) Fo(z) = Z 8uz)

converges uniformly on every compact set of B@), Fpe (DA(B(r)) = Fylgn-1r)
€ (D(S" 1(r)) and we have (2.2).

(i) Suppose 1< r < co. If the sequence {S,,} satisfies the condition (5.16),
then the series (5.29) converges in the topology of O(B[r]), Fo € 04(BIr]), = Foldn-1n
€ @(S"“[r]) and we have (2.2).

(iil) If the sequence {S,} satisfies the condition (5.17), then the series (§.29)
converges in the topology of Exp(C™) and F, € Exps(C™), f = Folsn-1 € Exp(S"™')
and we have (2.2).

For the proof we need the following lemmas:

LemMA 5.4. The Bergman—.g’ﬂov boundary X(r) of the Lie ball f}(r) is given by
(5.30) 20) = {'*;xe R, ||x]| =r,0 eR}.
(See Hua [5].) The following fact was constantly used in Siciak [13]:
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Levma 5.5. Let f be a homogeneous polynomial of degree k. Then we have

(53D~ sup {|f@)]; 0 €8} = sup {|fi(x)|; x € B[1]}
sup{Ifu(2)|; z € Z(D} = sup {If2)]; z e B[1]}.
Proof. The first equality results from the homogeneity of f;, the second equality
results from Lemma 5.4 and the last equality is a property of the Bergman-Silov
boundary. =
Proof of Theorem 5.2. Let us prove (). By Lemma 5.5, we have
(5.32) 152)] < LEMIS i for any ze C".
Therefore by Lemma 4.1, the series (5.29) converges uniformly on every compact
set of the Lie ball B(r) and Fy € 0(§(r)), S, |zn being harmonic and the conver-
gence being uniform on every compact set of the ball B(r), the function F; |z,
is harmonic. By the uniqueness of analytic continuation, the function F, is in
0,(B(). Other statements are clear by Theorem 2.1.
(ii) is a corollary to (i). Let us prove (jii). Suppose now (5.17). By Lemma
5.5, the sequence {S;} satisfies the condition (4.17) with N = L and 4 = co. There-
fore F, € Exp(C") and the series (5.29) converges in the topology of Exp(C”). u
CoroLLARY. Let fe 0(S"1(0), 1 <r < w (resp. fe OF" ], 1 <7 < o0,
Exp(S"-1), Sk(f; w) be the k-th spherical harmonic component of f and $.(f:2)
be the corresponding harmonic homogeneous polynomial of degree k. Then the series

I

(5.33) f@y = 8ufsz), zed
k=0

converges in the topology of (9(~"“1(r)) (resp. of O(S"=[r]), of Exp(S"~1)).
Remark tha’; we have, for z e 5”“1,
N(n; k) S
2,

S

Sufi2) = (D Pulni(z, ©))d2u(7).

DEFINITION 5.2. Put
(5.34) Ccz (BM) = {fe C*(B(); 4.f(x) = 0} for 0<r< oo,
(5.35) C2(BIr]) = limind C3 (B(™) for 0<r< o0,

(5.36) C5(R"; exp) = {fe C*(R"; there exists 4 > O such that
sup {| f(x) |exp(— A[|x[l); x € R"} < o},
0? 02 % . .
where 4, = T + m+ +a—x% is the Laplacian,

TrEOREM 5.3. The following restriction mappings are topological linear iso-
morphisms:
@ a0, (g(r)) - C3°~(B(r)) for 0<r< oo,
B: 04(B()) = 0(S*1(1)) for 1<r< ow;

icm°®
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(i) o« 0,(BIY) = C2(BI) for 0<r<oo,
B: 04BI) = 08D for 1<r<oo;

(iii)  o: Bxpa(C™)-= CP(R"; exp),
B: Exp(C™) = Exp(S"™").

Proof. Let us prove (i). It was proved by Kiselman [6] and Siciak [13] that
the restriction a is a topological linear isomorphism. We reproduce here an outline
of the proof. The continuity and injectivity of « are clear. So if we can prove the
surjectivity, « is a topological linear isomorphism by the closed graph theorem.
Suppose fe CF(B(r)) is given. Then we have the expansion

flow) = Y *Su@) = » Bylew), O0<e<nlloll=1,
k=0 k=0

where S, € #*(S"~1), §, is the corresponding harmonic homogeneous polynomial of
degree k and the convergence is uniform on every compact set of B(r). We have

N(gik) S

Sn—-

¢*Su(w) = flev) Puln; <z, 03)d2,(7)

by Theorem 1.1. Therefore we get

(5.37) 16*Si(@)| < N(n; Bsup {If(x)1; lixl| < e} }
for any p < r, from which results

linlgsup(llsk(‘)llm)”" < 1.

We can conclude by Theorem 5.2 (i) that Fo(z) = 3., Sk(2) € 04(B(r) and Folsery
foo

= f, which proves the surjectivity of a.

The surjectivity of § is proved by Theorem 5.2. We will show its injectivity.
Suppose that Fe 04(B(r)) satisfies Flsn-sy = 0. Then the harmonic function
f = Flg vanishes on S"~. By the maximal modulus principle, we know f(x)=0
for all x € B[1]. By the uniqueness of analytic continuation, F is identically zero.
8 being continuous, it is a topological linear isomorphism by the closed graph the-
orem.

(ii) is a corollary to (i). The proof of (iii) is similar. We have only to show
the surjectivity of a. If fe CP(R"; exp), we have, for some 4 > 0,

sup {|fG)1: 111 € e} = sup {Ifx); lIxli = o} < exp(4e).
Therefore by (5.37)
[Su(@)| < N(ns K)o "exp(dg) for any ¢ > 0;

By the same argument as in the proof of Lemma 4.2 and by Lemma 1.2, we can
conclude the estimate (5.17). Finally by Theorem 5.2 (iii), we can conclude Fo(2)
€ Exp4(C").

16 Banach Center t. 11
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6. Analytic functionals on 5"~

We shall denote by 0'(5""'(9), 1 <r<oo, 0'G3"'[), 1<r<co and
Exp’(§"~1) the dual spaces of @(3"~1(r)), 0(8"*[r]) and Exp(S"~?) respectively.
By Corollary to Theorem 5.2, we know that the sphencal harmonic functions form
a dense subspace of (D(S"“l(r)) 0($"-[r]) and Exp($"~1) respectively. By trans-
posing the inclusion relations (5.14), we have the following inclusion relations:

6.1 Exp'(§1) o 0’81 5 0'(S1r]) > 0 (§1(P)
o B(S*1) o @'(S"1) > LA(S"Y).
Lemma 6.1. The following sequence are exact:
62 0 0'(§1) 5 0 (Br) » & (B~ 0,
(6.2) 0- 0 1) S oBr) - £ B~ o,
(6.2 0 — Exp'(§71) — Exp/(C") — Fiep(C™) — 0.

In fact these sequences are obtained by transposing the sequences (5.10), (5.10)
and (5. 10”). We may consider by the mapping * the spaces 0’ (S"“(r)) 0'(8"1r))
and Exp’(§"-1) as subspaces of 0’ (B(r)) lug (B []) and Exp'(C") respectively.

Let Te 0'(§"1(r)), 0'(S"~[r]) or Exp’(3"~") and fe 0(5"~1(r)), O(5"~[r])
or Exp(S"“l) respectively. Then by Corollary to Theorem 5.2, we have

(Tfy = Zm 5.9

k=0
= kZ—o<T N(g ] k) S“S_l F(¥) Pi(n; <z, r))d.Q,.(r)>
O N(n N B

Tz: -Pk(n <Z 'r))\f(r)d.Q,,(r)

k=0 Sm—1
Define the kth spherical harmonic component of T e Exp’($"~1) by

(6.3 ST 7) = i%‘@—< T, Pu(n; (z, ©)>.

It is clear that Si(T; 7) is a spherical harmonic function of degree k. Then we have

64 <Tyfy= Z § sur wrmanm

=0 Sn~1

=Z { sur 95 nan.

k=0 Sn—-1

THEOREM 6.1. Suppose T € Exp'(S"~1). Let us denote by S,(t) the k-th spheri-
cal harmonic component of T: S(7) = S(T; 7).

icm
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@ If Te 0'(5"(r)), 1 <r < oo, we have

(6.5) limsup (lisk(- )I!Lm)wf <r;

< r < o, we have
limsup (IS e )* <7
ko
(iii) If T e Exp'(§*1), we have
limsup (IS Nz /kDHE = 0.

(i) If Te 0’1, 1
(6.6)

(6.7)

Proof. Let us prove (i). If Te ¢ (S‘"“(r)), by the continuity of 7, there exist
constants ¢ with 1 < ¢ < r and C > 0 such that

KT, /3 < Csup{If2)l;z € %, L(2) < o}

V2 Puln; IV 2% %)

is the harmonic homogeneous polynomial of degree k. Consequently, by virtue
of Lemmas 5.5 and 1.5, we can majorize Si(T; 7) as follows:

Remark that
f’k(n; z;1T) =

N(n k)

MOIERNCHUIEY sup{|Py(n; <z, D)1;z € 5%, L(2) < o}

< cMsup {1Pk(n 5 9Lzed L LE) <o)

< Cﬁ%ﬁé"wp{lﬁk(n;x; 3 x e 51}
Nm; k) 4

= CTQ B

from which results (6.5).
(i) is a corollary to (). Let us prove (iii). Suppose now T e Exp’(§™~1). Then
by the continuity of T, for every 4 > 0, there exists a constant C4 = 0 such that
KT, £ < Casup]lfiz)lexp(— AL(Z)); z € C"} = Callfllcans

for every f€ X1, where we are considering T’ € Exp'(C") by Lemma 6.1. There-
fore we have, by Lemma 5.5 and Lemma 1.5,

1S = IS(T; )]

< CAMsup{lﬁk(n; z; 7)lexp (—AL(2)); z € C}
-C Msupl L(zYexp(—AL()); z € C7)
- o B K.

16*
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By Stirling’s formula (4.21), we get
Timsup (1Su( ) o /K1) * < —-lim L
gs::p k Ll S Mo k!
THEOREM 6.2. Suppose that a sequence {S, e H#*(S"~Y);keZ,} is given.

(i) Suppose 1 < r < . If the sequence {S,} satisfies the condition (6.5), then
the formula

=0. =

©8) Ty =D § SUf@)do)

k=0 sn~1

=0
= § S,@)Sf; )d2,(0)
=0 sn—1

defines a linear continuous functional T on (9(.§‘"‘1(r)) such that
6.9) Si(T; 7) = Si(7) for keZ,.

(i) Suppose 1 < r < 0. If the sequence {S.} satisfies the condition (6.6), then
the formula (6.8) defines T e 0'(S"~1[r]) such that (6.9).

(ili) If the sequence {S.} satisfies the condition (6.7), then the formula (6.8)
defines T € Exp’(S"~1) such that (6.9).

Proof. Let us prove (i). By the condition (6.5), there exist constants g, < r
and C > 0 such that

1Se(7)| € Cob  for all keZ,.

. o0
Let fe 0(S""1(r)) and flw) = kzo Si(f; w) be the spherical harmonic development

of f. Then by 'Ilheorem 5.1 (i), the series (6.8) converges and defines a linear func-
tional T on 0(S"~1(r)). On the other hand, by (5.22), for g, < ¢ <7,

©

6.1 KT <Y, | IS 1:0F3 )| du(w)
k=0 sn=1
<0, CosN(n; HM,07(1—0)*
k=0

< 2,C(1-0)" Y N k) (go/0)M,,
k=0

o0
where M, = sup {|[F(z)|; L(2) < ¢}. As ’C}:(,N(n; k) (oo/0)* < o0, (6.10) implies the

contil%}xit.y of T on O(B(r)), hence on O(S"~1("). (6.9) is nothing but (1.9).

. (i) is a corollary to (). Let us prove (ji). Suppose that the sequence {S,}
satisfies the condition (6.7). For every & > O there exists a constant C, > 0 such
that

ISl(w)| < C, k! for any ke Z,,

©
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by Theorem 5.1 (iii), the series (6.8) converges and defines a linear functional T on
Exp(S"~1). If F e X, satisfies f = Flgn—1, we showed in (5.25)

. k
IS(f; @)1 < N3 )Y 2 1Fl| casmy (kf nre’

Therefore if & < A~%, we have

©11) KT.Fl < S IS.)] 5.(f; ) 142, (@)
k=0 Sn—1
2 — k
< 0, Y NG Y TRl e
k=0 )
< CO.VTret Y (eAVN(m; KYIIFl oy
k=0

o0

As we have 2 (eA*N(n; k)k < o0, (6.11) implies the continuity of 7T with re-
k=0

spect to the norm ||F||.4;z,, especially the continuity of T on Exp(C"). m

7. The Fourier-Borel transformation of Exp’(S’"“)

Following Hashizume—Kowata—Mjnerqya—Okamoto [2] we define the transform-
ation &, for a functional T e Exp’(s"~*) by
(1.1) P, T(©) = {To, exp(iXL,2))),

where Ae€C, A # 0 is a fixed constant and {{, 2) = £,z 422+ ... +&,2,. This
transformation 2, is nothing but the restriction of theuFourier—Borel transformation
2, on Exp’(C™), defined in § 4, to the subspace Exp’'(S™~1).
DEerINITION 7.1. Put .
(7.2) 0,(C" = {F € 6(C™); (4;+1DF(L) = 0},
1.3) CPRY) = {F € C=(RY; (4:+ DF() = 0}.
The spaces @,(C") and C?(R™) are FS spaces, being closed subspaces of the FS
spaces 0(C") and C®(R") respectively.
LemmA 7.1. Let TeExp'(S"-1). Then F() = #,T(L) is an entire functzon of
¢ e C" and satisfies the partial differential equatton
(7.4) (A;+22)F(C) =
82 02
wmraE T acz *
In fact, the function ¢ exp(iA{(, z)) satisfies (7. 4) and the differentiation
with respect to { is continuous in the topology of Exp(S"‘l)

where 4, = that is, P, maps Bxp'(§"~?) into 0,(C").
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LemmA 7.2. The restriction mapping o« Fis Fign establishes a linear topo-
logical isomorphism:
(7.5 a: G4C") = CR(R").

In fact, the lemma results from the fact that the Laplacian 4, is an elliptic

operator with constant coefficients (see Kiselman [6] for the details of this

phenomenon). .
The Bessel function of order », v # — 1, —2, ... is defined as follows:

z v (_l)k z 2k
.9 e = (3] 2 TTGTEFT) ('2‘)

Levva 7.3. For fixed (eC" and A€C, consider the function f(w)
= exp(¢, o)) of @ e S"-1. The k-th spherical harmonic component Si(f; w) of
the function f is given as Sfollows:
1.0 Sdfio)

A
= N(n; k)ikl’(%)(-z-v Cz)

@2-mf2

Jk+(n—2)/z(1l/z—i) Py (”i <"l7%_—7: w>)
~kk (212

ka-z),z(M/F) X

A\ (.7 L
X(E]/C \) Pk(",<7€;;, w>)
(Cf. Lemma 3 of [2], where we must read a, = I'(n/2).)
Proof. Remark first that the functions

__\—k+@2-n)[2 A —=\F
(ye ) V) and 3V 2 nsl0)

2
are entire fanctions of (1, ) e CxC". By Definition 1.1, we have

= N(n; k)i"]’(% SV

s = XER{ epace, IR @, )0,

L Sn—1

1.8

As Si(f; w) is an entire function of (4, £) e CxC", we have only to prove (7.7)
when CeR" and AeR. Suppose {eR", { #0 and put r =]/Z‘5 > 0 and 7

=ty

By the Funk-Hecke formula (see for example Miiller [10]), we have
N(n; k)

(1.9) Su(f; w) = "_Q—-Qn—1 APy(n; {70, @),
where
1
(7.10) A= exp(iarn)Py(n; £) (1= 2)=Di2d1.
. -1

* ©
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By Gegenbauer’s integral formula (see for example Vilenkin [15], p. 555), we have

o n=1\[ a\ET2
/l=z"V1-cI’( 3 )(»2—) Jirtn= 232 (Ar).

Using the formula (1.2), we get (7.7). =
LemmA 7.4. We have the following estimate:

11 1\
o 3 iy

Proof. We have the following integral formula (see for example Stein—
Weiss [14], p. 151):

cos 1
I'y+1)

>0 for v>0.

Vrlv+1/2)

(z /2)u J, ,,(Z) =

exp(izt) (1 —t2)~2dt

ey

1

cos(zcosf)sin®6d.

o3y |

Therefore we have

Val(p+1/2)

apy J,(1) = Scos(cosﬂ)sin”ﬂd@.

4
But we have
™ T T

S sin?”6df > S cos(cos)sin?6df > cosl S sin?*6d0
0 0 ]

and

ki
. —I'(»+1/2)
2, — —_——
§sm 0d6 = ]/'n: To+D °
from which we can conclude (7.11). m

TuroreM 7.1. (i) Suppose T & Bxp'(§"1). Let us denote by S(T; o) the k-th
spherical harmonic component of T and by Si(T; 0) the corresponding harmonic
homogeneous polynomial of degree k. Then we have

_ye-n2 &
712) 2,10 =2f="'2(§;/c2) Zi‘vm_m(h/c'z)sk(r-—c—)

£ e
kil x _\—k=(n=2)/2 .
= 2piz Z ,-k( %) ( % y 52) et 2BV T SUT: 0.

k=0
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(i) The transformation 2, establishes linear topological isomorphism of EXp’(,§'=-1)
onto 0,(C") and 0'(5"~1) onto Exp,(C"):
(7.13) P, Exp'(§"1) = 0,(CY),
(7.14) P, 0'(S*1) = Bxpy(C"),

where we put ’
Expy(C") = Exp(C)n0,(C).

Proof. (i) Suppose a functional T EExp'(S‘"“l) is given. Then by the for-
mulas (7.7) and (6.4), we have

Ty exp(iAE, 2)D

_Z S Sk(T;w)N(n;k)ikf(%)(% E

=0 SII-—
k
XJ g (n—z)/z(ll/zi) ('% ]/Z—z‘) Py (n; <“§7» w>) dQ(w)

i andn\ (A _\~kt@-m)2
- ’Z;N(n, k)t*['(—i—) (51/52)

—k4(2-m)[2
) x

Tesa-2y2(AY E2) %
del o "(’“ V)
=0 I’( )(2 )(Z n ?l %t nm2p (A EF )Sk( S E )

Therefore we get (7.12) if we use the formula (1.2). m
(ii) The Fourier-Borel transformation #; maps Exp’ (S”‘i) into  0,(C")

by Lemma 7.1. The injectivity of #, is clear by the formula (7.12). Suppose

Fe 0,(C") is given. Put for ¢ € C, F(z) = F(gz). Then by (1.6), we have F(gw)

=Y SuF,
k=0

@), » € S""1, where

(7.15) Sk(Fy; @) =

N(.?); ° SnS..1 F(om) Pi(n; (7, ))d2,().

Because F satisfies the differential equation (7.4), we have

~isEge) = BB apnpni e, onao)
n Sr-1
_N@m k) 2  n-1d 1
2, s~s-1(d—@z+7%+?43) Flen

x Pe(n; {7, 0))d2,(7).

e ©
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From Proposition 1.2, we can conclude that the holomorphic function G(g)
= S.(F,; ) satisfies the Bessel differential equation:

@ . n-1d k(k+n—2)
7.1 G+ —G+(22 —ﬁ—)c =0,
(719 do e de 0

from which we can conclude
(7.17) Si(F,; @) = Clw) 02y 232 (A0)s
where Cy(w) is a function of w € §*~*. Putting ¢ = 1/4 in (6.17), we get

Sk(Flll: ©) 2@-mj2

7.18 C,
719 w(@) = Tero—2y2(D
and

N - S, (Fup: @)
7.19 F = 20)CPI2T L w12
(7.19) (e) Z( D a0 AT

for p €C, w € S*~1. Now define a spherical harmonic function S(w) of degree k by

" Si(Fy /A3 )

7.20
(720 Jera-2p(1D)

K
Sy(w) = (-1 (21)
Now we have, by Lemma 7.4,
fim Sup([1Se( ) Il oo/ R
00

= lim sup( USe(Fias lew )”k
koo \ Jerney2(D k!
r(k+(n—2)/2+1))‘/*

= lim Sup(”Sk(FI[A; .)“szk-f(n—l)lz i

k=

= 21irn sup(llSk(Fm; Mz )* =

by Theorem 5.1 (i) r = co. Therefore by Theorem 6.2 (iii), the sequence {Si(w)
€ A#%(S*1)} determines a functional T e Exp’ (§"1) such that (6.9). By the for-
mula (7.12), we can conclude that F({) = #,T({), which proves the surjectivity
of (7.13). As it is clearly continuous, it is a linear topologlcal isomorphism.
As is shown in Lemma 6.1, we can consider 0’(S"~%) < '(C"). Therefore it
is classical that the #,-image of 0'($"1) is contained in Exp(C") (Theorem 4.1
(4.27)). Now suppose F & Exp;(C™). Then by Theorem 5.1 (iii), the functions Si(-)
defined by (7.20) satisfy
; N ISuFuss e kL™
s (15,91 = e 2002 =
= Zlil}: SUP(HSk(Fu).; MNizw k!)llk < 00,
— 00

where we used Lemma 7.4. Therefore by Theorem 6.2(i) r = oo, there exists a func-
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tional Te 0'(§*~1) such that (6.9) and that F(¢) = #,T({), which proves the
surjectivity of (7.14). The rest of the proof is same as above. m

Remark. The linear topological isomorphism (7.13) and (7.14) are very special
cases of the Ehrenpreis-Palamodov fundamental principle.
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One of the most important questions of analysis is the investigation of functional
dependences using the concept of the limit. With it, on the one hand, many con-
clusions are valid under rather weak assumptions (they hold, for instance, for map-
pings of topological spaces). This fact may give an impression that the possi-
bilities of the complex function theory (which starts from the consideration of com-
plex-valued functions of complex variables) are contained in an abstract mapping
theory of topological (or some more general) spaces.

On the other hand it is important to take into account that more specific as-
sumptions permit a richer theory. The functions regarded within the complex func-
tion theory lead to the concept of holomorphy. Holomorphic functions have vari-
ous specific properties. Their local behaviour determines, for instance, their global
behaviour. Such properties of holomorphic functions cause that the complex func-
tion theory is an autonomous theory describing the general concept of holo-
morphy.

From this, however, it is not yet possible to conclude thata boundless devel-
opment of the concept of holomorphy gives the unique end of a general “complex
analysis”. In our opinion from this the possibility of too affected generalization
started indeed (as again in the case of other mathematical theories). For some gen-
eralizations of the concept of holomorphy, for instance, the applicability seems
to be not satisfactory at all. :

There are, for sure, many immediate applications of complex analysis (for
instance those connected with the approximation theory of one or several complex
variables). Fundamental applications of complex analysis, however, are connected
with the theory of partial differential equations. This is true not only in the case
of Cauchy-Riemann systems and the Laplace equation (holomorphic functions
are, as it is well-known, connected immediately with these partial differential equa-
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