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B. Josefson [3] has recently proved that every locally C"-polar set is a globally C*-
polar set. Using the method of the proof developed by Josefson we prove that
every locally C"-polar set E is an L-polar set (i.e. there exists a function W pluri-
subharmonic in C" such that W = — oo on E and W(x) < B+log*|x| forall x e C",
where B is a real constant).

1. Introduction

Given an open subset D of C" we denote by PSH(D) the family of all functions
plurisubharmonic in D. We denote by L the class of all functions U plurisubhar-
monic in C” such that

U(x) < f+logtlx], xeC”,

where f§ is a real constant depending on U and |x| := max [x;].
. 1

<ign

The aim of this paper is to prove the following

THEOREM. Given any subset E of C" the following conditions are equivalent:

(2) E is locally C™-polar, i.e. for every point a € E there exist a neighbourhood
U, of a and a function W e PSH(U,) such that W = —co on EnU,;

(b) E is L-polar, i.e. there exists a function W of the class L such that W = —co
on E;

(¢) E is globally C"-polar, i.e. there exists W e PSH(C") such that W = — o
on E.

The implication (1) = (c) was a question posed by P. Lelong [4] which has
been recently solved by B. Josefson [3]. The main tool of the proof given b)-' Jo-
sefson is an “clementary” Lemma on systems of homogeneous linear equations.
The same lemma will be basic for the proof of our theorem.

The equivalence of locally polar and globally polar sets in R" with respect to
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subharmonic functions is well known. However in the case of C"-polar sets we cannot
apply the methods of the classical potential theory.

Functions of the class L found some interesting applications in the theory of
analytic functions of several complex variables, in particular in theory of interp-
olation and approximation by polynomials of several complex variables.

The class L permits to extend the classical notion of the Green function with
pole at infinity to the case of C". It also permits to generalize the notion of the
classical logarithmic capacity to the case of C”" in such a way that the C"-capacity
of a subset E of C” is equal zero if and only if the set E is C"-polar (see [6], [7], [8]).

The class L is a narrow and a very special subclass of the class PSH .
Nevertheless it follows from the Theorem that if U is any plurisubharmonic func-
tion in an open set D < C" then there exists a function W e L such that

{xeD: Ux) = —»} = {xeC™ W(x) = —ox}.

In fact the Theorem says more, namely, if E is any subset of C" such that E
is locally of the form {x € D: U(x) = —oo} with U € PSH(D), then E = {x e(™
W(x) = —co} with WeL. As a direct consequence we get that every locally
analytic set E = C” (i.e. for every point a € E there exist functions f, ..., f; holo-
morphic in a ball B(a, R) such that EnB(a, R) = {x € B(a, R): |f,(x)|+ ... +
+£()| = 0}) is L-polar.

2. Some known results

‘We shall recall some known results which will be used in the proof of the Theorem.

2.1. TuEoreM (Bremermann [1)). If D is a domain of holomorphy in C" and if
U e PSH(D) then Hartogs domain '
H:= {(x,5)eDxC: |y|l&¥™ < 1}
is a domain of holomorphy.

If F is a holomorphic function on H not continuable analytically beyond D
and if

F(x,y) = Y 0¥, (x,))¢H,
J=0

is its development into the Hartogs series then
U(x) = V*(x) = limsup V(x"), xeD
X~
where
V(x) := lirjnsup 1/)loglfy(x)|, xeD.
>0
2.2. HarTOGS Lemma, [2]. Let {U,} be a sequence of plurisubharmonic func-

tons in D < C™ which are uniformly bounded from above on every compact subset
of D. If HII?SUP Uu(x) < m in D, then for every ¢ > 0 and for every compact set
-0

K < D one can find ky so that Ui(x) S m+e, xek, k> k.
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2.3. Let {U} be a sequence of plurisubharmonic functions in a domain D < C*
hich are uniformly bounded from above on every compact subset of D. Put U(x)
= lmsup Up(x) and U*(x) 1= ]h:}sup U(x') for xeD. Then either U= —co or

k00 —X

1+ ¢ PSH(D). Moreover the set N 1= {x € D: U(x) < U*(x)} is of (2n)-dimensional
ebesgue measure zero. In particular for every point x, € D there exists a sequence
x¢} such that lim x = xo and U*(xo) —-:lclim U(x).

~ k=00 —+00

2.4. For every function U of the class L and for every r > 0
UR) < sup{UQ): Iyl < r}+log*(lx|/), xecCn
In particular, if p is a polynomial of n complex variables then

PO < lipll(xI/r)=?,  Ix] =7,
where

lipllr := sup{(pG)|: [x| <7} (see [6], [7D).

3. A lemma on systems of homogeneous linear equations
Let n, ¢, j, k, p and « denote fixed positive integers satisfying the following con-
ditions
(3.1) c>1, jzp=k">@2n+2), o= o :=4gkt
Put
M:={reZi:ry<pj,s=1,..,n},
M= {reZi:ry<a,s=1,..,n}
BLEMENTARY LEMMA, [3]. Let a,, reZ} be an n-fold sequence of complex
numbers satisfying the following conditions
(3.2 lagl > e %, la,| <1 forallreZy.
Then there exists a solution (U of the following system (S) of the homo-
geneous linear equations
(8) Z“’“‘x‘ =0, reM\M
teM
such that max |U,| = 1 and max|d,| > e~P/I?, where
1eM reM
d, = ;a,__,U, and  a,_,=0 if min (r;—1t) <0,
ie 1<ssn

Proof. Put My = Ny := Mand M, := M\ {r,...,r*}, where r*, s = 1, ..., o"
denote all the points of M®.
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The system of homogeneous linear equations
(Sy) Za,_,x, =0, reM,
teNo

has (pj)"~1 equations and (pj)" unknowns. Let (U})en, be a solution of (S,) such
that max|U? | = 1, and let #! be a point of Ny such that |Uj| = 1.
Put N, := No\ {t!} and let (U?)en, be a solution of the system
(82) Z GXe =0, reM,
teNy

such that max|U?| = 1, and let #2 be a point of Ny with |U2| = 1,

Continuing this procedure we may define forevery i = 1, ..., «" a set N; = M\
NAth .., '), where 1, ..., £ are different points of M¥, and a solution (Uf)ey,
of the system

(S) Z a_%: =0, reM,,
teN;_y
such that max|U}| = [Ui1| = 1.
t
Put Ui =0 for € M\N;_, and define
B= a U, reM, i=1,.., o
e
Then d} = 0 for r e M\ M®, because d! = 0 for r € M; and M;> M\ M~
In order to prove the lemma it is enough to show that
3.3) max{jdi]: reM, i=1,.., 0"} > e P2
because (Uex is a solution of (S) with max|[Uj| = 1fori=1,...,a"
t

Given two subsets Kand L of M with the same number of elements, *K = #L
= m, we put

DK, L) := det[a,_,]::f i=detla,_g], i,l=1,..,m,

‘where K = {r ™y L= {21, ..., 1™} and ! < Fi*1, ¢ < 41, < denoting the
lexicographical order in Z7.

Suppose (3.3) to be false, i.e. suppose that
(3.4) |l < e, reM, i=1,..., 4"
We claim that these inequalities imply the following inequalities
(3.5) [D(My, N))| > e=aUp"+inil2,  j= 1, on

Indeed, if i = 0 we have

ID(Mo, No)| = |D(M, M)| = |a,|®)" > e—eitin"

because D(M, M) is diagonal with all the diagonal elements equal to a,. So (3.5)
is true for # = 0.
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Suppose (3.5) to be true for i, where 0 < i < o and put b,, := g,_, when
(r,t) € MyxN; and (r, 1) # (r*2, 1743). When (r, 1) = (F'*1, 1*+1) we put

oo i
by = ar‘“—t“—l‘dra—ll/Ugall-

Then (Ui*!)en, is a nontrivial solution of the system

(3.6) Zb,,x. =0, reM,

teN;

Zb"U}"“ = Z; a4, Ujtt =0,
18N,

1eN,;

Indeed, if r # r'*1 then

1
I r=ri+t, .
ZbrtU:'H = Zar'+1—th+l”‘d.i—f4—’1 = 0.
1eN, 1eN;

Since the number of equations of the system (3.6) is equal to the number of its.
unknowns Xx;, it follows that

0= det[b,,] = D(Mn Nt)"D(M1+1 ) N1+1)dzf+11/U§ﬁ-11-
Hence, by virtue of (3.4) and by the induction assumption we get
[D(Mi 40, Nis1)| 2 ID(My, Ny [ePil? > g-dunr+C+0ipl2,

By the induction principle this implies that (3.5) follows from (3.4).
Now observe that the inequalities |a,..| < 1, r, t€ M, imply the inequalities

[D(M;, N)| < (iY@, i=1,.. 0"

But (pj)* <j** <j**'/@2n+1)! < &/, because j = p > (2n+ 1)L
Therefore

€Y) i [D(M,, N)| < e, i=1,.., 0"
Now, if i = «" the inequalities (3.5) and (3.7) imply
=)'+ apj /2 < j (@),
whence
ey < 2(c+ i)
because o = 4¢jp®~M", This contradicts the assumption that ¢ > 1. Therefore
(3.3) is true, and consequently the Lemma is true.

4. Two approximation lemmas

Again following the idea of Josefson we shall prove two approximation lemmas
which say that for every function f analytic in a given ball there exists 2 polynomial
g which is sufficiently “small” in the set where f is “small”,

APPROXIMATION Lemma 1, [3]. Assume that ¢, j,p and o satisfy (3.1), and
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let Fo(c,j) denote the set of all functions f holomorphic in the ball B(0, 3) such that
lao] = |fO) > = and |a,| < 1 for all r e Z}, where a, := D'f(0)/r! denotes the

r-th Taylor coefficient of f at 0. .
Then for every fe Fo(c,j) there exists a polynomial g of n complex varighles

of degree at most )= na such that
1< lglly < €

and .
1g@| < e Pz when |z1<1/2 and |f(2)| < 7P,
where ||g|lz denotes the supremum of the absolute value of g on the ball B0, R)
1= {lz| < R}. . ,

Proof. Given fe #,(c, ) let (U denote a solution of the system (S) given
by the Elementary Lemma, where a, denote the Taylor coefficients of f. Put

H@ = (Y. U7) @ = D 47,
teM

|r{=0

G(z) := Zd,z’, g(2) 1= G(2)/d,

reM
where

d,:= Za,_,U, and d:= max{ld,|: r EM}
teM

Then degg < nx = ¢}, |iglly = 1 by the Cauchy inequalities, and
liglly < 11Gll/d < *¥M* = o < ™ = e,
If 12| < 1/2 and [f(2)] < e™? then
. 1 frl
16| < 1HE) |+ -G < @iYe +@r Y (7)

reZINM
= @Yl +2-2(1-277Y],
because |d,| < (pj)* for all r e Z". Therefore, since by the Bernoulli inequality
Q=277 > 1—n-27%, we get
le@ < (e le® - 2" 2771
= (pjyre~PIIS[e=PIl3 4 - 2n - (e2/3[2)P] < (3pj)re~PIS < e~pi2,
when j > p > (2n+2)!. The proof is concluded.

APPROXIMATION Lemma 2, [3]. Let & (c,j) denote the family of all functions
S holomorphic in the ball B(0,4) such that

Ifla<1 and  |If|lya > 9.

Then for every function f e & (c,j) and for every p = k" with j = p > 2n+2)!
there exists a polynomial g of degree at most t; := na such that

@1 U< gl < 44
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and
@2 lg(2)] < e P2 when |2| < 12 and  |f(z)] < =P,

Proof. Given fe #(c,j) there exists x e B(0,1/4) such that 1) > e,
Put F(z) := f(x-+z). Then F e #o(c, /) and by the Approximation Lemma 1 there
exists a polynomial G of degree at most #; such that 1 < l1Gll: < ev, and |G(2)|
< e~PI2 when |z] < 1/2 and |F(2)| < e~P.

Put g(2) := G(z—x). Then g is a polynomial of degree < #; and ||g]|; < IGllsja-
Hence by 2.4

llglly < €¥(5/4)" < 4Y,

Since by 2.4 we have [|G|[; < 1|Glajs (4/3)%, so |lglly > Gl = B4y > 275,

Let now |z| < 1/4 and |f(z)| < e™#. Then |F(z—x)| < ¢=%/ and jz—x] < 1/2.
Therefore |g(2)] = [G(z—x)| < P2 when |z] < 1/4 and |f(z)| < e~P). The lemma
is proved.

5. Main Lemma

Let U be a plurisubhdrmonic JSunction in a ball B(a, R). Then the set E := {z
eC": |z—al < R/16, U(z) = —oo} is L-polar.

Proof. Without loss of generality we may assume that ¢ = 0 and R = 4. We
may also assume that U(z) < —3 in the ball |z] < 2.

Let F be a holomorphic function in the Hartogs domain

H = {(z,w) e C""1: [z] < 4, |w]e"® < 1}
such that F cannot be continued holomorphically beyond H and
|F(z,w)| <1 when |z[<2 and |w|< e

The function F may be written in the form.

F(z,w) = Zf,(z)wj, (w,z)eH,
J=0

where f; are holomorphic in B(0, 4). By Cauchy inequalities
@<, lzl<2,j=0.
Since F is not continuable beyond H, we have by 2.1
U(z) = limsup =) = V*(z)
where
Wz) := li%sgp(lﬁ)log Ifi@)|, ze€B(0,4).

The set EU {zeC":|zi< 1 /4, V(z) < U(z2)} is of (2n)-dimensional Lebesgue measure
zero, Therefore there exists a point x in B(0, 1/4) such that V(x) = U(x) > — .

20 Banach Center t, 11
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Hence there exists an infinite subset J of pesitive integers and an integer ¢ > 1 such
that
Ifillye > e, Jeld.

Therefore f; € (¢, j) for every jeJ. So we may apply Approximation Lem-
ma 2 to each function fj, j € J. Thus for everyi and psuchthatjeJandj> p = k*
> (2n+2)! we can find a polynomial g;, of degree at most #; := na; such that
27 < llgplls <_4tl
and -
(5.0 lepl)] < e ™2 when |2/ K 14 and *|fi(@)| < e P,
Put
g,(2) 1= limsup|g,(z) |1, zeCm
(0
It follows from 2.4 that for all admissible j and p we have
lgp(Z) 1 < max{l, 4]z}, zeC",
so the functions [g;, |/ are uniformly bounded from above on every compact sub-
set of C", and moreover .
5.1) g,(2) < max{l, 4z|} in C"
for all p.> (2n+2)!.
We claim that
(5.2 VT<03pVxeE gkx) < e,
where g#(z) := limsupg,(z). Suppose (5.2) to be false. Then there exists T <0
2oz

such that for every p one can find z € E such that g¥(z) > e™+*. Take p so large
that T > —)/p/48cn. Next take z, € E such that g#(z) > €7+, By 2.3 there exists
a sequence of points z, such that for every v g,(z,) = g¥(z,) and im g,(z,) = g#(z0).
v 0
Therefore
&(z) > T2, vz,

Hence for every » > v, there exists an infinite subset J, of J such that

pl[n«mjp(n—l)[n

4 - .
Ben =e P2 jey,.

|gip(z,)]| > eTt > e

Therefore by (5.0)

lfi(zk)l 2 E-“., ' ]‘EJ,,, v > Yo-
Hence

Vz)z —p, v >,

icm
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0
U(zo) = —00 > —p.
We have got a contradiction which shows that (5.2) is true.

By 2.3 the functions g¥ are plurisubharmonic in C". We claim that there exists
a point £ in the unit ball B(0, 1) such that

(5.3) limsup g*(&) > 3/10,
prco

Suppose that (5.3) is false. Then limsupgy(x) < 3/10 in B(0, 1). Therefore
o0
by Hartogs Lemma, given any & with 0 < & < 1, we have
&) <gf@ <3[9, ld<1-e, p> po= pole).
Hence
limsup [g,,(2)|"" < 3/9, |zl < 1-2, p> p,.
75
Again by the Hartogs Lemma
Igjp(z)l < (3/8)‘1’ lzl < 1"'25: j >j0(£’ p)a P> P0(6)~
Therefore by 2.4
gl < B3/ (1-28) < 12,  J > jo(e,p), p > pole),
when 0 < & < 1/8.
But we know that ||g;,||; = 2-% for all j and p sufficiently large with j > p.
We have obtained a contradiction which shows that (5.3) is true.

Fix any point & satisfying (5.3). Then by (5.2) we can find a sequence of posi-
tive integers {p,} such that

(6] gE(x)< e™ forall xeEand s> 1,
and
(3 1i2g$,(5) = 3/10.
We claim that the function W defined by
0
(5.6) W(x) := ) 2~*logg (x), xeC"

=
is a function of the class L such that W = — oo on E.

Indeed, by (5.4) we have W = —co on E. So it is enough to show that W is
a plurisubharmonic function of the class L.

First observe that W is uppersemicontinuous because for every R > 1 the par-
tial sums of the series

W(x) = Y 2-"loggs,(x)/4R +log(4R)

g=1

20+
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constitute a decreasing sequence of plurisubharmonic functions in the ball B(0, R).
Since by (5.3) W(x) # — oo, the function W is plurisubharmonicin C*. It is of the
class L because of (5.1).

6. Proof of the theorem

If E is locally C"-polar then for every a € E we can find a ball B(a, R,) and a func-
tion U, plurisubharmonic in B(a, R,) such that EnB(a, R,/16) « E, := {zeC™:
|z—a| < R,/16, Uy(z) = —co}. By the Main Lemma the set E, is L-polar. Since
E may be covered by a sequence of balls B(ay, R,,), E is contained in a countable
union of L-polar sets. Hence it is sufficient to apply the following

0
PROPOSITION, [7]. 4 countable union E = | ) Ex of L-polar sets E, is an
k=1

L-polar set.
Proof. Since a finite union of L-polar sets is L-polar, we may assume that

o0
E, < By (because E =kU1 Fy,, where Fy := E,U ... UE,). Let W, be a function
of the class L such that E, < {x: Wi(x) = —o}. We may assume that

6.1) sup{Wi(x): x| <1} =0, k>1.
By 2.4 we have
(6.2) Wi(x) < log*|x}] in C"forall k> 1,

so that the functions W, are uniformly bounded from above on every compact
subset of C".

We claim that there exists a point £ € C" and a number & > 0 such that
(6.3) liﬂs;lpe)(p Wi(&) > .
Otherwise we would have
v lirkris:;lpexp We(x)< 0 in C™
Hence by Hartogs Lemma
exp Wi(x) < 1fe, |x] <1, k > k.

Thus Wi(x) < ~1, x| < 1, k > ko. This is impossible because of (6.1).
Let now {k;} be an increasing sequence of positive integers such that

(6.4) lim W (&) > loge > —oo.

One can easily check that

W) = Y 27 W (x), xeCn,

i=1

is a function of the class I such that W(x) = —0 on E.
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