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ON THE BOUNDARY VALUE PROBLEM
ARISING IN THE RADIALLY SYMMETRICAL FILTRATION OF FLUID

1. Introduction. Let 8; denote the half-stripe (0, o) X (0, T'] in the
(z, t)-plane for some fixed T > 0. In this paper we investigate the mixed
boundary value problem

(1) Lu = —ay+ (u™) o+ (@ + &) (W™), =0 in Sy,
(2) u(x, 0) = uo(x) for z e (0, oo),

(3) u(0,t) = u,(t) for te[0,T],

in which

I. £> 0 and m > 1 are fixed constants,

II. u, = uy(x) for x € (0, o0) and u, = u,(t) for ¢ € [0, T'] are given
nonnegative bounded functions.

This problem arises in the study of a radially symmetrical nonsta-
tionary filtration of fluids or gases in a porous, isotropic and homogeneous
medium, surrounding the cylindrical reservoir. Under some physical
simplifications, if m = 2, the solution % = u(x,?) of equation (1) (the
so-called Boussinesq equation) describes the boundary of the saturated
region at time ¢ (see [12], [13]). The parameter & denotes the radius of
the reservoir, u, = u,(«) describes an initial level of fluid in the porous
medium, and %, = u,(t) describes the height of fluid in the reservoir at
time ¢. Especially: if m = 2 and

(2') ue(x) =0,
(3" u (})) =¢> 0,

then (1) describes infiltration of fluid into the unsaturated porous medium;
if m =2 and

2" uo(2) =¢,> 0,
(3") U (t) =, > 0,
where ¢, > ¢;, then (1) describes exfiltration from the porous medium.
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Note that boundary data (2’)-(3’) and (2")-(3"") do not satisfy the com-
patibility condition %,(0) = u,(0).

For applications, the knowledge of the solution of problem (1)-(3)
in a large time ¢ is important. On the other hand, we may expect that
after elapsing an arbitrarily small time = > 0 the solution of problem
(1)-(3) becomes regular. Therefore, if we study the process of filtration
since the time 7, then we may assume that at the initial moment the solu-
tion of problem (1)-(3) is regular. In this paper we assume that

III. uo(0) = u,(0),
IV. ug*~', u; are Lipschitz continuous and #,>c¢> 0 for some
constant c.

Equation (1) is a degenerate parabolic equation: it is parabolic for
u > 0, but it is not such if » = 0. In general, boundary value problems
for equations of this type need not have classical solutions (see [8]), and
80 we shall interpret solutions of problem (1)-(3) as generalized solutions.

Let 0<2<Z< 00, 0K<t<ILT, and B = [z,Z] X [t,t]. A real-
valued function f, defined on R, is said to be uniformly Hoélder continuous
with the exponent a € (0, 1] on R if there exists a positive constant C such
that

If(z, §) —f(2', 1) < C(lw—a' P+ [t —=¢'])*

for (z,t), (#',t) e R (cf. [2]).

By C'*¢ (R), where I = 0,1,2 and a (0, 1], we denote the Banach
space of functions f, defined on R, bounded and uniformly Hoélder con-
tinuous with the exponent a together with their derivatives of the form
(0]ot)y (0]0x)°f, where 0 < 2r+s<1, in R (cf. [2]).

By C*!(R) we denote the set of continuous functions f, defined on
R, with the derivatives f,, f,, f.. continuous in E.

We use the following definition which is a modification of the defini-
tion introduced in [9].

Definition. A function u defined on S, is called a weak solution
of problem (1)-(3) if

(i) » is nonnegative and bounded on Sy;

(ii) » € C***(S,) for some a € (0,1];

(iii) » satisfies the identity
(4)

Ty b

[ [ (fiutfuu™ —[@+ &7 flu "‘}dwdt—ffulzdw— f foum

T 4

“"-dt =0

for all 0 < &, < @y, 0 t1< t, < T, and for all fe O%'([xy, Z5] X [t1, t2))
such that fl:c=zl =f|:c=x2 =0;
(iv) u satisfies' conditions (2)-(3).
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A large class of boundary value problems for degenerate parabolic
equations for the one-dimensional nonstationary {filtration was investi-
gated in [11]. The problem (1)-(3) was studied in [4]-[6] for some classes
of boundary conditions. In [4] the existence of a weak (in a suitably
defined sense) solution of problem (1)-(2')-(3’) was proved. In [6] some
class of approximative solutions of problem (1)-(2’)-(3") was examined.

In Section 2 we prove the existence of the weak solution of problem
(1)-(3).. We show that it is a classical solution of equation (1) in the
neighbourhood of any point (x,,%,) where u > 0. Moreover, we show
that the flux (™), is a continuous function in S;. In Section 3 we prove
the uniqueness theorem. Some regularity properties of the solution of
problem (1)-(3) are obtained in Section 4.

2. Existence of the weak solution. In this section we prove the following

THEOREM 1. Let the assumptions I-IV of Section 1 be satisfied. Then
there exists a weak solution of problem (1)-(3).

Proof. In order to prove the existence of the weak solution we
follow the construction method given in [11].

We use the construction given in [5]. It follows from the results
of [5] that there exists a function w, defined on S, which satisfies con-
ditions (i), (iii), (iv) of the definition of a weak solution of problem (1)-(3})
and such that for any & e (0, 1) there is u e C***([8, oo) x [0, T]), where
» = min{l, (m—1)"'}. It remains to.show that e C°**(8;) for some
a €(0,1]. In order to prove this, it suffices to show that u is uniformly
Holder continuous in someé neighbourhood of the segment {0} x [0, T}

In view of the construction given in [56] we have
u = limauy,
where u, for k =1, 2, ... are classical solutions of equation (1), defined

on the rectangles @, = [0, k]1x [0, T] for k =1, 2, ..., respectively, and
such that

(5) Uy (@ 1) = Upyy (€, 8)  for (2,0) €Qr0Qsyy,
(6) il u(z, )< M for (x,1t) €Q,,
(7 ((uip=? (@, 0))| < L, for zel0, k],

(8) |(#:(0, &) < L, for te[0, T],

(9) if 6e(0,1), then

= (@, 1) — g~ (@, 1)) < Ky (o — o P+ 18 —11)"
for (93, t)) ("DI, t,) € [67 °°) X [0) T]thn
where the constants K,, L,, L,, M do not depend on k.
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Note that by (9) we have
(10) if e (0,1), then
[ (@5 8) — (&, ¥)] < Ky (|0 — ' P+ |t —1'])"
for (z,1t), (&',t') e [8, o0) X [0, T]N @y,

‘where » = min {1, (m —1)"!'} and the constant K, does not depend on k.
We shall prove that the functions u, for k¥ =1, 2, ... are bounded
from below by a positive constant in some neighbourhood of the segment
{0} x [0, T'], uniformly with respect to k.
LEMMA 1. Let the assumptions of Theorem 1 be satisfied and let u, for
k=1,2,... be the functions defined in the proof of Theorem 1. Then there
w18t positive constanis u, n independent of k and such thal

(11) b < u(x,t)

Jor (z,t)e@, =10,9]1%x[0,T] and £k =1,2,...
Proof. Let D = {(#,1): 0 <z < plog'?(t+7), 0<t< T}, where
0< o<1, v>1. For (#,t) e D we consider the function

z(w, t) = {A (t + 1:)—1 [92 — 2 log—l (t € T)]}ll(m—l)’

where A > 0. (This function was also used in [3].) We have

Lz = z(m—1)(t+4+17)"[1 —24mlog~ (t+ 1) —24Amz(z+ &) 'log ! (t+ 7)1+
+27™mA (m —1) @t (t+7) " Plog " (t -+ 7) [4Am(m —1)"1 —1]

in D for 0< o<1, v>1 and 4 > 0. From the assumptions on u, and
‘%, we have wu,(t)>=¢> 0 for te[0,T] and uy(x) > c/2 for x € [0, 7,],
where 7, > 0. For a fixed A we can choose a constant 7, > 1 such that
for 7> 1, and 0< o<1 we have 2(0,%) < u(0,?) for te[0,T] and
2(x, 0) < u(z, 0) for x € [0, 7,]. Set A = }m~'(m —1). Then for a suffi-
ciently large 7, > 7, we have Lz> 0 in D.

Choose a number g,e(0,1) such that g,log'?7, <#,. We have
u < uy for k =1,2,... and, therefore, z < 2, on the parabolic boundary
of Dn@, for k> n,. Since Lu,, = 0 in DnQ, for k¥ =1, 2, ..., from the
maximum principle (see [2]) we obtain 2z < %, in D@, for k > n,. Hence
we can choose positive constants u and %, 1 < min{l, 7.}, independent
of ¥ and such that p<w(r,t) for (v,t)e@, =[0,9]x[0,T] and
k =1,2,..., which completes the proof of the lemma.

Let g = g(s) be a C°([0, oo))-function such that g(s) =ms™" for
s€lu, M] and g(s) € [mu™ /2, 2mM™ '] for se[0, co0), where the
constant ux is the same as in (11). Then for ¥ =1, 2, ... the functions
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u;, are classical solutions of the equation
(12) = (g(w) )+ (@ + &7 g (w) u,

in @,. Note that equation (12) is uniformly parabolic. Moreover, from
(7), (8), and (10) we have

| (0, 1) —u, (0, 7)< Cle—t'[*  for ¢,¢ e [0, T],
<

[ty (2, 0) —’“'k(w" 0)] C[:v—a;'l’ for z, z' e [0, »1,

]uk(ﬂ’t)_uk("ht’)l Clt— tlvlz for %, t'e[O, T]

for ¥ = 1,2, ..., where the positive constant ¢ does not depend on k.
Hence, by Theorem 1 of [10], p. 476, there exist positive constants C
and a € (0, 1) independent of ¥ and such that

g (@5 8) — e (2, ¥)| < Clw — '+ [t —2'])*

for (z,1t), (#',t')e@, and k =1,2,. Therefore, the limit function u
belongs to C°*%(Q,). Since u € C°+"([n, ) X [0, T']), we have u € C°*+*'(,),
where o' = min{a, ¥}.

THEOREM 2. Let the assumptions I-IV of Section 1 be satisfied and
let u be the weak solution of problem (1)-(3) constructed in Theorem 1. Then:

(i) u is a classical solution of equation (1) in a neighbourhood of any
point (x4, t,) € Sp where u(x,, to) > 0.

(ii) The derivative (u™), exists and is continuous in Sp and, in particu-
lar, if w(z,t) = 0, then (u™),(x,1t) = 0. Moreover, if m < 2, then u, exists
and is continuous in Sy and, in particular, if w(x,t) = 0, then u, (x,t) = 0.

Proof. Let # = limu, be the weak solution of problem (1)-(3) con-
k
structed in Theorem 1. Suppose that u(x,,?,) > 0 for some (x,, t,) € ;.

It follows from (5) and from the continuity of # that there exists a number
>0 such that for (x,t) eR; = [%—38, %+ 8] X [t,—38,t,+ (T —1,)8]
and for k> x,+ 8 we have

uk(wy t) =

Let v = 4™ and v, = u; for k

and the functions v, for k> #,+ 0 satisfy the equation
() = Ak(a"a t)(vk)zx +Bk (, 1) ('vk)a:
in Rj, where A,(z,t) = mup'(»,t) and By(z,t) = m(z+ &) ul Y (x, 1)

7 — Zastos. Mat. 17.4
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for k> x,+ 3. We have

Vi (3, 1) = '“'” (a’oy to)

2m
K(lo—a' 2+ [t —1']),

|4, (@, 1) — A4, (@', )] <
B, (2, 1) —B,(«, t')| < K (lo—a' >+ |t —1'|) 1

for (z,1), (2',%) € R; and k > x,+ 8, where the positive constant K does
not depend on k. It follows from the interior a priori estimates for linear
parabolic equétions given in [2] (Theorem 5, p. 64) that there exist numbers
K> 0 and a e(0,1) independent of k and such that

10(@, 1) — (@, )| < B (o —a' P+ [t—¥' )78,
(0, &) — (0@, )| < B (lo—a/ P+ =),
(00)s (@, 1) — (V)5 (', 1)) < B (Je —a' P+ [t —1])*",
(0o (@ 1) — (0)z @'y )| < B (16— [t )72

for (z, 1), («',1) € R3,. Hence the limit function » has continuous deriva-
tives v, v;, v;, in Rj,, and therefore there exist continucus derivatives
Uyy Uyy Uy D Ry . Since the functions w, for k > @, + J satisfy equation (1)
in R;, w is a classical solution of (1) in Ry,.

In order to prove (ii) note that, by (i), if «(z,t) > 0 and (o, 1) € ST,
then u, exists and is continuous in a neighbourhoeod of (z,?), and the
-same is true for (u™),. Using (10) we can show that if (z,, t,) € Sy and
u(x,, t,) = 0, then (u™).(x,, %) = 0 and (u™), is continuous at (&, ).
Moreover, if m < 2, then u,(x,, t,) = 0 and w, is continuocus at (w,, t,):
The proof is exactly the same as in '[1'], p. 466, and we omit the details.

3. Uniqueness. We shall prove the followmg result:

THEOREM 3. Let the assumptions I- IV of Section 1 be satisfied. Ther
the weak solution of problem (1)-(3) is wunique.

Proof. Let » be the weak solution of problem (1)-(3) given in
Theorem 1. Recall that

u = limu,,
k

where u, = u(x,%) for k = 1,2, ... are strictly positive functions which
satisfy (1) in the rectangles @, = [0,k]x[0,T] for k¥ =1,2,".., re-
spect.vely. Conscquently, the functions wu, = wu,(x,t) for k =1, 2,
satlsfy (4) if 0 <2< 2, <k and 0<? < t,<T. Moreover, by t_he con-
struction given in Theorem 1, u,\ u.
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Let u* be an arbitrary weak solution of problem (1)-(3) and leb
g€ 0P (8;). We show that’
o T

f f(u—zi*)gdwdt =0.
0 0

In (4) we set 2, =0 and z, =7, where r> 0, {, =0, ?, = T. Let
k> r. Then for each fe C>'([0,r]x [0, T]) such that f|,_o = fl,, =0
we have

r T
13) [ f = {fit @@, O [fre— (@ + &7 F)] JAwar —

0

. o
_— ff(uk "'fu,*) ::?dm — ffa: (uZl _u*m) ::Z dt = 10,,
0 6
where
ul(z, 1) —u*™(x, 1) . .
it t ).
(14) ak(w, t): /u/k,(m’ t)_u*(x"t) uk(w, ) ;éru (ﬁ’ ),

mug " (2,1) it wy (@, 0) = u*(, 1)

for (»,t) € Q,.
Note that a, € (°**(Q,) for some y e (0,1) and, by (6),
(15) 0< ¢, = min mul*(w, 1)< a(x,t) < M
(x,8)eQy,
for (2, t) € Q,,, where the constants y and M do not'depend on k. Moreover,
since u,(t) > ¢ > 0 and u(»,?) > u(x, ) for (»,?) €@, and .k =1,2,..,,
there exist positive constants i and 7 independent of %k and such that

(16) B < (@, 1)

for (#,1) e@; =[0,7]1x [0, T].
Choose a number 7, such that g =0 for.z > ry—1 and consider,
for given r > r, and k > r, the following problem:

A7) Mf =fi+a, () [fe—((@+87)] =79 in (0,7)x [0, T),
(18) fl:c=0 =f|x=r =f|t=T =0.

It follows from Theorem .7 of [2], p.65, that for each r>r, and
k > r there exists a unique solution f®" of problem (17)-(18) such that
for e (2+8([0, #] x [0, T]) for some B e(0,1). We need some estimates
of fk,r.

LEMMA 2. Let ¥ >, and k=7 and let f*" be the solution of problem
(17)-(18). Then there exist positive constants C,, C,, C, independent of &
and r and such that
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(19) |5 (@, 1)

<
(20)  IfZ7(0, 1)< 0y for 0<i<T,
(21)  fer(r, I < 2C,(r+ &) e 40 (r+ H) e for 0SS T.

e foro<<ao<r, 0<IiLT,

Proof. Let @, = [0,7] X [0,T] and let
= {0} x [0, T]U[0, r]1 x {T}u{r} x [0, T].
Set #, = sup{z: g(»,?) #0,0<t< T} Put f*" = [exp(—Mat)]f*,

where the constant M occurs in (15) and ¢ = max{l, £%}. Then
we obtain

(22) Hfor =P+ ap (@, )5 —ay(®, 1) (@ + &) E7 -
+ [ak(w, t)(#+ &)~ —Mo]f*" = gexp(Mot)

in @, and fo|,_, = f*"|,_, = f*"li_r = 0. For (z,t) €Q, we consider the
functions

2,(®, 1) = f*" — M, exp (4 Mo(T —1t)+ (v, —x)),
23(2,t) = o+ M, exp (4 Mo (T —1) + (v, —2)),
where

M, = 2sup |g(@, t)exp(Mat)|.
(z,t)eS

We have 2z |, <0 and
Mz, = gexp(Mot)—M, [ex:p(4Mo —1) + (2, —x))| { —4 Mo+
+ (@, ) [1+ (@ + &) (@ )T >0
in Q,; 21, >0 and
Mz, = gexp(Mot)+M, [exp (4 Mo (T —t)+ (v, —))|{ —4 Mo+
+a(@, [+ (@+H 7+ (@+ H <0

in Q,. Hence, by the maximum principle (see [2]), 2, <0 and 2, >0 in Q,.
Therefore

|5 (@, )| < Myexp (4 Mo(T —1)+ (v, —x)) for (z,1) €Q,.

Hence |f*"(x,1)| < C,e® for (z,t) €Q,, where 0, = Mlexp(élﬂafl’—l—mg).
In order to prove (20) we use the method given in [7].
Let f%" = [exp(—Mot)]f*" and let Q; = [0,7]x [0, T] (see (16)).
Then f&" satisfies (22) in @; and f*7|,_, = f*"|,_y = 0. Moreover, by (19),
[f% (7, t)] < C,exp(MoT)exp(—7) for te[0,T]. For (z,t) e@; we con-
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sider the function
wy(x,t) =" +N, e V7,
where the positive constants N and N, are as specified below. We have
Mw, = gexp(Mot)+N, e ¥*{a,(xz, t) N*+ a;(z, t)(z+ &) N +
+ [ (@, 1) (2 + £~ — Mo}

in @; . It follows from (15) and (16) that we can choose N sufficiently large,
independent of k, and such that exp(—N7)<<1/2 and

ap (@, Y N>+ ay (v, 1) (@ + &) 7N +ap (2, 1) (#+ &) —Mo > §,

in @; for some positive constant J, which does not depend on k. Choose
N, > max{M, é;'exp(N7), 2C,exp(MqT)}, where the positive constant C,
appears in (19). Then Mw, > 0 in @, and, by the maximum prineciple,
w, cannot have a positive maximum in (0, %) X [0, T'). The function w,
attains the positive maximum on @;\(0,7%) x [0, T) if # = 0. Therefore
(w,),(0,2) <0 for te[0,T]. Hence f“7(0,t)<< NN, for te[0,T] and
the same is true for f%7(0, 1).

Analogously, if we consider the function w,(x,t) = f"—N,e~N® for
(z,t) €Q;, then we obtain the inequality —NN, <f2"(0, ) for t € [0, T].
Therefore |f%7(0,1)|<C, for te[0,T], where C, = NN,.

Now we prove (21). Let D, = [r—1,r]x [0, T] and let

= {r—-1}x[0, TJu[r—1,r] x{T}v{r} x [0, T].
Set f’“' = (x4 E)W*". The function »*" satisfies the equation
M Ro" = BT+ ay (@, ) [hy +(@+ 87 R = 0

in D, and h*%*|,_, = B*"|,_p, = 0. Moreover, from (19) we get |B*"(r —1, )]
< C,e~"! for te[0,T], where C; = C;max{l, £&'}. For (z,?) eD, we
consider the function

Y (@, 1) = BT 420, (x —r)e~ "1,

Since y, |z, < 0 and M,y, > 0, we have y, <0 in D,. Thus y, attains
its maximum at # = r. Hence —20;e "1 < BB (r, 1) for t € [0, T]. Since
Jor = (@4 &) WET + (@ + &)1 %", we have

for(r,t) = —20,(r+- 8 e "1 —Cy(r+ &) te™"  for te[0, T].
Analogously, if we consider the function
Yo(w, t) = W' —2C,(w—1r)e ™' for (x,t) € D,,
then we obtain the inequality

for(r, t) <205(r+&)e ™'+ C (r+ &) te™  for te[0, T].
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Thus |57 (7, 8)] < 20,(r+ &) e~ "1+ 0, (r+ &) ~Ve " for t € [0, T], which
completes the proof of the lemma.

If we put in (13) the functions f** instead of f, then we obtain

T
f f (20, — u*) gdewdi + f For (g —w®) |, do— [ FEm(up—a™™) Tt =0
0

for k=zr>r,. Hence, using (19)-(21), we have
r T

@) [ [ (n—u)gdodt| < 0, [ ¢ fur(, 0) —u(o) do+

0

o

T
+[20,(r+ &) eI+ 0 (r+ &7 6] [ [ (r, 1) —u*™(r, 8|+
0

T . .
+0, [ (0, t) —u ()| dt
0

for k> r>r,. Let k->oc0 in (23). Then
r T
Iff (u —u*) gdadt
0 0

< [205(r+ &) e 0y (r+ &) e -']f [u™ (r, 1) —w*™ (r, )| @

for r > r,. Hence, if r—oco, then

oo T

- ff(u—u*)gdwdt =0,
0 0

which holds for each g e 03°(8;). Therefore, in view of the continuity
of u and 4%, we obtain » = u".

4. Regularity properties of solutions. For the weak solutions of problem
(1)-(3) the following regularity theorem holds.

THEOREM 2'. Let the assumptions I-IV of Section 1 be satisfied. If u
18 the weak solution of problem (1)-(3), then (i) and (ii) of Theorem 2 hold.

Theorem 2’ follows immediately from Theorem 2 and from the
uniqueness Theorem 3 given in Section 3.

Remark. Physically, the continuity of (4™), means the continuity
of the flux of fluid.

THEOREM 4. Let %y = %y(%), 4y = Uo(x) for x € [0, o0) and u; = %, (1),
Uy = uy(t) for t e [0, T] satisfy the assumptions II-IV of -Section 1 and,
moreover, let

Uo (@) < o (@) for @ e [0, 00),  Uy(t) < uy(t) for t [0, T].
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Let w and w be the weak solutions of problem (1)-(3), which satisfy
the boundary conditions 7y, U, and g, 1y, respectively. ‘

Then w(z,1) < u(x,t) for (z,1)el;.

Proof. Suppose that u(z,, t;) > u(z,, 1) at some point (x,, ¢,) € Sp.
It follows from the continuity of %@ and u that there exists a ‘positive
number J, such that w(x, ¢) > u (2, 1) for (z,t) € By, = [@y— g, To-+ o] X
X [to— 0¢y Lo+ (T —1,) 6o]. By Theorems 1 and 3, % =limwu,, where

k

u, = u,(z,t), for k =1, 2, ... are strictly positive solutions of equation (1)
in the rectangles @, = [0,%k]x[0,T] for k =1,2,..., respectively.
Moreover, by (5) we have u;\ u.

Let g € C7°(S7) be a nonnegative function such that ¢> 0 in Ry
and ¢ =0 in ST\R,, Analogously- as in the proof of Theorem 3, for
r>=17, and k=1 we obtam

(24) ff(uk-—u)gda;dt—l—ff’” (14 —-u)lt odw—l—ff’”(u a’?‘)lx=0dt

dt,

T=r

— [ f2 g

0
where f% for r > r, and k > r are solutions of problem (17)-(18) in which
a,(x, t) is defined by.(14), where we put % instead of «*. Note that, by
the maximum principle, f** < 0 for k > r > r,. Moreover, since f*7(0, t) = 0

tor ¢ e [0, T] and k>7r>r,, we have f&r(0,1) <0 for te[O ?I'] and
k>r >r,. Hence it follows from (19)-(21) and (24) that ¥

r T
lf f (uk—ﬁ)gdmdtl
o 0
‘ T
<[205(r+ &) e +0y(r+ & 6] [ lufp(r, ) —u™ (r, 1)| dt.
Let k—oco. Then
r T
@8) |[ [ (w—w)gdodt]
0 o0
iy
<[20,(r+ &6+ Culr+ &) e7] [ [um(r, 1) —a™(r, 1)|d1.

_If r—oo, then from (25) we obtain

j'of(u'_—'d)gdwdt =0.
s
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On the other hand, in view of the choice of g, we have
oo T

f f (v —u)gdzrdt < 0.

This contradiction completes the proof of the theorem.
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J. GONCERZEWICZ (Wroclaw)

0 ZAGADNIENIU BRZEGOWYM
POJAWIAJACYM SIE W RADIALNIE SYMETRYCZNE] FILTRACJI CIECZY

STRESZCZENIE

W pracy badane jest zagadnienie mieszane dla nieliniowego réwnania réznicz-
kowego czastkowego Boussinesq’a. Zagadnienie to pojawia si@ przy opisie radialnie
symetrycznego procesu filtracji cieczy w ofrodku porowatym, otaczajacym zbiornik
o ksztalcie walca. Przy zalozeniu pewnej regularnosci danych brzegowych udowodnio-
no istnienie i jednoznaczno§é uogélnionego rozwiazania badanego zagadnienia. Udo-
wodniono takze pewne wlasnodci typu regularnoéci tego rozwiazania. Otrzymane wy-
niki mogg mieé zastosowanie w przyblizonym opisie procesu nawilzania suchego gruntu
przez ciecz wypelniajaca zbiornik oraz procesu sczerpywania cieczy z nawilzonego
gruntu.



