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THE SINGLE SERVER QUEUE WITH ERLANG INPUT
AND SEMI-MARKOV SERVICE TIMES

0. Assuming that the successive service times in a single server queue
form an m-state semi-Markov process, new results are obtained when
the input process is Erlang. Successive busy periods and queue length
are investigated.

1. Introduction. We consider a single server queue in which customers
arrive at instants 7y, 7,, ..., where {7, —7,_,}, 7, =0, n = 1,2, ..., are
independent and identically distributed Erlang random variables with
shape and scale parameters k and 1, respectively. Assume that the cus-
tomers are of one of m types and are served in order of arrival. Let the
successive customer types form an m-state irreducible Markov chain.
The successive service times are assumed to be conditionally independent
given this chain and depend on the transition occurring in the chain.
Such service times are called semi-Markov service times and were con-
sidered in [2]-[5]. Let J, be the type of the (n--1)-st customer to enter
the service and let X, denote the service time of the n-th customer. Here
we assume the double sequence {(J,, X,), » = 0,1, ...} has the follow-
ing properties:

-PI;Jn+1 =j, Xpn<o|Jdgy iy dp, X1y ooy X1
=P[Jn+1 = J, Xn+l <zl|d,] = QJ,n,j(w)7
X,=0as, PlJy=kl=p,k=1,...,m< oo.

Q;(®), i,j =1, ..., m, are non-decreasing, right continuous, and
satisty

Q;{x) =0 for <0, @y (o0)=P; and ZPij =1.

Denote the matrix {Q;(x)} by @(x). Let J, be the type of the last
customer to join the queue before time ¢ and J, = J, during the arrival
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time of the first customer. Let y(s) be the (m X m)-matrix with entries

p;;(8) = [ €*°dQ;(a), Re(s)>0,

and let 7,(s), ¢ =1, ..., m, denote the m cigenvalues of y(s) at the
point s. ,

In what follows we oObtain the busy period and the queue length
for the above queueing system. Results for the Poisson arrival process
are given in [4] and [5]. We prove the following lemma which is a gener-
alization of [4] in the sense of [4] and [7].

2. LEMMA. The equation
@) det [2°T —wy(s+4—22)] =0

has exactly mk roots in the unit circle |2] <1 if either Re(s) >0, lwj<<1
or Re(s)>0, |lw|<1. The m eigenvalues n,(s+A—Az) of the mailriz
p(s+A—12) can be defined as anmalytic functions of s+A1—2Az if in the
entire region Re(s) > 0 and |2| < 1 they are distinct or if some collection of
eigenvalues s identical for all such values of s and z, while the remaining
eigenvalues are distinct. In this case the equation

Z—wn,(s+1—2z) =0

has ¥ roots 7,.(s, w), 1 < r <k, in the open disc || < 1 for either Re(s) > 0,
lw|<<1 or Re(s) > 0, [w| < 1. The roots are

oo _ i1 j—1
(2) Tor(85 ) = ;‘1% (e, w'y ( ;8,-_1 [m<1+s)1"”°),

where &, = ™% 1< r <k, are k roots of unity. If ¥,(s,w) is defined
by (2) for Re(s) > 0 and |w| <1, then in this domain v,.(s,w) is a con-
tinuous function of s and w. Moreover, [V, (s, w)| <1 and 2z = 9,.(s, w)
satisfies the equation z = e, [wn,(s + A —A2)]"*. The roots 5,,(s, w), 1 < r < Ky
are distinct if w # 0.

Proof. Let 7,(s4 1 —12) be distinct and defined analytically in the
region Re(s) > 0, |2| < 1. Since the spectral radius of p(s+ 1 —42) is less
than 1 in Re(s) >0, |2/<1, we have 5,(s+1—42)<1, 1< o< m, in
this region. Equation (1) may be written as

(3) n[z"—wne(s—l—l—lz)] =0.

By Rouche’s theorem we know that each of the factors has k roots
in |2/ <1. In the region Re(s)>0, |2/ <1, we have 7,(s4+1—4) <1,
1< o< m. Since |w| < 1, Rouche’s theorem again gives the result. The
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analyticity of the roots #,(s, w), 1< o< m, 1 <7 <k, follows from the
analyticity of 7,(s4+A—Az2). The Lagrange expansion gives (2). If the
matrix (s 44 —i2) has multiple eigenvalues at all points of the region
Re(s) >0, |2/ <1, while the remaining eigenvalues are distinct, then
also the above arguments remain valid.

NON-SINGULARITY ASSUMPTION. We assume (s + 4 — A2) has m distinet
cigenvalues 7,(s+4—4z), which arc mnot identically zero, in the entire
region where Re(s) >0 and [2|<1, 1< o< m.

3. Successive busy periods. Let Y, 1> 1, denote the lengths of the
successive busy periods. Let I, = J, and let I, be the type of the first
customer to be served during-the (n--1)-st busy period (n =1,2,...).
Let ¥, =0 a.s. We apply the imbedded semi-Markov process method
used in [1], [4], and [6].

Let G;(n, r, n; ) denote the probability that a busy period con-
sists of at least » services, that the total service time of the first » cus-
tomers is at most x, that at the end of the n-th service r customers are
waiting, and that the next arriving customer at the end of the n-th service
is in the phase % related to the Erlang shape parameter and he is of type
j under the condition that the first customer of the busy period is of
type i. We put

Ty(n,r,n; 8) = [ e*a@;(n,r,n; @), n>1, Re(s)>0,

0

o k
Cylm, 25 8) = D) D' Tylm, 7, n; )%+, 2| <1,
r=0 n=1

Dy(w,2; 8) = D Cy(n,z; s)w"  hol<1
n=1
Pij('”w 0,7; 8) = I’ij('”" 75 8),

o k
By(w,y; ¢ 22 n,n; WY, ol <1, [y|<1
n=1 =1

Then E;(1,1; s) is the Laplace-Stieltjes transfcrm of the probability
G (z) that a busy penod is at most # and that the next arriving customer
is of type j under the condition that the initial customer is of type 4.

Let a,(s-+A—242) = [@y,y --+ Op,] denote the right eigenvectors of
the matrix y(s-+ 41— A2) corresponding to the m eigenvalues 7,(s+ 1 —2z),
1< o< m. Let the matrix T(w, s) with columns a,[s+4—415,(s, w)],
1 < ¢ < m, be non-singular for all s and w in the region Re(s) > 0, |w| < 1.
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We have the following recurrence relations for G:

z _ (ly)rk+'l—l
oo 1. . = z”-——-— oo .
651,775 @) ofe o n )T 905 )

For » > 1 we obtain

m

Gij('"’;”; N3 Z) = Z jzrfz(}iv(n—ly g, & z—u) X

v=1 ¢=1 ¢g=10
( M,/)[(r—q)k+ n—§+k]

[((r—@)k+n—&+ k]!

N aQ,; (u) +

m n z i (Au)”“e
+ ) D) [ Guln—1,rd1, &5 a—we e 40, ).

y=1 §&=1 0

Taking the Laplace-Stieltjes transforms we get

o _ y! )rk+n—1
(4) Iy, r,n;5 8) = fe (Hs)”—(%’?_'—ﬁ!—d@j(y);

0
m k r
(6)  Tytm,ryms ) = D) D Y Ian—1,q,& )%
v=1 {=1 g=1

X f e_(z-i-s)y (ly)[(r—Q)k-l'n—e.l.k]
[(r—@k+7n—&+E]!

0

L ~ )¢
+ ) DLt r41, 85 ) [ e g, ).

v=1 &=1
From (4) and (5) we obtain
(6) Ci;(1,2;5 s) = 2y;(s+1—A2),

4Q,;(y) +

(1) #0y(n, 25 8) = D Cp(n—1,2; 8)yyls+A—22) —
v=1

m k
—22]},(7»——1, §;s)z5w,j(s+l~—lz) for n>1,

y=1 {=1
whence
(8) 2Dy(w, 2;8) = we"* y,(s+21—A2)+

m m k
+w Y Dy (w, 25 8)p,(s+A—re)—w D' Y By (w, & 8)F py(s+1— ).

v=1 v=1 §=1
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Relation (8) gives the following matrix equation:
(9) D(w,z; 8)[*I —wy(s+4i—12)]
k
= w[*M I~ Y B(w, & s)zf]zp(sH—Az).
=1

The inverse of the matrix 2*I —wy(s+1—242) exists for all 2z, w,
and s in the region |2| <1, |w| <1, and Re(s) > 0 except for the roots

Z=7,.8w),1<o<m 1<r<k Then y(s+2—A42) takes the follow-
ing form under the non-degeneracy assumption:

(10) w(8+A—42) = R(s+A—A)H(s+A—A2) R™ (s +1—12),
Where
Hy(s+4—22) = 6;n,(s+2—22),
RBy(s+A—14) = ay(s+1—22), (R7'),;(s+Ai—1s) = By(s+A—A).
Using (9) and (10) we have

Dy (w, z; 8) = wZ[z"*’ 2 (W, E;s)ze]x

Za,e(s+l A2)n,(8+A—A2) B, (s + 1 —A2)
2F —wn,(s+ 21— 12)

forall 2 #£7,(s, w), 1< o <m, 1<r< k. Since the functions Dy (w, 2; s)
are analytic for all |w| <1, Re(s) > 0, |2|] <1, the zeros of the denomi-
nators are zeros of the numerators. For all o and r we get

Z [6””5:-1(8, w) — Zk’E,-,(w, &, 8) 55,(3, 'w)] X
=1

p=1

X, [84+24A—27, (8, w)]n,[s+A— 24, (s, w)]Byi[8+2A—2%,(s, w)] = 0.

Since 7,[8+ 1 —A7,.(s, w)] does not vanish and B, [s+1—17,(s, w)]
is Qifferent from zero for at least one j, we get

(11) 2 2 B, (w, £ 8)75,(s, w) 6, [8 + 4 — 47, (s, w)]

y=1 £=1
= P18, w)ay,[s+ 2 — Ay (8, w)]
for all 4, 0, and r. From (11) we obtain m?k linear equations satisfied by
m*k unknowns Ey(w, £, s).

It may be noticed that if k¥ = 1, (11) reduces to the result of [4],
and if m =1 and k¥ =1, this gives the one of [7].
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4. Queue length in continuous time. Let &(t) = (&,(t), &,(t)), where
£,(t) is the number of customers in the queue, &,(¢) is the phase of
the arriving customer at time ¢, and let J; be the type of the customer
being served at time ¢. Let 7, be the time of departure of the #-th cus-
tomer, n = 0,1, ..., and let 7, = 0. Let £(0) be the initial value of -£(t).
We have

(12) U:'z]'(‘% a, f) = f e_SIdPr[T;; <t E(T’:L) = (a, ), J’;z =j I Jo =1],

(8, 2) = 2‘ Zz“WUg(s, a, B)

a=0 =1
for Re(s)>0, ?|<1land » =0,1,..., 1<4,j<m, and
(13) Zw"U"(s ay B) = Vs, a, B, w w| < 1,
(14) (8, 2, W 2‘ (s, 2)w", lw|<1.

Using a similar argument as in the previous section we get

(15) TRt (s,2) = D Uh(s, 2)py(s+1—12) -

y=al
m k
— D D Un(s, 0, n)e"y, (s +2—2) +
=1 =1
m k
+ 3 U (s, 0, m) [A(A+ )T py(s+ A—2).
v=1 =1

By definition we obtain Uy = 0 if ¢ % j. Thus (15) gives

(16)  Z*Vy(s,2,0) = w D' Vy(s, 2, w)p,(s+1—12) —
=1
m k
22 (8,0, 5, w)2"p,.(s+ A —2A)+2%6,; Uy(s, 2)+
y=1 =1

£+ 3 37,6, 0, 1, 0) BT g5+ 2= 5A).

v=1 n=1
From (16) we get the following matrix equation:

A7) V(s, 2, w)[?"I —wy(s+1—12)]

k
= 2*0°(s,2) —w D'V (8,0, n, w) [o" =2+ (A)(A+ )+ ] pls + 21— 22).
n=1
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The matrix 21 —y(s4 4 —A2) is non-singular for Re(s) > 0, jw|< 1,
2] < 1 except for z = 7,,.(s, w), 1 < o< m, 1<r< k. Taking the inverse

of this matrix we have

ﬂg]'(s—"l _lz)
2F —wn,(s+ 4 —2)

Mg

(18)  Vyls, 2, ) = [#U8%(s, 2)aipls+ 2 —22) -

0=1

k
—~w Z V(s 0, 7, 0) [¢7 — 24+ (/A4 8))* 1] a (8 + A — A2) 7, (8 + 2 —Az)}.

n=1

Since the left-hand side is regular in [2| <1, Re(s) =0, jw| <1, we
get km? linear equations for the unknowns V,,(s, 0, , w) for 1 <4, v < m,
1< 9<k. We have
(19) U?,‘[-S‘, er(si w)]aie [6‘—[—1—;50,(8, ’MJ)]
m k
Vi(s, 0, 7, w) [5;’,.(3, k+1 (s, w)(z'/(;*‘}‘s))k_"ﬂl X
1

-3

v=1 n=

X a,[8+4+4—,.(s, w)],

which describes (17) completely.
Next we obtain the probabilities

(20) P(i,hy &5 5,a,1;51)
=Pr[&(t) = (a, ), J; =] | £(0) = (h, &),d; =1].

Let

(i, by &55,a,n;8) = [ € "Pli, k, & ], 6, n; t1dt,
0

zaH-ﬂ”"' h,&j,a,n;8), Re(s) >0, 2| <1

MR"

(21) my(8 Zm‘

a=0 7

I
-

and
N () th In =y &(zn) = (a, B) | Iy = 3].

Then by (13), (14), (18), and (19) we have

oo k

222“""“3] e‘s‘dN“ﬁ = Vy(s,2,1).

a=0 f=1l
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The expressions for (20) are

(22) P(i,h, &5,0,9;1)

¢
_,, (At)TE n o —up?
= 6* 6* 61: e a_ N 4 e At u)_————-—ngﬂ "
&n Yno Yij (n—8)! g! (1—B)! j( ),
. . * e'u(lt)(a-h)k+n—s
(23) P(’l«y h, §39,a,7;t) = 6ij6hk+6,ak+,;[1 —Hj(t)] (ORI st +
02_1 i Mt—u) [l(t—u)](“—“)k+n—ﬁ ,
' PR ANy (u)+
a=1 ﬁ——-Zloj.[ .1( )] [(a_a)k_l_n_ﬂ]! j( )
i [l(t—u)]ﬂ—ﬁ
+ 1 —H, (t —u)]e-re-0 PO avap oy 4
g"f[ Ay (n—B)! 5 ()
t
—H.(t— —Al—u) [ﬂ(t-—u)](a-l)kﬂ—l .
+of [1—H;(t—u)]e (e —1)% 77 =111 d MY (u),
where
H;(t) = ZQJ.,(t)’
y=1
630 and (5lta are equal to 1 for » = 1,2, ..., a and to 0 otherwise.

The Laplace-Stieltjes transforms mf;(s) of My;(«x) and ng}(s) of NY/ ()
are related by the following equation:

k
(24) my(s) = 2(1/(1+s))k-n+1n2};(8)+% 8 (A /(A4 8))Fm8+,

The fact that the event &£(f) = (0, %), J; =j occurs if there are
no customers in the queue at time 0 and no new customers arrive,. or
the customer of type j arrives at some time in the interval (0, 1], &(u)
= (0, B), and no new customers arrive is used to set up equation (22).
For (23) notice that the event &(f) = (a,n), J; =j can occur if the
service of the customer of type j started at time 0 is not over or the service
of the customer of type j started at some time in the interval (0, ], &(u)
= (a, f), a > 0, and the service is not over up to time ¢. The fourth term
corresponds to the case a = 0, the server is idle for some time before u,
&(u) = (1, 1), and new arrivals occur afterwards. The generating function
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(21) can be written by using (22)-(24). After some calculations we obtain

75(8, 2) = [L—hy(s+A—22))(s + 2 —2) 7 {Vy(s, 2, 1)+

k
+ D ((ANA+) g ()] +

=l
k .
+ (szg;' (s))(s + A —22)7 [hy(s + A —A2) — (A2 (A +-8))Y] +
2 0,(s-+A— M) [L—Ry(s+A— M) (A2/(A+8))*~¢+, R =0,
+{z’”‘*eéij(s—l-l—lz)'l[l——hj(s—}-}.—lz)], h#0.

The expected number of departures of customers of type j in the
interval (0, t] can also be written using the previous discussion. Assuming
the i-th customer leaves at 7, = 0 and setting

Nyt) = D) Plta<t, I, = | Jy = i],

n=1

by (12) and (14) we have
o

where V;(s,1—,1—) are given by (18) and (19).
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JEDNOKANALOWY SYSTEM OBSLUGI MASOWE]
Z ERLANGOWSKIM PROCESEM WEJSCIA
I SEMIMARKOWO WSKIMI CZASAMI OBSLUGI

STRESZCZENIE

Rozpatruje sie jednokanalowy system obslugi masowej, w ktorym czasy obslugi
tworzg proces semimarkowowski'o m stanach. Otrzymuje si¢ nowe wyniki dla procesu
wejscia typu erlangowskiego. Bada sie¢ kolejne okresy zathoéci systemu oraz dlugosé

kolejki.



