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ON A CLASS OF DISTRIBUTION-FREE TESTS
FOR GROWTH CURVES ANALYSES

It is noted that a class of distribution-free tests, based upon a family
of multivariate rank statistics studied by Puri and Sen [30], may be used
to compare the effects of experimental treatments on growth. An illustra-
tion of the proposed testing procedures is given.

1. Introduction. The analysis of growth and response curves is of
continuing interest in the sciences, and has engendered an extensive as-
Sortment of appropriate statistical methodology. For example, Wishart
[42] recommended that a general regression model be fitted to each curve
and that the effects of the experimental treatments be evaluated by ana-
lyzing the coefficient sof the model. Box [4], recognizing that successive
Observations on each experimental unit may be correlated, proposed that
Simple univariate analysis of variance be instead applied to successive
differences in growth values. Greenhouse and Geisser [17] noted that the
tests for treatment effects from the univariate analysis of variance are
appropriate only if the data conform to particular covariance structures,
and suggested correction factors otherwise; their work has been extended
by Huyhn and Feldt [20]. Parametric techniques of analysis based upon
the univariate analysis of variance are summarized by Bliss [3] and Winer
[41]. Elston and Grizzle [10] (see also [9]) described a method of obtaining
Confidence bands for estimated time-response curves, based on the mixed
Model of the analysis of variance. Church [8] presented a method whereby
@ principal component analysis is used to transform the growth curves
Into orthogonal components which thereupon may further be analyzed.
Snee [38] synthesized the univariate analysis of variance and the principal
Component analysis approaches; he recommended that the model suggested
b‘Y Mandel [27] for the analysis of two-way tables be adopted for the analy-
818 of response curves. In an extension of this work, Snee et al. [39] recently

Proposed a group of parsimonious models for the analysis of animal growth
Curves.
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Potthoff and Roy [29] generalized the usual multivariate analysis
of variance (MANOVA) model by the introduction of a post-matrix in
the expectation equation, and showed that, by means of this generalization,
growth curves analyses could be performed with MANOVA techniques.
This elegant approach was extended and improved in a series of papers
by C. R. Rao [33]-[35] (see also [21]). The testing procedure advocated
by Rao, based on notions of the multivariate analysis of covariance, was
further developed by Grizzle and Allen [18]; in particular, their approach
leads to methods of estimating parameters and performing tests that can
casily be implemented with standard multivariate linear model programs.
The generalized growth model introduced by Potthoff and Roy has also
been studied from a Bayesian viewpoint by Geisser [14], [15] and by
Fearn [11].

In certain experimental situations, however, it may be inadvisable
or improper to model the growth data parametrically. For example, in a re-
cent animal immunotherapy experiment (to be described in greater detail
later), it was observed that tumor growth curves in a homogeneous popula-
tion of mice subject to identical experimental conditions were vastly hetero-
geneous: tumor growth was roughly exponential in certain mice, whereas
.other mice exhibited tumor regressions which cannot be modeled exponen-
tially. To deduce an “average” representation or parametric growth curve
that would typify such heterogeneous responses would be highly mislead-
ing. Perforce one must therefore rely upon nonparametric or distribution-
free procedures to analyze such data. A number of such techniques have
recently been proposed for these analyses. For example, Zerbe [43], [44]
has developed randomization tests for the comparison of growth curves
with an assumed known parametric structure. Lehmacher and Wall [25]
and Lehmacher [24] have introduced generalizations of the Friedman rank
test for the comparison of samples of response curves. In this paper, it is
noted that a class of distribution-free tests, based upon suitably defined
multivariate rank statistics, may be used to compare the effects of experi-
mental treatments on growth. This class of distribution-free tests de-
volves from the basic rank permutation principle introduced by Chatterjee
and Sen [5], [6] and further developed by Puri and Sen [30]-[32] (see
also Ghosh et al. [16] and Bhapkar and Patterson [2]). The multivariate
rank statistics, and attendant distribution theory, are described in Scc-
tion 2, and testing procedures are discussed in Section 3. The procedures
are then illustrated in Section 4 with data from the animal immunotherapy
experiment mentioned previcusly. Certain concluding remarks are given
in Section 5.

2. Distribution theory. Let
X = (XY, X, ..., XYY, 1<j<m,
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be independent random p-vectors from population I7, with continuous
cumulative distribution function F, for k = 1,2, ..., c. It is desired to
test the null hypothesis

(1) H:F, =F,=..=F,=F,

Where F is an arbitrary element in &, the set of all continuous p-variate
distributions, against the alternative that at least one inequality among
the F, obtains.

A distribution-free method of testing this hypothesis, the test based
on 3 suitably defined multivariate rank statistic, may be devised upon using
the basic rank permutation principle introduced by Chatterjee and Sen
[5], [6], and discussed in detail by them (see also [30]). Under this principle,

all permutations of the N = 2 n, vectors of observations are equally
k=

likely under the null hypothes1s Let P, denote the permutation prob-
ablhty measure generated by the N!/IIn,! possible distinet permutations
of the observed data vectors among the ¢ groups. In this section, distribu-
tion theory for a particular multivariate rank statistic will be described;
thig theory devolves from the completely specified permutational prob-
ability law P '~ Appropriate test functions for (1) are discussed in the subse-
Quent section.

Corresponding to X®, let R{® = (B®, R, ..., RW)' 1< j< ny,

SN k < ¢, denote the vector of ranks: R is the rank of X(") among all N
Observed values for the i-th coordinate. Let

ng
8F) = p? Za (R,

j=

Where the a; (¢ =1,2,...,p) are univariate score functions related to
generating functlons @; on [0,1] by either

a;(j) = ¢;(§/(N +1))
or

@) (.)—‘D%‘(Ug('i))’ j=1,2,...,N.

In (2), for each i, UM < ... < UY) denote the order statistics in a sample
?tf 8ize N from the uniform dlstrlbutlon on [0, 1]. Without loss of generality,
18 assumed that the score functions a; are chosen to satisfy

m=N%2%m=0,
80 that =

1
= [ p(@)de = 0;
0
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it is furthermore assumed that each ¢, can be expressed as the difference
of two nondecreasing, absolutely continuous, square integrable functions
on [0,1].

From the rank permutational principle, the conditional moments of
the 8 may be readily found. Puri and Sen [30], for example, show that

E[S®Py] =0
and
cov[8¥), 8| PyT = (SN — ) 0y n /1 (N —1),

where d;,, is the Kronecker delta, and v; y, the (i, j)-th element of the
P Xp covariance matrix Vy, is given by
[

(3) Vi = 2 Za (R a; (B

=1 m=1

As will be noted in the next section, a suitable test of the null hypoth-
esis (1) may be based on the permutation distribution of the S%. Never-
theless, it is of interest to determine the asymptotic distribution of the
S® becaunse the permutation test may become unwieldy with increasing
sample size. However, in order to derive this joint conditional asymptotic
distribution, some a.dditiona.l structure must be imposed on F. If H,
obtains for some F e %, then, marginally,

c

4) vy =N Z%(R&,b%fq)f(t)dt, i=1,2,...,,
k=1 m=1 0
and, jointly,

5) vy = N7 j; 3" (B8 0, (R

=1 m=1

> [ [ [Py ()]s [Fipy(0)1dF i (w,0), 1<i<i’<p,

where F';; denotes the ¢-th marginal distribution of I, and Fy;;; denotes
the joint distribution of the ¢-th and 4’-th coordinates. The convergence
in probability of (4) is a well-known univariate result (cf. [19], p. 161);
and that of (5) follows as in Theorem 4.2 of [30] (see also Theorem 3.1 of
[31]). It should be noted that the joint distribution of the Sﬁ") is degenerate
because for fixed ¢ we have

[4]
anﬂgk) = 0.

This leads in general to consideration solely of {S®: ¢ =1,2,...,P
kE=1,2,...,¢—1}. So as to preclude degeneracy with this restncted seb
of ra.ndom va.rlables, assume under H, that F € #, « &, where £, is the
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set of continuous p-variate distributions such that the p X p covariance
atrix ¥V = (v;), where v;; is obtained by substituting the limiting values
(4) and (5) for v;;,n» 18 nonsingular. Then we have the following theorem,
Proved by Chatterjce and Sen.

THEOREM 1. Under the assumptions stipulated previously, the joint
permutation distribution of the p(¢—1) random variables {8V, i =1,2,...
Py k=1,2,...,¢—1} 18 asymptotically, as N—>oco, n,[N—>12,,0 < A,
<1, a p(c—1)-variate normal distribution.

It follows as an immediate corollary that the asymptotic unconditional
null distribution of the {S¥} is also p(c—1)-variate normal.

Suppose now that {F,y, Fon, ..., F.x} is & sequence of distributions
contiguous to some F € &, in the sense of Hajek and Sidak ([19], p. 202).
Here, F,, denotes the underlying distribution of the n, observations drawn
from the population I, (k =1,2,...,¢). Let

Hy(x) = N7} anFkN(w)'
k=1

The following theorem is useful for the power considerations of Section 3:

THEOREM 2. With the assumptions of Theorem 1, under the sequence
of alternatives H,y: {Fyyy Faopy -y Fon}, the joint asymptotic distribution
of the {8%,4 =1,2,...,p,k =1,2,...,c—1} is p(c—1)-variate normal,
With the same covariance structure as under H,, but with limiting means

E[8®] = u® = }’im f s (Hyy (@) @Fp, (2),

Where H i and F; arethe i-th marginal distributions of H y and Fyy, respectively.

Theorem 2 may be proved as in [30]. Alternatively, a more direct
})l'off may be provided upon exploiting the properties of contiguity, as
n [28].

The limiting distribution of the {8} under general alternatives may
also be found, e.g., by using results of Puri and Sen [31] or Koziol [22],
[_23_]- Indeed, the corollary to Theorem 1 establishing the unconditional
limiting null distribution of the {8{1, as well as Theorem 2, could instead

© established as special cases of the limiting distribution under general
alternatives. In this regard, the interested reader is referred to the afore-
Mentioned Papers for further details.

3. Test statistics based on {S{}. Under the null hypothesis, each
of the $% should be close to zero, their null expected value. Chatterjee
:’;lf(]l Sen [5], [6] argue that, for general alternatives, a test statistic that
o €cts the numerical largeness of any of the S® would therefore be de-

able. Accordingly, they propose that a positive definite quadratic form
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in these values be formulated. Puri and Sen [30]-[32] note that, after some
algebraic simplification, the overall quadratic form in the p(¢—1) linearly
independent 8% may be written as

[4
(6) Ly = D m [8®Y v [8¥],
k=1

where 8® = (8%, 8%, ..., 8¥)’, and the elements of V are given in (3).
Under Py, the permutation distribution of Ly is strictly distribution-free
whenever H, obtains; hence an exact size a test can be constructed upon
reference to all N'!/IIn,! possible permuted values of L,. Chatterjee and
Sen [5], [6] give specific details concerning median and rank-sum tests
based on this premise. By Theorem 1, the permutation test procedure based
on L, is simplified in large samples: one either rejects or fails to reject II,
as Ly > or < X7 ,_1y, the 100(1—a)% point of the y*-distribution with
p(c—1) degrees of freedom.

A second class of test statistics is suggested from the theory of rank
tests for randomized blocks (cf. [19] and [26]). Let

P
8= D8P, k=1,2,...,c.

=1

Then the vector 8 = (8;,8;,..., S,—;)’ has mean 0 and permutation co-
variance matrix

Wy = (N—=1)"'¢ Vye[(N/ny) 6g—1]

under H,, where ¢’ = (1,1, ...,1). A permutation test procedure may be
based upon the quadratic form

!y — , 1l n.n
() My = SWHS = (N—1)(e'Vye)~'8 [Fk Bg+ L’;”“]S

[
J vt Sus,

k=1

B (.N—l

since

énkSk = 0.

k=1

Under the permutation principle, suitably large values of M, would lead
to rejection of H, Moreover, by Theorem 1, M, is asymptotically dis-
tributed as @ x2 random variate with ¢—1 degrees of freedom under Ho
which affords an approximate «-level testing procedure with finite samples-
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It is of interest to compare the testing procedures based on L, and M y.
Suppose for concreteness that under {H,,}, the sequence of local alterna-
tives delineated in Theorem 2, we have

Fyy(@) = P(a+0PN-),

Where F e #, and 6% = (61, 6, ..., 6®)". It follows from Theorem 2
that, under {H,y}, Ly asymptotically has a noncentral y2-distribution
With p(¢c—1) degrees of freedom. Furthermore, Puri and Sen [30] prove
that the noncentrality parameter 4, is given by

Ay = D) 2 (u®y V1 (u®),
k=1

Where

(k)

) = (1

p 2SI

with
u = O(k)fd—qalF[l]w))dﬁ[l]m), i=1,2,...,pe

Similarly, under {H,y}, My is asymptotically noncentral z? with ¢—1
degrees of freedom and noncentrality parameter

Ay = (€'Ve)y™ Y hle'u®T.
k=1

Since Ly and My, indexed by unequal degrees of freedom, have
different, asymptotic distributions, specific comparisons in terms of Pit-
Man efficiency are difficult. In terms of Bahadur efficiency, the statistic
With the larger noncentrality parameter is to be preferred. In this regard,
it is by no means certain that 4; dominates 4,,. For example, suppose
that F factors into the product of its 1dentlca,113 distributed marginals,
and that ul® = y,, say, for k =1,2,...,c. Then

dy = D h(pyifon)
k=1

and

Ay = (Pv1)” Z]'k pyi)’ = 4.

In thig situation, both statistics have the same noncentrality parameter,
30d hence are indistinguishable in terms of Bahadur efficiency. In actuality,
Dlevertheless, M, would be a more powerful test than Ly, because it has
tewer degrees of freedom.
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If information is available concerning the functional form of F, then
the score functions ¢; may be chosen so as to optimize the power perform-
ances of Ly and M. Further details may be found in [30].

4. An example. A recent experiment by Schlager et al. [36] demon-
strated that a combination of normal spleen cells, immune RNA, and tumor
antigen, injected together five days subsequent to the inoculation of
guinea pig hepatoma cells, induced total regression of the tumors. Inves-
tigators at the Cancer Center of the University of California at San Diego
have conducted a series of experiments to ascertain whether a similar regi-
men of immunotherapy would prove efficacious with colon carcinomas.
(Reésults and inferences from these experiments are reported in greater
detail by Fukushima et al. [12], {13].) In these experiments, each of a ho-
mogeneous population of BALB/c mice was injected with a fixed number
of CT-26 (mouse colon carcinoma) tumor cells. Five days later, the popu-
lation was randomly divided into subgroups, and each group was then
subjected to a different regimen of immunotherapy. The mice were then
observed for some period, and the sizes of the tumors were systematically
recorded. Upon analyses of the tumor growth curves from these experi-
ments, it was concluded that the sequential administration of syngeneic
spleen cells, anti-CT-26 immune RNA, and CT-26 tumor antigen signifi-
cantly inhibited the growth of colon carcinoma in BALB/c mice.

A later experiment was designed to evaluate the specificity of the
tumor growth inhibitory response observed in earlier experiments. In
this study, tumor antigen extracted from BP/B5 tumor cells and immune
RNA extracted from the lymphoid tissues of sheep immunized with BP/Bb
were substituted for CT-26 tumor antigen and CT-26 immune RNA in
various experimental groups. (BP/B5 is antigenically unrelated to CT-26.)
In Fig. 1, median tumor sizes of the experimental groups, each consisting
of 12 animals, versus time are plotted. There is some indication in Fig. 1
that the normal spleen cells 4 CT-26 I-RNA + CT-26 TA treatment group
differs from the other experimental groups in terms of tumor growth.
A distribution-free test of the null hypothesis of no difference in tumor
growth rates among the five groups would be appropriate, because growth
rates within any particular group may not be homogeneous if tumor regres-
sions were to occur. Hence the statistics Ly and My in (6) and (7), respect-
ively, may be calculated to test this null hypothesis.

With regard to computational aspects of the calculations, randomiza-
tion was used to assign ranks to tied observations. As H4jek and Siddk
([19], Section II1.8.1) note, this technique does not affect the significance
levels of the resulting tests. For simplicity, the score functions a,(-) were
chosen as a,(j) =j—61/2 (j =1,2,...,61,¢=1,2,...,21) since dat®
were collected on 21 different days. This choice of a,(-) yields Wilcoxon
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Scores, and thereby a test statistie, that is the analogue of the Kruskal-
Wallis and Friedman nonparametric statistics for one-way and two-way
layouts, respectively. With these a;, it was found that L, = 140.9
(» = .0001) and M, = 38.2 (p < .0001). By comparison, if normal scores
are used for the a,(-), then Ly = 135.1 (p = .0004) and M, = 38.2
(» <.0001). When this analysis was repeated, excluding the normal
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Fig. 1. Growth of CT-26 induced tumors in response to various therapeutic regimens
Tumor volumes (mm3) represent medians of 12 animals '

———— no treatment, — ® — spleen cells + «CT-26 I-RNA + CT-26 TA, —-— spleen cells + aBP/BES
I'RNA+BPIB5 TA, —O — spleen cells + «CT-26 I-RNA +BP/B5 TA, — — — spleen cells+ aBP/B5
I-RNA +CT-26 TA

Spleen cell +-CT-26 I-RNA +CT-26 TA group from the calculations, both
Ly and M, failed to be significant. One might thereby conclude that
the anti-tumor effect is specific in that both anti-CT-26 I-RNA and CT-26
TA are required in order to retard the grewth rate of CT-26 tumor trans-
Plants; if I-RNA from the Iymphoid organs of sheep immunized with
the antigenically unrelated tumor BP/B5 was substituted for anti-OT-26
L-RNA or if TA extracted from BP/B5 cells was substituted for CT-26
TA, the anti-tumor effect against CT-26 transplants was abrogated.

. 9. Summary and concluding remarks. The basic multivariate rank
Ivariance principle introduced by Chatterjee and Sen [5], [6] leads to
% class of distribution-free tests that may be used to compare the effects.
of experimental treatments on growth. These tests were described in
Section 3, and an illustration of their use was given in Section 4.

One might regard the test statistic L, from (6) as an omnibus testing
Procedure in that Ly should be sensitive to any departures from the null
hYQothesis (1). If no prior information is available concerning the alter-
Dative of interest, L, should be the appropriate statistic upon which in-
ference is to be based. However, since there is no best test of (1), the very
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omnibus naturc of L, also means that there cxist other procedures for
assessing (1) that will be more powerful than L, against particular alter-
natives. For example, it was shown in Section 3 that the statistic My
from (7) will be more powerful than L, if there is a stochastic ordering of
distributions under the alternative. This type of alternative seems quite
reasonable in animal experiments in which treatment effects can essentially
be summarized by growth curves. Indeed, in the example in Section 4,
M, was a more sensitive statistic than L, to the departures from the null
hypothesis evidenced in the data. The discussion by Terpstra [40] is of
relevance here: if precise knowledge of the anticipated alternative is avail-
able, one could possibly define generalized versions of the statistic My
from (7) by incorporating arbitrary weightings

P
8, = Zbgk)sgk))

i=1

where the weights b%) might be chosen to optimize the power properties
of the resultant test. Such weighted versions of M, might also be appro-
priate for particular directional alternatives and for alternatives of loca-
tion shift at some time point during the experiment. Barlow et al. [1]
elegantly summarized multivariate approaches to the former problem,
and Chernoff and Zacks [7] introduced a Bayesian approach to the latter
problem which has since stimulated widespread interest (see, e.g., [37]
for a multivariate generalization of the Chernoff-Zacks results). A second
means of increasing the power of the generalized class of test statistics
devolving from M, is by appropriate choice of a score function. Inasmuch
as the example in Section 4 indicates that the choice of a score function
alters the resulting test statistics only very slightly, one might be content
with Wilcoxon or normal scores, which are readily available and reflective
of sensitivity to light to moderate tail behavior of the underlying dis-
tributions.

Finally, it should perhaps be noted that the nonparametric approaches
for the comparison of growth curves proposed by Lehmacher and Wall [25]
and Lehmacher [24], although superficially similar to the procedures
described herein, differ fundamentally from them: Lehmacher and Wall
consider the k-th sample of n, growth curves as a design of n, independent
randomized blocks “treated” by p different points in time, whereas in this
paper each set of observations at a fixed time point constitutes a “random-
ized block” with treatment classifications, but the blocks are not assumed
to be independent. Accordingly, Lehmacher and Wall rank the coordinate
values of each individual observation X{® across the p time periods, this
ranking proceeding independently for each of the observed vectors X}k’-
In contrast, herein the ranking encompasses all the individual (marginal)
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observations at every time period, and the rankings at different time periods
proceed independently of one another. As Lehmacher [24] points out,
the test procedures advocated by himself and Wall are insensitive to alter-
natives in which there are either level or monotone increasing differences
in growth patterns among the ¢ treatment groups. In particular, their pro-
cedures would be rather insensitive to those alternatives for which the
statistic M, would perform well.

Acknowledgment. This research was supported by grants 1-Ro01-
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