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SEQUENTIAL CLASSIFICATION
IN THE CASE OF MANY POPULATIONS

1. Introduction. Suppose that we consider a certain object belonging
to one of m general populations x,, ..., x,, but we do not know to which
of them. Our task is to classify the object into the proper population on
the basis of the values of measurements of p characteristics of the object.
This is a classification problem where all the characteristics of the object
ay be observed simultaneously, and it is known as a decision procedure
With a fixed number of characteristics (cf. [1] and [4]). In this method
the cost of measuring the characteristics is not considered. It is obvious
that an insufficiently large number of measured characteristics does not
allow us to obtain satisfactory results of the classifieaticn procedure. On
the other hand, the measurement of an excessive number of characteristics
I3 undesirable from a practical viewpoint. A rational interrelation between
the number of misclassifications and the number of observed character-
Istics may be obtained by the sequential observation of characteristics,
Where the sequential process is terminated when a satisfactory or required
level of accuracy is achieved in the classification.

The problem of sequential classification in the case of an infinite
Dumber of observed characteristics was first considered by Reed [5].
He introduced the generalized probability ratio and on this basis he pro-
Posed the sequential procedure of elimination of populations. In the case
of two populations this procedure reduces to Wald’s classical sequential
Probability ratio test. The two modifications of Reed’s procedure in the
Case of a finite number of observed characteristics were given by Fu [2]
and Krzygko [3].

In this paper another form of the sequential classification method for
?'hi? case of many populations and a finite number of observed character-
18tics is presented. This method is a modification of the non-sequential
Bayesian classification rule.
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2. Method. Assume that f;(z,,..., %) = fi.(®) is a known density
function of a k-variate random variable X; = (X, ..., X;;)’ whose values
can be observed in the objects belonging to a population =; for ¢ e M
={1,...,m} andkeP ={1,...,p}. The known a priori probability of the
event of classifying the object into population =; is denoted by g;
(;>0,q;,+ ... +q, = 1), and the loss caused by a misclassification
of an object into population #; whilst it belongs really to population =; is
denoted by L(j|¢) for ¢, j € M. If L(j|%) is the so-called simple loss function
of the form

o 0 if j=yq,
Lan) = {1 if § 4,

then the Bayes risk r is expressed as

r = 1—2%‘ ff‘ip(m)dm

=1
i ng)

and the optimal (in the sense of minimizing the value of r) non-sequential
classification region W takes the form

m

(1) WO = {@: A\ (0:55@) > ¢fp@)}, <M.

i

The non-sequential classification procedure is described as follows.

The object with the observed vector @, of p characteristic values
belongs to population =; if &, € W!P, ; ¢ M. Every object can be classified
by this method but the probabilities of misclassification may be greater
than the admissible ones.

We now describe a sequential classification method related to the
Bayesian classification method. At each step of this method we can verify
the probabilities of misclassification.

The process of sequential classification takes the following form.
At the first step we observe only the value z,, of the first characteristic of
the given object, and we wish to clagsify it as belonging to one of m
populations =, , ..., m,. Let Pr®(x, |7;) be the probability of misclassifica-
tion of the object to population s; on the basis of only one characteristic
when in fact it belongs to population x;, ¢,j € M, j # i. We would like t0
undertake the classification in such a way that the inequalities Pr¥)(zx; |7;)
< a;(1) are met for values of a;(1) selected by us in advance, ,j € M,
j # 4. For this purpose we define m non-intersecting classification regions
of the form RY = W, i ¢ M, where WY is given by (1). We have

Pr“)(ni{nj) = Pr(z, G-Rgl) [7;) = ffjl(“'l)dwu i,jeM, j #1i.
rY
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If the inequalities

(2) fﬁ1($l)d$1<aij(l)1 i,jeM, j #1,
o

are satisfied for all ¢, j € M, j # ¢, then the observation z,, is assigned to
Population 7; when z,, € R{"), and the classification process is terminated.

If for each fixed ¢ there exists at least one j € M, j # ¢, for which
inequalities (2) are not met, then we define the classification regions

T?’ = {‘” (!hfu (z,) = 4;(1) q;fn wl))]’ 1€ M,,
J¢1

IO = o2 (n ¢ U R(l))/\(w ¢ U o),

teM 1

Where M, is the set of those indices of populations for which inequalities
(2) are not satisfied, A,;(1) are constants fulfilling the inequality 4,(1) > 1
Whose values are related to the probabilities of misclassification. The
boundaries 4, ;(1) are chosen so as to ensure that the inequality

Pr®(x;|m;) = Pr(z, € TV 7)) < a;;(1)

I3 met for the given values of a;(1), i.e. they satisfy

ff]l(wl)dwl ay(1), dteM,,jeM, j #i.

()

T is the region in which no classification can be made on the basis of
only one characteristic.

We now verify whether there is such an ¢, € M\ M, for which «,, € R“)
Or such an 4, € M, for which z,, € T{)). If it does exist, then we decide that
the object is a member of popula.tlon n;- If however such an 1, does not
eXist, i.e. if z,, € T, we observe x,,, the value of the second characteristic
of the object being classified.

In the case of two variables we use truncated distributions considered
Over the region

8® = TW x {z,: —o0 < @, < oo}
Let us put

S (@, @) = Ci_zlfiz(mla %),
Where

Ciy = ffiz(a’n @) dw dawy, i€ M.
s(2)
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We define m non-intersecting regions of the form

m
R{) = (@, ‘”2):_/\1 (ff (@1, @) = fla (g, )} X TP, e M.
j=

J#i
We have
Pr(m;|w;) = Pr((#,, ©,) € B |m;) = ff};(a:l,xz)dmldmz, i,jeM, ] #i.
r{)
If
(3) [ (@, @) Ao do, < 0y(2), 4,5 e M, § #,

2
r®

then the observation (x,,, x,;) may be classified as belonging to population
m; when (z,,,x,;) € B?), and the classification process is terminated.

If for each fixed 4 there exists at least one j € M, j # ¢, for which
inequalities (3) are not met, then we define the following two-dimensional
classification regions:

T® = {(y, 2,): /\ (Fi(my, @) = Ay (2)f5 (21, )} XTP, i e My,
J#z

ng) = {(wu 2,): ((“"uwz) ¢ U R?))A ((-’1’17 @,) ¢ U ng)” XTE’I)’

ieM\ M, ieMy

where M, is the set of those indices of populations for which inequalities
(3) are not met and 4;;(2) are constants fulfilling the inequality 4,;(2) > 1
whose values are related to the probabilities of misclassification. The
boundaries A,;(2) are chosen so as to ensure that the inequality

Pr(m; |m;) = Pr((2y, ) € T | m;) <
is satisfied for given values of a;(2), i.e.

[ iy, @) doyde, < ay(2), e M,, jeM, j+#i.
{2

The region T{) is that one in which no classification can be made on the
basis of the values of the first two characteristics.

We next verify whether there is an ¢, M\, for which
(%01, Zo2) € R or an i, € M, for which (o, %) eTf-f)). If it exists, then
we decide that the given object is a member of population ;. If no such 19
exists, we observe the third feature of the object x,.
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The classification process is continued until we have decided that the
Object belongs to one of the populations =, ..., 7, or to the exhaustion
of the predetermined number p of characteristics. In general, after ob-
Serving the value of z,;, the k-th random variable, we use truncated dis-
tributions

Fle(@yy ooy @) = 65 fi(@1y ooy )
Considered over the region

8E = TED x {g,: —oc0 < @, < oo},
Where

Gy = ffik(wl, cery Tp)doy ... dxy,, teM, keP,
s(k)
and
T = {@,: —o00 <@ < }.

Let us define m non-intersecting regions

ng) = {(wn seey wk):j/—\l (fgﬂ(-’vu ooy @) = fin(@ry oony wk))} X Tgk_l)’

i
ieM, keP.
We have
Pr(k)(:rcil:nj) = Pr((ay, .- e R®|x ;) = ff'lic Lyy eeey L) A2y .00 A2y,
r{®)
i,jeM, j #1t, keP.
It

W [fa@y . o)de .. Ay < ay(k), i,jeM,j#i, keP,
r{F)

then the observation (g, gy ...y Tox) May be classified as belonging to
Population 7t; When (g, Tagy +- ., To) € RS ’, and the classification process
I termlnated

If for each fixed ¢ there exists at least one j € M, j # i, for which
equalitieg (4) are not met, then we define the classification regions

(5) T — (@) eny )

_/\1 (f#c(wu veey Bp) = Az‘j(k)fﬁc(‘vu ) wh))} X -Tg)k_l)y 1€ M,,
j=

i
T = {2y, ..., T) (g 0eey @) ¢ ' ML\)M R®) A
1€ k
A ((-’1’17 ) ¢ U T(k))} X.T(k h,

1ek

5
= Zastos. Mat. 18.3
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where M, is the set of those indices of populations for which inequalities
(4) are not met, A;(k) are constants fulfilling the inequality 4,(k)>1
whose values are related to the probabilities of misclassification. The
constants A (k) are chosen so as to ensure that the inequality

Pr(k)(ﬂilnj) == Pr((a/'l’ cesy Cvk) € Tik) I W)) < ai](k)

is satisfied for given values of a;(k), i.e.

(6) [fh(@yy ey m)day .. dry, < ay(R),
(k)
T3

ieM,,jeM,j #1i, keP.

T is the region in which no decision about the classification of the object
can be made on the basis of the values of the k characteristics. We now
verify whether there exists such an ¢, € M\ M, for which (zy,..., Zo)
€ R{-’o‘) or an i, € M, for which (&, ..., %) € T\, If it exists, then we decide
that the object belongs to population ;. If not, i.e. if (g, ..., Zo) € T5
then we observe the value of the next characteristic of the given object
provided k < p. If &k = p and (@, ..., %) € T, then we cannot classify
the given object within the probabilities chosen in advance. In this ex-
ceptional situation, the observation (), ..., x,,) should be classified as
belonging to population =; if (g, ..., %) € WP, i € M, where W is
given by (1), but in this case the probabilities of misclassification may
be greater than those selected in advance.

In order to find the values of 4 (k) for which inequality (6) is satisfied,
it is useful to know the intervals within which the A4;(k) vary. We have
already known that the A4(k) must satisfy the inequality A (k)>1-
Now we turn to the upper bounds for given values of a;(k),%,j € M, k € P-

The following relation holds:

m
Y [fu@de =1, jeM.
i=0 Tgk)
Hence
(7) [fr@de<1— ) [ fi(@)de, ieM.
{9 jai T

Let us integrate the function f&(x) over the region T%). Using (5) W°
obtain

(8) [ @ de>4,() [fi@de, & jel,]+i.

K
¥ )
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From (7) and (8) we have

I—Za,, ; A fix () dxe
i T

> [ fu@de> A,k [ fi@de = A, E) ay, (k).

)
%) P

Thus the boundaries A,(k) fulfill the inequality

1<4 (1 Z”?aji(k))/aij(k)’ i, jeM, j #1.

j=1
Jj#i

. 3. Ordering of the characteristics. The order in which the charac-
teristics of the object to be classified are observed is essential. To ensure
high effectiveness of the sequential classification it is necessary to choose,
at each step, the most strongly diseriminant characteristic of the popula-
tions x,,..., m,. Such a choice guarantees the maximum reduction of
the probability of misclassification ‘together with a fast termination of
the classification procedure.

Denote by Pr®(aS|n;) the probability of misclassifying an object
belonging to population x; on the basis of k characteristics observed sequen-
t.iaJJy, where n7 stands for all the populations with the exception of =,
Je M, k eP.

The combination of & characteristics discriminates the populations
Ty ...y m, more strongly in proportion to-the reduction in size of

m
Zprm(n;mj).

j=1

We have

i=1 %)
i iy

m m
Pr®(af|m) = > Pr¥(m;|m;) —2 f L@de<1— | fi(x)de,
i T
Whence

ZPr"‘) nlm) <m— D' [ fi@)de, keP.

je=21 j=1 T}k)
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From this inequality we infer that the combination of % characteristics
discriminates the populations =, ..., %, more strongly in proportion to
the increase in size of the expression

Ck) =D [ 1@ da.

i=1 ik
{®

To determine the optimal order of the observed characteristics, we
proceed as follows:

The value of the expression C(1) is calculated for each characteristic
separately. The characteristic which ensures the maximum value of C(1)
is chosen. Successively, all the remaining characteristics are added to
the one chosen initially, forming p —1 pairs of characteristics. Next, the
value of C(2) is calculated for each formed pair. That pair is selected which
leads to a maximum value of the expression C(2). This operation is re-
peated until the set of p —1 characteristics, out of the p characteristics,
is found which gives the maximum value of the expression C(p—1).

4. Conclusion. If the cost of measuring the characteristics is considered
or if the characteristics of the given object appear sequentially, a sequen-
tial method of classification should be used. Such problems can arise,
e.g., when the given characteristics are to be measured during a production
process, where the measurement calls for the interruption of the process,
or when the measurement is time -consuming, requires using the compli-
cated measuring equipment, or is associated with complex operations
involving risk (as in biomedical applications).

The sequential method of classification described in this paper re-
quires the knowledge of density functions. In practice we often assume that
the random vector X;, ¢ € M, has a multivariate normal distribution.
However, a situation may occur in which the form of the density function
is known but where the parameters are unknown. In this case,
the parameters must be estimated from samples. In addition, a situation
may occur in which neither the form of the density function nor its par-
ameters are known. Then the density function must be estimated from
a sample, without any assumptions made in advance about the function.
Many methods for the non-parametric estimation of density functions are
known, e.g., the kernel method, the orthonormal series method, or the
nearest neighbour method. In the sequential method of classification
described in this paper we must choose the admissible values of the prob-
abilities of misclassification. We can use the following procedure. We deter-
mine the admissible value of Pr® (af[n;) of the probability of misclassifi-
cation of an object belonging to population n; at the level a;(k), j € M,
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k € P. If we have no reason for choosing any particular values of ;i (k),
then we may put «;(k) = (m—1)" for all ¢, j e M, k e P.
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