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Introduction

An almost contact metric structure on a differentiable manifold is called a quasi-
Sasakian structure if the structure is normal and its fundamental 2-form is closed.
Then a normal contact metric structure, which is also called a Sasakian structure,
and a cosymplectic structure are quasi-Sasakian structures. A manifold with a
quasi-Sasakian structure is called a quasi-Sasakian manifold. The notion of quasi-
Sasakian manifolds was first introduced by D. E, Blair [1] in 1967 and some results
were obtained also by S. Tanno [25] in 1971.

The present note is mainly devoted to exhibit a characterization of a quasi-
Sasakian structure in terms of the covariant derivative of the fundamental linear
transformation field of the structure in Section 3 ([10]). This characterization is
applied to the study of quasi-Sasakian manifolds each of which is locally a product
manifold of a Sasakian manifold and a Kihler manifold, and to the study of sub-
manifolds. This note consists of the following sections.

(0) Notations.

(1) Almost contact metric structures.

(2) A relation between an almost contact metric structure o on M and an almost
Hermitian structure (J,, G) on M xR.

(3) Quasi-Sasakian structures.

(4) Product manifolds.

(5) A parallelizable Riemannian manifold M3 of dimension 3.

(6) M(o) of constant f-sectional curvature.

(7) A hypersurface N of a Kihler manifold P(J, G).

(8) A submanifold M of codimension 2 of a quasi-Sasakian manifold.

The text is based on lectures given by the author at Stefan Banach International
Mathematical Center during the Differential Geometry Semester in 1979.
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(0) Notations

We shall fix some notations and try to sketch terminology briefly for our discussion.
Let M be an m-dimensional differentiable manifold of class C*. The manifold M
is covered by coordinate neighborhoods {(U,,, (..., x"’))], and the coordinate
transformation: y' = p'(x!, ..., x") (i=1,2,...,m) or x =x(Q', ...,y (@
=1,2,...,m) arises on the non-empty intersection U,nU; of two coordinate
neighborhoods (U,, (x*)) and (Uj, (3")). Let S(M) denote the set of all (C=-) scalar
fields on M and let (M) denote the set of all vector fields on M. Any vector field
XeZ(M) at any point of U, of M can be written as a linear combination

X =Y X'(@/dx") of the natural frame {9/0x'}, where X* (e S(M)) are the com-
=1

ponents of X with respect to (x'). The vector field X has two expressions

X = > X'y = Y XH3/a)
i=1 i=1

at any point of the non-empty intersection U,nUj. Since two natural frames {d/dx'}
and {8/2y'} are combined by the element (dy//dx') of the real general linear group
GL(m; R) of degree m such as

m
alox' = ) (@y'fexyeley, i=1,2,..,m,
i=1

at each point of U,nU; by means of Y, (8y'/6x’) (8x//2y*) = du, then we obtain
=

the coordinate transformation law of the components:
m
Xt =) @MeK, i=1,2,..,m,
j=1
for X, (M) is a Lie algebra over the real number field R in consideration of the

Lie bracket product [X, Y] of X and Y, defined by [X, Y]4 = X(YA)—-Y(X4) for
any 4 € S(M), which can be expressed locally

[X, Y]= D (X(aY'/ax))— YI(aX* | xT)) &) o
7

forX = ) X'd/ox' and ¥ = 3. Y'd/ox'.
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We denote by T5(M) the set of all (r, s)-type tensor fields, which are of contra-
variant degree r and covariant degree s. Any element T of T3 (M) is expressible
locally in the form

T=) Tild'®. @u"e® a"if@ O

axjr
Jwomdi=1

with respect to (x'). Then we obtain the coordinate transformation law of compo-
nents for T where any two coordinate neighborhoods intersect. The direct sum

T (M) = Z Ty(M) of S(M)-modules T7(M) forms the tensor algebra with the

rsz0
tensor multiplication ®. The tensor product T® Se T;15 (M) of T e Ti(M) and
SeT.(M) is given by (T®S), = T,® S, for all xe M, in this case, the com-
ponents of T® S are represented as

(TQS)}ire () = Tl () ST (x)

:+:’ Igty-- .1+.1
with respect to (x'). A contraction is a mapping C*: TY(M) - T5-1(M) which
sends a mixed type tensor field Te T5(M) to the tensor field C*T e T.-1(M) such that

uth
(CI‘T)-’[H fsr - > TJL .r

vth

for the components T ;;;;’,:; of T, with respect to a coordinate system (x*), where the
superscript k appears at the uth position and the subscript k appears at the »th posi-
tion, 1 € u < r, I <v < s. Then, in particular, the following notations are available

m
in terms of contractions in mind. For any I-form 5 (= ), ndx' on (Us, (xH))
i=1
e T (M), any vector fields E (= Z E'd/ox' on U,), X, Xy, ..., X, € L(M), a linear
transformation field (= Y. fidx' ® 8/8x" on U,) € T}(M) and a (0, p)-type tensor
field w (= Zw,l__.ipdx“ ® ... ®dx'» on U,) € Ty (M) the relations hold:
Ci(n ® X) = 5(X), which equals >_ 7, X* on U,,
CI(f®X) = (tracef)X, which equals (. 71} X on U,,
C3}(f® X) = fX, which equals Y. ffX*(6/8x") on U,,
i

Cln®E®X) = 5(E)X = (y® X)E, which equals ()" 7,E) X on U,,

C:n®E®X) = n(X)E = (3 ® E)X, which equals (3. 7. X’) E on U,,

C?...CiCHwRX,® ... ®X,) = w(X;, ..., Xp), which equals
zmili,...ipXil'Xg’...X;’ on U,.

Every contraction defined above does not depend on any choice of the coordi-
nate systems. We denote by Ly the Lie differentiation with respect to X. It is a type-
preserving derivation Ly: I (M) — 7 (M), namely, Ly Ts(M} is in Ti(M), and it

7 Banach Center t. 12
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satisfies the well-known conditions: (i) LxyA = X4 for any A e S(M), X e Z(M),
(i) LyY=[X,Y] for any Ye Z(M), (iii) Ly(S®T) = (LyS)@T+SQ(LyT)
for any S, Te J (M), (iv) Ly commutes with every contraction, (v) LyLy—LyLy
= Lix,y;. A differential p-form « on M is a (0, p)-type tensor field which is skew-
symmetric

U(X,,(”, "'vXn(P)) = E(H)G(Xl, ---sXp)

for an arbitrary permutation n of (1, 2, ..., p), where ¢(n) denotes its sign. Let
AP (M) be the set of all differential p-forms on M and put A(M) = Z AP(M). Then

P20
we mean A°(M) = S(M) and A'(M) = TY(M). A(M) is an associative division
graded algebra with the exterior multiplication A, which is given by

(aA ﬂ)(Xl 5 vy Xp+q) = (I/P'q‘) Z E(W)G(Xn(l), seey Xn(p))ﬂ(Xw(p-t—lh reey X-:(p+q))
n€Speq

for any p-form « and g-form fB; in this case, the summation means the sum of terms

obtained by all permutations 7 € S,,,, the permutation group of degree p+g. It

follows that a A # = (—1)?8 A . The exterior differential operator

d: AP(M)—> A**1(M)
is given by
r+1

da(Xlr '--sXp+1) = Z(—I)"_IX,(&(XI, "')jas ""XP+1))+

T R ) ol ”7(F 5 O NS AP Ay
1€a<b<gp+1
for any a € AP(M) (p > 1) and by da(X) = X« for any O-form «. The operator
d satisfies the well-known relations d> = 0 and d(zAf) = dan B+ (—1)Pandf
for a € AP(M).

We consider on a differentiable manifold M a positive definite Riemannian
metric g and denote by V the Riemannian connection of the metric g. The covariant
differentiation Vx: 7 (M) —» 9 (M) by X with respect to the connection V is a type-
preserving derivation and satisfies the conditions: (i) Vx A = XA for any 1 € S(M),
(ii) VaxT = AV T for any A€ S(M) and T e J (M), (iii) Vx(S+T) = Vx S+ VT,
(V) Vx(S® T) = (VxS)@ T+ S®(Vx T), (v) Vx commutes with every contraction,
(vi) Vx4 y = Vx+Vy. The covariant derivative Vx Y of Y by X is written locally as

N i .
VY = ;(Xf(aY‘/3x1)+ zk: {,- k} X’Y") 2/ox',
i .
where {j k} denote the coefficients of the Riemannian connection V. Namely,

VyY = Z (V,Y)x!o/ox' where V,Y' = 0Y'[ox/+ Z {I‘k} rt.
J .
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In general, we have
K Ty ey Ao i 0
VxT = X VkT,:_”‘:dx l® ®dx"®
il 'S
Jivocndpk

dxit B..@ Oxir

for T € Ty(M), where

Vo Thde = 0T drjoxk + ZZ{;’“‘!] T8 — ZZ{“

in this case, the second or third term on the right-hand side of this means the vain
if the contravariant degree r vanishes or the covariant degree s of T vanishes. Since
V is a symmetric connection, the Lie bracket product [X, Y] is written in the form:
[X, Y] = Vx Y-V, X, and, in addition, Vg = 0. By a simple calculation we obtain,
in particular, that

da(X, Y) = (Vxa)(¥)— (Vy2) (X) for aeAd'(M),

da(X,Y,Z) = (Vxa) (Y, Z)+ (Vya)(Z, X)+(Vz) (X, Y) for aeA*(M).
The Riemannian curvature tensor field R is a (1,3)-type tensor field on M defined by

_ R(X,Y)Z = VyVyZ—VyVxZ—-Vix.nZ
for any vector fields X, Y and Z on M. R(X, Y)Z has the form:
RX,Y)Z = Z R X*YIZ!5]ox"

koj,,h
on a coordinate neighborhood (U, , (x')), namely,

R =) Rbdrt@dxi@dx®/ox,

where R%,; are represented as

A D YN

In fact,
VaVrZ = ) {XXV,Y)V,ZP + XPV,V, 2% 0 ox
k,J, h
and
R(X,V)Z = > (V,V,Z"—V,V, Z") X*Yi 3] ox",
namely,

ViV, Z' -V V,Zh = > RhZ.
i

The quantities

R
22 () (e S

lead to the above desired expression of R;;.

i
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(1) Almost contact metric structures

An almost contact metric structure o = (f, E, 77, g) on a manifold M is a set con-
sisting of a linear transformation field f (e T1(M)), a global vector field E, a 1-form
7 and a positive definite Riemannian metric g such that f = —I+n®E, n(E) =1,
7(X) = g(X, E), g(fX, Y) = —g(X, fY) for any vector fields X and ¥ on M, where
I denotes the identity linear transformation field on M. A manifold M(¢) with an
almost contact metric structure o is called an almost contact metric manifold.
A differential 2-form F defined by F(X, Y) = g(fX, Y) for any X and Y is called
the fundamental 2-form of o. The definition mentioned above implies that fE = 0,
n(fX) = 0, and rank f = even, hence, dim M(0) = odd, say 2n+ 1. In fact, substi-
tuting X = E into f2X = —X+n(X)E, we have f2E = 0, from which 0 = f3E
= —fE+5(fE)E. Therefore, 0 = f*E = (n(fE))E, hence, n(fE) =0, namely,
fE = 0. On the other hand, since n(f2X) =0, we get 0 = n(f3X) = —n(fX)+
+n(X)n(fE). Consequently, we have n(fX) = 0, which can also be obtained directly
from fE = 0 making use of the metric g. Put p= —f2 and ¢ = y® E on M.
Then we see that p and g are the projectors of an almost product structure {D(p), D(q)}
consisting of a 2n-dimensional distribution D(p) and a 1-dimensional distribution
D(g) which are complementary and mutually orthogonal with respect to g, because
PP=ppg=qp=0,9>=¢q,p+q=1g(pX,Y) = g(X, pY), g(gX, Y) = g(X, qY)
hold for any X and Y on M.

We shall see three examples of almost contact metric structures on the real
number space R®, for the sake of simplicity. These examples can also be given on
R?"*+! according to the same intention, namely, they suggest a cosymplectic structure
on R?"*! a Sasakian structure on R>"*! and a quasi-Sasakian structure on R?"*!
which is non-cosymplectic and non-Sasakian.

We take a coofdinate system (x!, x2, y!, 2, z) (or (x!, x3, x2, x%, x%)) of RS,

ExaMPLE 1. We define an almost contact metric structure ¢ = (f, E, 7, g)
on R* by

0 | 0
2 ; -1
. P, . P —_ N P
f = (dx' ® i_ _dy1® ___) = 1 5 ’
; oy ox* : 0 0
1
0 0 | 0

E

o
N'Q’

='00001), 5=dz=@0000 1),

b
N

dx'®dx' = the unit matrix of degree 5.

1
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2
Then the fundamental 2-form F of & has the form: F = ). dx' Ad)y' (hence, dF = 0)
i=1
and the 1-form 7 is closed, dn = 0. The rank of 7 is equal to 1. (This o is a cosym-
plectic structure on R*.)

EXAMPLE 2. We define an almost contact metric structure ¢ = (f, E, 1, 2)
on RS by

_ . )
0 0
° ~1
P ORI b e i
i.h:l axh 0 0
1
| 0 [ -2 -0

2
a t i i 1 2
=9 . = dz— = (="' =22 00 1),
E=-—='00001), n=d 2;ydx. (-2* =2y )
[ 1+401?2 42 -2 ]
0
; Pyt 14407 —2?
g= Z g,dx'@dx’ = 1
=1 0 0
1
| -2 22 [0 | 1

2
Then F has the form F = Z dx' Ady' and the exterior derivative dn of 1 has the
=

form dn = 2(dx' Ady' +dx® Ady?), from which 5 A (dn)* # 0. (This o is a Sasakian
structure on R*. The verification of the structure to be normal is shown after the
proof of Theorem 2.2 (see [21]).)

EXAMPLE 3. We define an almost contact metric structure ¢ = (f, E, , g) on
R’ by

B -1 T
0 0
~1
5 a _
f= Zﬁ“dx‘®—= I ,
i.h=1 axh 0 0
1
0 |-t 0 |0
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E= ;’z —'00001), n=dz—~2'dx'=(-2'0001),
[ 1H40)? e
0
1 [ \ 0
5_‘ - e
g= O, gydr'®dx = R
ii=1 0 b0
Lo
| -2t oo | 1|

2
Then F has the form F = D, dx' Ady' and dy has the form dn = 2dx* A dy', which
i1

shows that y Adn # 0 and (dn)? = 0. The rank of % is equal to 3. (This o is a quasi-
Sasakian structure on R3 which is non-cosymplectic and non-Sasakian.)

(2) A relation between an almost contact metric structure o on M and an almost
Hermitian structure (J,, G) on M xR

This section is devoted to introduce a notion of normality for an almost contact
metric structure ¢ on M ([22]). We shall prove the following assertion first.

THEOREM 2.1. In order that a manifold M admit an almost contact metric structure
a, it is necessary and sufficient that the product manifold M x R of M and a real line R
admits an almost Hermitian structure (Jo, G) such that the vector Jo(d/dt) is always
tangent to the hypersurface M for the unit vector d/dt on R.

Proof. Suppose that M admits an almost contact metric structure o
= (f, E,n,g). Then an almost Hermitian structure (Jy, G) can be defined by

Jo(X, Adldt) = (fX—AE, n(X)d|dt},

G = g+dt®dt,
which means

G((X, Adjdt), (Y, pd]dt)) = g(X, V)+ An

for any vector fields (X, Ad/dt) and (Y, ud/dt) on M xR. In fact, the set (Jo, G)
consists of an almost complex structure J, and a positive definite Riemannian
metric G such that

G(Jo(X, Ad[dt), (Y, pdldt)) = —G((X, Ad]dt), J,(Y, pd/dr)),
and, in addition, J,(0, Ad/dt) = —(AE, 0). Conversely, suppose that M x R admits
an almost Hermitian structure (J,, G) such that Jo(d/dt) € T(x, (M x {t}) in
Tix, ey (M x R) at any point (x, t) of M x R. Denoting by i, the natural imbedding
map i,: M - M xR through a point (x, ) € MxR and by i, its differential, we
can write the decomposition law for J,i, X and Jy(d/d?) as
Joix X = iy fX+0(X)(d[dt), Jo(ddt) = —iyE,
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for any vector field X on M, where f is a linear transformation field, » is a 1-form,
E is a global vector field on M. Further, we obtain the induced metric g given by

g(X’ Y) = G('*Xr i#Y)

for any X, Y € £(M). The assumption implies that the set (f, E, 5, g) of the induced
tensor fields defines an almost contact metric structure on M. =

An almost contact metric structure o = (f, E, n, g) is called normal if the
almost complex structure J, on M x R mentioned above is integrable ([22]). By
the following assertion we can express the normality for o in terms of the tensor
field [/, f1+dn® E on M, which is called the rorsion tensor field of o.

THEOREM 2.2. A necessary and sufficient condition for an almost contact metric
structure a = (f, E, 1, g) to be normal is that the torsion tensor field [f, f1+dn® E
of o vanishes identically, where [f, f] denotes the Nijenhuis tensor field of f, given
by

L A1X, Y) = [fX, fY]=fIfX, YI-fIX, fY]+ 2 [X, Y]

for any vector fields X and Y on M.

Proof. By Theorem 2.1 an almost contact metric structure o determines the
almost Hermitian structure (J,, G) on the product manifold M x R, on which the

identity equations
Vo, Jol(iu X, inY) = ia(Lf, f1+dn@E)(X, Y)+{dn(fX, Y)+dn(X, fY)}d/dt,
o, Jol(u X, d/dt) = i, (Lef) X+ (Len)(X)d/at
hold for any vector fields X and Y on M, in general. We state its verification first.
For the sake of a simpler notation, we use the alternating summation Ay, y with
respect to X and Y. The Nijenhuis tensor field [J,, Jo] of J, is given by
Vo, Jol (X, ¥) = [JoX, Jo Y] —Ax,yJol/o X, Y]—[X, Y]
for X, Y € Z(M x R). For any vector fields i, X and i, Y tangent to the hypersurface
M it follows that
Vo, ol (X, ixY) = [ fX+n(X)d]dt, in fY+7(Y)d/dt] -
—Ax yJolia fX+n(X)d/dt, isY]—iu[X, Y]
= L UfX, Y]+ dx, yliu fX, n(Y)d[dt]+ (n(X)d]dt, n(Y)d]dt] -
— Ay y (ixSUX, Y1+ 0([fX, YDd|dt+Jo[n(X)d/dt, ix Y]}~
—i,[X, Y].

On the other hand, the vector fields [i,fX, n(Y)d/dt] and J,[n(X)d/dt, i,Y] de-
scribed in the above reduce to

lia X, n(Y)d]dt] = (X (V) dlde+7(Y) [ fX, dJdt] = {(Vyxn) V) +7(Vsx ¥
Toln () dldt, iy Y] = {(Vym) (X)+ (Vs XD}in E,
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respectively, and {n(X)d/dt, n(Y)d/dt] = 0 holds identically. Hence
Vo, Jol(ia X, ix Y) = iy {UX, fY]—Ax v JUX, Y]=[X, YD+ Ay, ¢y {(Vex )(YV) +
+0(Vox V)td/dt— Ax, v (n(Vex Y)— (Ve fX)}d|dr -
—Ax v {(Ve} (X) + (Ve X)} i E
= i*lUsﬂ(Xa Y)+ (V) (¥) - (Vr"?)(X))E} +
+Ax, y {(Vex) (Y) = (V) (fX)}d/dt.
Consequently, we obtain the first desired expression. Similarly, we can reduce
[Vo, JoJ(ie X, d/dt) to
Vo, Jol(ix X, djdt) = [ix fX+n(X)d/|dt, —i,E]~
—JoliefX+n(X)d/dt, didt]+ Joliu X, iy E]
= ix[E, fX1+ lix E, () d[dt] + i, fX, E]+5((X, E])d]dt
= io(Le/)X+ (Len) (X)d/dt.
Suppose now that ¢ is normal. Then we have the vanishing of the torsion tensor
field, [f,f]1+dn® E = 0. Conversely, suppose that
[/, A, N +dn(X, Y)E =0
holds for any vector fields X and Y on M. We first substitute ¥ = E into this equation,

and hence we get dn(X, E) = 0, from which Vcn = 0 since (Vxn)(E) = g(VxE, E)
= 0. Therefore,

Lem)(X) = (Van)(X)+n(VxE) = 0,
that is, Lgn = 0. Since [f, f1(X, E) = 0, it foliows that f(Lg/)X = 0 holds. Apply-
ing Lg to f2X = —X+n(X)E, we attain to (Lef)fX = 0 and then (Lgf)f3X = 0.
On the other hand, operating Lg to fE = 0, we have (Lgf)E = 0. Thus we obtain
Lgf = 0. The condition

(U F1X, V) +dn(X, ¥) = 0
(X, fYD)+dy(fX,Y) = 0.

By means of Lgf = 0 we come to the desired result:
dn(fX, Y)+dn(X,fY) = 0.

Thus we can conclude that J, is integrable. =

We shall deal with the verification of three structures described in Examples
1, 2 and 3 to be normal. Actually we use the following expression of the torsion
tensor field of o

oS 14+dn®E = Y, (If. STy + (dn),E*) dX' ®dx @ 3,

ik

implies that

where
U ST = D Ufiass=riast +fiafi-fiafs,

(dﬂ)tth = (&~ aﬂh)E";



ON QUASI-SASAKIAN MANIFOLDS 105

in this case, we have put 9, = 9/2x" and have used ("), (1)), (E*) as the components
of f, n, E, respectively, relative to a coordinate neighborhood (U,, (x')). In fact,
[fX, fY] reduces to

X S¥] = D (X (S ¥)— i a,(fiX}e,
L.t
= 2 R@IHXY X', Y @YX Y —fif Y2, X*} &,.
Accordingly, we attain to the first desired expression [f, f]}; by the definition of Lie
bracket multiplication. And

dn(X,Y) = ) {X'an, )= Yo,(n, X") —m (X6, ¥ — Y5, X))
i,

= ) @m- 2m)X'Y = (D (am,— oym)dr@dx) (X, T).

Thus we have checked that the components [f, f1;* + (dn)i; E* of [f, f]+dn® E can
be written as in the above. Now we state the verification of normality for ¢ in Example
2. The facts that the two remainder examples are also normal are convinced by the
similar way. The components (f}') have been given by

fLt=f=-1, fi*t=L1 =1, fi’=-2% [f.5=-2x,

the other £} vanish, hence, @,f,° = d,f,° = —2 and the other ¢,/ vanish. Further-
more, d37,; = d4n, = —2 and the other &;7; vanish. Consequently, we come
to the vanishing of the torsion tensor field of ¢, which shows that ¢ in Example 2
is Sasakian.

(3) Quasi-Sasakian structures

Let us recall the following illustration of structures. We can easily see the corre-
spondences among almost contact metric structures in the study of odd-dimensional

manifolds and almost Hermitian structures in the study of even-dimensional mani-
folds.

Almost
Hermitian — Hermitian — Kibhler
structure structure structure
on P

1 T 1

{ ! {
Almost — Sasakian
contact — Normal almost — Quasi-Sasakian structure
metric contact metric structure -» Cosymplectic
structure structure structure
on M

The arrows mean the specializations. Namely, an almost Hermitian structure (J, G)
on a differentiable manifold P is a set consisting of an almost complex structure J
and a positive definite Riemannian metric G such that G(JX, Y) = —G(X, JY)
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for any vector fields X and Y on P. An Hermitian structure is an almost Hermitian
structure whose almost complex structure is integrable. A Kdhler structure is an
Hermitian structure such that the fundamental 2-form £, given by Q(X, Y)
= G(JX,Y), is closed. By these definitions we may consider an almost contact
metric structure, a normal almost contact metric structure or a quasi-Sasakian

structure as analogous notion according as an almost Hermitian structure, an Hermi-
tian structure or a Kihler structure.

A (2n+ 1)-dimensional manifold is said to have a contact structure if it carries
a I-form # with the property n A (dn)" # 0 ([4]). It is known that on a contact mani-
fold there exists an almost contact metric structure such that dn = 2F ([20], [22],
[23]). A normal almost contact metric structure o is called a Sasakian structure
(resp. a cosymplectic structure) if dn = 2F (resp. dF = 0 and dn = 0).

In general, on an almost Hermitian manifold P(J, G) the Nijenhuis tensor
field [J, J] of J is written as

U, NI(X, V) = (Vax DY = (Vuy DX = J(Vx DY + T (Vy DX

for any vector fields X and ¥ on P with respect to the Riemannian connection V
of the metric G. Since

(Vx)(Y, Z) = G((Vx )Y, Z)
and
d(X, Y, Z) = (VxQ(Y, 2)+ (Vv (Z, )+ (V (X, Y),
then we have the identity equation
G(V.JIX, Y), Z) = dRUX, Y, Z)+dA(X,JY, Z)—-2(V D (X, Y).

This expression is used to see the familiar result of a characterization of a Kéhler
structure. The assertion says that a necessary and sufficient condition for an almost
Hermitian structure (J, G) on a manifold P to be Kahlerian is that VJ = 0 holds
identically with respect to the Riemannian connection V of the metric G.
According to this discussion in the study of K&hler manifolds, we can obtain

a characterization of a quasi-Sasakian structure on an odd-dimensional manifold
as follows.

THEOREM 3.1 [10]. A necessary and sufficient condition for an almost contact
metric structure o = (f, E, 7, g) on a manifold M to be quasi-Sasakian is that there
exists a linear transformation field A on M such that

(VxNY = n(Y)AX—g(AX,Y)E, fAX = AfX, g(AX,Y) = g(X, AY)

Jor any vector fields X and Y on M, where V denotes the Riemannian connection of the
metric g.

Proof. We first prove that the following relation holds on M(s) in general

e(U1X, V) +dn(X, Y)E, Z) = dF(fX, Y, Z)+dF(X,fY, Z) -



ON QUASI-SASAKIAN MANIFOLDS 107

In fact, the torsion tensor field of o is written as
A1, ) +dn(X, YIE = Ax v {(Vex N Y= f(Vx )Y+ (V) (Y) E}.
Applying the covariant differential operator Vy to f2Y = —Y+#(Y)E, we have
(Ve NY (V)Y = (Vxn)(Y)E+n(Y)VxE.

Since the relations (Vxn)(Y) = g(VxE,Y), (VxF)Y, Z) = g((Vxf)Y,Z) and
(VxFWY,Z) = —(VxF)(Z, Y) are valid, then
g(LL1X, N +adn(X, Y)E, Z)
= Ax x {(Vex FUY, Z)+ (Vs F)(Z, fX) + (V. F)(fX,Y)} -
—n(Y) (Vx) (2) +7(X) (Vyn) (2) - (V2 F) (JX, V) + (V. F) (fY, X).
The last term (VzF)(fY, X) in the right-hand side of this equation reduces to

(VF)(fY, X) = = (V2 F)(fX, V) +9(X) (V2n) (V) +5(Y) (V) (X).

Using the identity (Lgg)(X,Y) = g(V:X, Y)+g(VeY, X), consequently, we obtain
the desired expression.

Suppose now that o is a quasi-Sasakian structure on M. Then by the above
identity it follows that

2(VLF)(fX, Y) = n(X)(Leg)(Y, Z)+n(Y)dn(Z, X).
We make a substitution X = E in this and then have Lgg = 0, which shows that
E is a Killing vector field. Hence, 2(VF)}(fX, Y) = n(Y)dn(Z, X), in which we
replace X, Y and Z by — fY, Z and X, respectively. It follows that

2(VxF)(Y, Z2) = 2q(Y) (Vx FY(E, Z)+n(Z)an(fY, X).
Since £ is a Killing vector field, that is, (V*n)(Y) = —(Vyn)(X), this leads to

(VxNY = n(Y)(VxNE+g(fVxE, Y)E.
We now define a linear transformation field 4 on M by
AX = —fV4E
for any vector field X. Hence, (Vi)Y = n(Y)AX—g(4X, Y)E is obtained. Since

the torsion tensor field of ¢ vanishes, we have Vo7 = 0, that is, Vg E = 0, which
shows that the integral curve of E is geodesic. Hence, 4E = 0. It follows that Vgf

= 0. Then the relation:
0 = (LgNX = [E, fX]—f[E, X] = (VENX =V, x E+fVxE
implies that V,x E = fVxE. Consequently, 4 commutes with f. Further, we have
g(dXs Y) = g(VXE’fY) = _g(vf.‘{EsX) = g(X9 AY)
by using the fact that E is a Killing vector field.
Conversely, suppose that there exists such a linear transformation field 4

described in the present assertion on an almost contact metric manifold M(o).
It is true that F is closed. The condition:

VxNY+f(VNY = (V) (N E+n(Y)VxE



108 S. KANBMAKI

implies that Vy E = fAX by substituting ¥ = E into this equation. The torsion
tensor field [f,f]+dn® E must necessarily vanish identically. Thus ¢ defines a
quasi-Sasakian structure. m

We shall investigate the rank of the linear transformation field 4 described
in Theorem 3.1. In general, 4 is written in the form 4 = 4+%(A4E)n® E, which
follows from (Vxf)E = AX—n(AX)E. Since g(AX,n(Y)E) = 0 holds for any
vector fields X and Y, the subspaces A(T:(M)) and 5(T.(M))E are orthogonal
in the tangent space T, (M) to M at each point x. This shows that the space A(T..(M))
is always contained in the value — f?(T,(M)) at x of the 2n-dimensional distribution
determined by the projector —f? on M of dimension 2n+1. We can conclude
that rank 4 satisfies

even = rank 4 < rank4 < rank4+1

at every point on M. In fact, we take a non-zero element X of the intersection of the
kernel of 4 and the subspace — f2(T,(M)) if rank 4 # 0. Then the vector fX is
also non-zero and belongs to the intersection of both subspaces in T,(M) itself,
because AfX = fAX = 0 and fX = — f2(fX). This process gives rise to rank 4
= even. Now we define a linear transformation field 4 on M by

A =A+1QE,

which we shall call the indicator tensor field of the quasi-Sasakian structure o. Then
the rank of 4 has the form: 2p+1 (0 € p < n). In the study of quasi-Sasakian mani-
folds, a Sasakian structure and a cosymplectic structure are characterized as stated
in the following two theorems.

THEOREM 3.2. 4 necessary and sufficient condition for a quasi-Sasakian structure
o on a manifold M to be Sasakian is that the indicator tensor field A of o coincides
with the identity I, in this case, rank A = 2n+1.

Proof. Suppose that ¢ is Sasakian. The 2-form d» reduces to

dn(X, Y) = g(VxE, Y)—g(VyE, X) = 2g(fAX, Y) = 2g(fAX, Y).
Then we have 4 = /. The converse is also true. m

THEOREM 3.3. A4 necessary and sufficient condition for a quasi-Sasakian structure
o on a manifold M to be cosymplectic is that the indicator tensor field A of & coincides
with n® E, in this case, rank A = 1.

Proof. Similar to that of Theorem 3.2.
The characterization theorem (Theorem 3.1) is applied to prove the following
result in the study of quasi-Sasakian manifolds.

THEOREM 3.4. Let A be the indicator tensor field of a quasi-Sasakian structure
o on a manifold M of dimension 2n+1. If A is parallel and has a constant rank 2p+1
(1 € p < n—1)on M, then the manifold M is locally a product manifold of a Sasakian
manifold of dimension 2p+1 and a Kahler manifold of dimension 2q, where p+q
= n.
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Proof. The covariant derivative VxA of A reduces to

(V2 A)Y = g(AX, fAV)E+(Vxm) (N E—fVx Ve E+fVy, v E+n(Y)Vx E

Hence, we have the identity g((VpE) Y,E) = g(f(Z —_ZZ)X, }_’) Under the
present assumption we obtain 42 = A. When we put B =I—A, then we get
that 4 and B are projectors of an almost product structure D = {D(A), D(B)}
consisting of two complementary (2p+1) dimensional distribution D(4) and 2g-
dimensional distribution D(B), since B2 = B, A+B = I, AB = B4 = 0, g(AX, Y)
= g(X, AY), g(BXY, Y) = g(X, BY) for any X and Y on M(o). Since these projectors
are parallel, both distributions are completely integrable. Denoting the maximal
integral manifolds passing through a point of M corresponding to D(4) and D(B)
by N, and N,, respectively, we can induce naturally a Sasakian structure on N,
and a Kihler structure on N, from the given quasi-Sasakian structure. In fact,
we let f; (@ = 1, 2) and g, represent the restrictions of f and g on N, and we use
the same symbol V as the induced connections with respect to g, on N,. By Theorem
3.1 for any vector fields X and ¥ belonging to the distribution D(A4) the relations

Vxf)Y = n(NX-g1(X, NE, g (X, V)= —g:(X, /1Y), EeD()
hold on N,, and for any vector fields X and Y belonging to D(B) the relations
(Vxf)Y =0, g(X,Y)= -gX.1.Y)

hold on N,. Consequently, the sets of the tensor fields (f;, E, %, g,) restricted to
N; and (f;, g,) restricted to N, define the desired structures. =

(4) Product manifolds

Let M and N be two differentiable manifolds of dimensions m and n, respectively.
The product manifold M x N is the Hausdorff space M x N provided with the differ-
entiable atlas {(Uy X V3, ¢a X ¥W1)}(a, yeaxn Such that every ¢, x y, is 2 homeomorphism
of U, x V; onto a product of an open set in R™ and an open set in R”, in R™" x R"
= R™*", formed with an atlas {(Uy, ¢)}ze4 for M and an atlas {(V;, y1)lien for N.
In this case, the coordinate transformation satisfies

oxt 0

a(x', z% aoy!
0wy |, 8
ow®

on any non-empty intersection (U, x V))n(Us xV,) for coordinate neighborhoods

(Us» (1), (Us, (/")) of M and (¥, (z9), (V., (w*)) of N. Take an arbitrary point

(x,») of MxN and fix it in mind. Then we have the natural imbedding maps:
Iy M> Mx{y} in MxN, i,,: N> {x}xN in MxN,

We shall write both merely i,, i, instead of i,,, i,,, respectively. Let i, (@ = 1, 2)
be the differentials of i, and i their duals. Further, we consider the natural projec-
tions

Ty MXN-> M, 7n,: MxN N
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and, in like manner, 7,. denote the differentials of 7, and =z} their duals. Therefore,
we have the well-known Leibniz formula:

X = 1'1‘n1.X+ izinle
for any vector X € Ty, ,,(M x N) at every point (x, y) of M xN. A l-formw € A'(M x
x N) can be written as
©(X) = 07y X) +0 (e X) = (ahitw +7Si%w) (X)

for any X € Z(M xN), in this case, ifw e AY(M) and itw € AY(N) hold.
Define two multilinear mappings p,; (g = 1, 2) of T((M,) into T{(M,x M,),
where M, = M and M, = N by

Ouf = 72 ® ... QMIQ®ipe® ... i for (r,5) # (0,0),

s [actors r factors

0.0(2) = A om, for any scalar field 2 on M,.

2
Then the set Z 04:(T;(M,)) forms the submodule of the module T7(M, x M,).
a=1

The product manifold M, x M, of any two Riemannian manifolds M,(g,) is a
Riemannian manifold. In fact, M, x M, admits a positive definite Riemannian
metric G defined by G = p,5(g;)+e.2(g.), which shows also that G(X,Y)
= g(Xy,Y)+g.(X,,Y,) for any X,Y e (M, x M,) in consideration of the
decomposition law for X = j,«X, 40X, and Y = ;e Y, +i3Y,, because m,ui e
= (the identity) and s,«ipe = 0 (@ # b). Therefore, any vector fields iy« «X
and i,.7,.Y are mutuvally orthogonal with respect to the metric G.

Let M,(J,, g,) (@ = 1, 2) denote any two almost Hermitian manifolds of dimen-
2

sions m; and m,. We may write any vector field X on M, x M, as X = Z i X,
a=1

for X, € ¥ (M,) and since there is no fear of confusion, we abbreviate g% to ¢. Define
a linear transformation field J and a (0, 2)-type tensor field g on M, xM, by J

= o(J,)+e(J,) and g = o(g,)+0(g;), respectively. Namely,

Gi| © ] g=[£g1)., 0 ]
o lu |’ 0 ()’

at a point of M, x M, with respect to a coordinate system (x', z°). Then the set
(J, g) of tensor fields defines an almost Hermitian structure on M, x M,. In fact,

J=

2
JX has the form: JX = Z inJ,X,;, hence J2 = —I In addition,
a=1

—g(Xa JY)'

2'1
gUX, V) = Y g/ X, Y)
a=1

Consequently, the product manifold of any two almost Hermitian manifolds is an
almost Hermitian manifold. Since the differentials i,» of i, are homomorphisms
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of Lie algebras: [ijeX,, ijeY,] = i4e[X,;, Y,] and [ijeX,, ips Y] = 0 (a # b) are valid
for any X,, Y, € Z(M,), then the Nijenhuis tensor field of J can be expressed
as

[J’ J](Xr Y) = ‘; ia‘ [Jtn Ja](Xas Ya)’

where X, = 7, X. Thus we obtain that the product manifold of any two Hermitian

manifold is an Hermitian manifold. The exterior differential operator d commutes
with every multilinear mapping

Cap(=72® ... @nk): AH(M,) —» AP (M, x M).

Hence, if the fundamental 2-forms £, of (J,, g.) are both closed, then the exterior
derivative df2 of the fundamental 2-form 2 of (J, g) vanishes. Thus we can say that
the product manifold of any two Kdhler manifolds is a Kdhler manifold.

We shall prove the following theorem.

THEOREM 4.1. (1) The product manifold of an almost contact metric manifold
and an_almost Hermitian manifold is an almost contact metric manifold.

(2) The product manifold of a normal almost contact metric manifold and an
Hermitian manifold is a normal almost contact metric manifold.

(3) The product manifold of a quasi-Sasakian manifold and a Kdhler manifold
is a quasi-Sasakian manifold.

(4) The product manifold of a cosymplectic manifold and a Kdahler manifold
is a cosymplectic manifold.

Proof. Let M,(f,, E,,n', g,) be an almost contact metric manifold and let
M,(f>, g;) be an almost Hermitian manifold. We set f = o(f,)+0(/2), E = o(E}),
n = o(n'), g = o(g,)+o(g,). Then (f, E, 7, g) defines an almost contact metric

structure on M, x M,. The torsion tensor field of the structure constructed here can
be reduced to

N

([f,f]-l-d?’]@E)(X, Y) = Zia‘[fa’.ﬂ](Xa, Ya)+dnl(Xls Yl.)il"El

a=1

for any X, Y e (M, x M,), where X, = n, X. The exterior derivative dF of the
fundamental 2-form F vanishes if dF, =0 (a = 1, 2), where F,, F, denote the
fundamental 2-forms of (f;, E;, %%, g1), (f2, g2), respectively. =

THEOREM 4.2. (1) The product manifold of any two almost contact metric manifolds
is an almost Hermitian manifold.

(2) The product manifold of any two normal almost contact metric manifolds
is a Hermitian manifold.

(3) The product manifold of any two cosymplectic manifolds is a Kéihler manifold.
Proof. Let M,(f,, E,, ", go) (a = 1, 2) be two almost contact metric manifolds.
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We set f = X o(f2), g = 2. o(22), Ea = o(EJ), n* = o(1°). Then the set (J, g) con-
sisting of a linear transformation field J given by
J=f+7'®E,—n*®E,

and the Riemannian metric g defines an almost Hermitian structure on M, x M,.
The Nijenhuis tensor field [/, J] of J has the form:

2

[J9 J](X9 Y) = Zia‘((Ma.ﬁ]+dna®Ea)(Xas Ya))—{dnz(fZXZt Y2)+

+dn*(X,, 2 Y2 E, +{dﬂl(f;X1 , ) +dn' (X, AR E +
+ Ay, v[n' (Xy) {(Le, f2) Y,—(Le,n*)(Y3)E )}~
—~ (X)) {(Le )Y, +(Le,n") (YD E2)

for any vector fields X and Y on M, x M,, where X, = m,+X. The vanishing of
[/, J] follows from the fact that [f,,f,]+dn"®E, =0 (a=1, 2). The exterior
derivative d2 of Q (= F+n'An?) of (J,g) is written as dQ2 = dF+dnp' An?—
—dpianl. m

We note here that, in particular, the product manifold $2P+! x §24+1 of two
any odd-dimensional spheres except for (p, ¢) = (0,0) is a well-known example
of a Hermitian manifold which is not Kéhlerian. Since a (2p+ 1)-sphere $2?*! (p > 1)
admits a Sasakian structure, applying our argument to the manifold S27+1 x §24+1,
we can sce that §2?*! x §29+1 j5 3 Hermitian manifold on which the exterior deriva-
tive d2 of the fundamental 2-form £ has the form: dQ2 = 2(F, A9*>—F, A%!) and,
furthermore, df2 reduces to d2 = —27' A2 on S x §24+1,

(5) A parallelizable Riemannian manifold Af? of dimension 3

We denote by M?® a parallelizable Riemannian manifold of dimension 3 in this
section. We take a global field of orthonormal 3-frames {E,, E,, E;} on M? and
denote by {n!, %, 1} its dual frame field with respect to 2 Riemannian metric g,
n°(X) = g(X, E,) for any X € Z(M?). Then we obtain a triple {(f, E., 7% g)}
of almost contact metric structures on M3 which are given by the relations

fi = "12®E3—773®E2’ fr= 773®El_771®E3, fi= 771®Ez—"72®E1-

THEOREM 5.1. Suppose that any two, say (f,, E;,n',8) and (f;, E1, 1%, 8),
of the triple {(f,, E,, 1% &)} of almost contact metric structures on a parallelizable
Riemannian manifold M? of dimension 3 are quasi-Sasakian. The remaining structure
(fs, Es, n3, g) is also quasz-Sasaklan if and only if both indicator tensor fields A,
(i = 1,2) of (i, Ei, v, g) satisfy a condition A,E, = A,E;.

Proof. Suppose that A 1 Ey = A 2 E;. The covariant dertvative of f, defined above
satisfies

(Vxf3)Y = () (A X) Es + (4, X) Ex) — g(n (A X) E, + 7%(4, X) E;, Y) E,
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for any vector fields X and ¥ on M?. Since A, is symmetric, A, can be written, in
general, as

A, = U P®E, + (' RE, + 7 ®E) +t:()' @ Es +* @ E,) +
+1, P @E, +ts(n*REs+° ® E,)) +ts PR E,

for some scalar fields r,, ..., 7 on M?3. Using Z,El = F, and f,}l_, = ijl,A_l
reduces to

A, = n'®E, +5:(n*QE, +1*®E3)
since we can put s, = f, = t¢. Similarly,
A; = POE+5,(*®@E; +1'®E,)
for some scalar field s,. Therefore, when we put
Ay = PRE+5,1'®E, +5,1*QF;,
then (Vx f3) Y can be arranged to the form:
(Vxf3)Y = (V) A:X—g(4: X, V) E; L
and ZJ satisfies
g(AsX,Y) = g(X, 4, Y), A E, = E,,
(Asfs =S+ 4)X = (5,—5;) (" (NE +7*(X) E,)

for any X. Since ;11E3 =5 E;, 22E3 = s, E;, we can conclude by Theorem
3.1 that (fy, Es, n*, g) defines a quasi-Sasakian structure. The converse is also
true. m

COROLLARY 5.2. If (f;, Ei, v', 8) (i = 1, 2) of the triple {(fa, E,, 1°, g)} of almost
contact metric structures on a parallelizable Riemannian manifold M? of dimension 3
are Sasakian (resp. cosymplectic), then the remaining structure (f3, Ey,7n°,8) is
also Sasakian (resp. cosymplectic).

Theorem 5.1 and Corollary 5.2 tell us the following. When {(f,, E., %%, &)}
is a triple of quasi-Sasakian structures, A4, have the expressions

Zl = 'QE, +s(n*®@E; +1*®E,),
A_z = N’RE,+s5(P®E; +1'®E)),
Ay = PRE;+5(1' QE, +1*QE)

for a scalar field s on M3. Since V4 E, =f,,2,.X = s/, X, the Lie bracket products
[E,, Eb] of E, and E, satisfy

[E1, E;] = —2sE,, [Ey, E5] = —2sE,, [E3, E|] = —25E,.

Since '@ E; +n*Q@ E,+n*® E; = I, a triple {(fi, Es, %% g)} of quasi-Sasakian
structures is a triple of Sasakian (resp. cosymplectic) structures if and only if s = 1
(resp. s = 0) holds identically on M3.

8§ Banach Center (. 12
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(6) M(o) of constant f-sectional curvature

In the study of Riemannian manifolds, we well know that the sectional curvature »
with respect to a plane section {X, Y} determined by two vectors X and Y at a point
on a Riemannian manifold N(g) is defined by

3 RX,Y,X,Y)
1X1?-1Y1? — (g(x, 1))?
and, furthermore, that if x does not depend on any choice of sections at every point

of N, then the manifold N(g) is of constant curvature when dim®N > 3, and the
Riemannian curvature tensor field R has the form:

RX,Y,Z,W)=D,X,Y,Z, W), X, Y, Z, WeZ(N),

where we have put R(X, Y, Z, W) = g(R(X, Y)Z, W) and D, denotes a (0, 4)-type
tensor field defined by

DE(X’ Ys Z’ W) = g(X! W)g(Y9 Z)'-g(X’ Z)g(Y! W)

for any vector fields X, Y, Z and Won N.

On an almost Hermitian manifold P(/, g) the holomorphic sectional curvature
» with respect to a plane section {X, JX'} determined by X and JX at a point x of P
is defined by

__ R(X,JX,X,JX)
- (X2 |JX]?

The manifold P(J, g) is called to be of constant holomorphic sectional curvature
if the holomorphic sectional curvature is always constant with respect to any plane
section at every point of the manifold. K. Yano and I. Mogi [32] showed that on
a Kahler manifold of constant holomorphic sectional curvature the Riemannian
curvature tensor field R has the form:

RIX,Y,Z, W) = %{Dg(x, Y,Z, W+Ko(X, Y, Z, W)}

and » must necessarily be constant on the manifold, where K, denotes a (0, 4)-type
tensor field defined by

Ko(X,Y,Z, W) = Q(X, WQY, Z)+2(X, Z)Q2AW, Y)=20(X, Y)NZ, W)

for any vector fields X, Y, Z and W on P(J, g).

On an almost contact metric manifold M(o) the f-sectional curvature x» with
respect to a plane section {fX, f2X} determined by fX and f2X at a point x of M(o)
is defined by

RUX,S2X.fX.[2X)
X

The manifold M(o) is called to be of constant f-sectional curvature if f-sectional
curvature is always constant with respect to any plane section at every point of the

X = —
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manifold. It is shown that on a Sasakian (resp. cosymplectic) manifold of constant
f-sectional curvature the Riemannian curvature tensor field R has the form:

x+3e K—E

RX,Y,Z, W)= —4—-D,(X, Y,Z, W)+ 4 Ke (X, Y, Z, W),

where ¢ = 1 (resp. ¢ = 0) and Kp,, denotes a (0, 4)-type tensor field defined by
Ke,(X,Y,Z, W)= FX, W)F(Y, Z)+ F(X, Z)F(W, Y)—
—2F(X, Y)FZ,W)—n(X)n(W)g(Y, Z) +n(X)n(Z)gW, Y) —
—n(N2)g(X, W)+n(W)n(VegX, Z)
for any vector fields X, Y, Z and W on M(o¢). In this case, » must necessarily be
constant under the condition dimM > 3 ([13], [17]). In fact, we shall describe how

to find the curvature tensor field R briefly in the case of a cosymplectic structure.
The above definition of » is written locally as

(6.1) R,‘ﬂ,,(fX')“(f"X )j(fX )i(sz)h + "(gu(fx )k(fx)j) (g MUZX )‘(sz )h) =0,
where Einstein’s summation convention is used with respect to the system of indices

k, j, i, h and Ry, = gan Reji. Putting Tipin = f2fPRajps for the components £ of f,
we have

(6.2) Tiney = Tygin-
Applying V;7; = 0 and V,f}* = 0 to the Ricci identities:
ViV —V,;Vim, = —Riji 7,

and
A A HE E P o
we have
6.3 Rfjﬂia =0, fka.ﬁbRaMh = Ry,
from which it follows that
(6-4) TkJM = Tum-
Using (6.3) again, we obtain
(6.5) Tum= -1 f:fb(Rlbah+Rbalh) = Tinp+ Rijin-

Since (6.1) is also written as

{Tigin+2(8ey— ) (G — )} X* XX X* = 0
for any vector X*, the relation
(6.6) Ts iy + {8 ws 81wy — 20 M8y + Ny My} = O

is valid, where (kjih) denotes the symmetrization of indices £, j, i, . In consideration
of (6.2), (6.4) and the relation

Tijin+ Tng+ Tanyi = 3Tpin— Runji + Ry
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obtained from (6.5), relation (6.6) reduces to the form:
3T jin— Runji+ Riuny + % {81y 8in+ Bx1 Bhy + Brn &yt + 3N, M My —
— (Uk"]_rgth + ﬂ’k"’?tgu'*' Mn&nt N MnLry 101,80+ "i;ﬂfgkh) } =0,
Transvecting this with f*f;, we have
3Rujon —f:fb' Ryt + Ropns + ".(fuj.fbh + 8as8hy— Na o8y +
+fanSos—NuN18ab + n 1, 1ams) = 0.
where f;; = g;.f?, that is,
Tyjin = 3Ryppi— Rmn — % (fur s+ Bt 8ns— MM 8hs + s th— N3 &xa + 01, 1) -

Taking the skew-symmetric part of T with respect to i and &, we finally have the
curvature tensor field

% x
Riym = Y (BunZyi + B &m) + ry S +falny =263 in—

— e &+ MM &nj— N 8w+ M ;811)-

THEOREM 6.1, Let M be a manifold admitting, at least, two cosymplectic (resp.
Sasakian) structures o, = (fa, Es, v°, g) (a = 1, 2) such that the fundamental vector
fields E; and E, are mutually orthogonal, g(E,, E,) = 0. If M is of constant f,-sec-
tional curvature with respect to both cosymplectic (resp. Sasakian) structures, then
M is flat (resp. of constant curvature 1).

Proof. Denote by », (@ =1,2) the f,~sectional curvatures corresponding
to cosymplectic (resp. Sasakian) structures o,. Then the Riemannian curvature
tensor field R has two expressions:

R(X,Y)Z = ﬁ'ﬂi (a(Y, Z)X—

a(Ys Z)faX—

- a(Xa Z)f,,Y— ,(X, Y)faz—ﬂa(X)g(Ys Z)Ea‘*‘ﬂ"(X)’]"(Z)Y'F
+7'(Y)g(X, Z)E,— " (Y)n"(2)X}
fora =1 and 2, where ¢ = 0 (resp. ¢ = 1). Apply the formulae: the trace of the
map X —» X equals 2n+1, and trace[X — f,X] = 0, trace [X - #*(X)Y] = n*(Y),
to the Ricci tensor field R, defined by Ro(Y, Z) = trace[X —» R(X, Y)Z].
Then R, has the two expressions from the above:

Ro(¥,2) = *=F 2 tug (v, 2+ 42 (¥, 2)~ (n+ Dy (V) (2)

(".ill(’é__ LY, foZ)+2neg(Y, Z)

for a = 1 and 2. Therefore, (x,—&)g(f/1 X, /1Y) = (x,—8)g(f2 X, f>Y) holds for
any vector fields X and Y on M. Put X = Y = E,. Then %, = ¢, hence, », = ¢.
Consequently, we obtain R(X, Y, Z, W) = eDy(X, Y, Z, W). m
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Let us recall the theory of Riemannian direct product manifolds. We denote
by M,(g,) (a = 1, 2) any two Riemannian manifolds with metrics g,. Any vector
field X on M, x M, is decomposed as the sum X = p, X+p, X of p,X, defined by
PoX = igemae X for any X € (M, x M,), which are mutually orthogonal with
respect to the metric o(g,)+o(g;), say g. The projectors p, [p? = p., p.ps = 0
(@a#0), p+p, =1, g(p.X,Y) = g(X, p,Y) for any X, Y € (M, x M,)] determine
naturally the direct product structure {D(p.)} consisting of m,-dimensional distribu-
tions D(p,) corresponding to M,, where dim M, = m,. Since each manifold M,
is totally geodesic submanifold of M, x M,, Gauss equations V, xp,Y = p,V, xp.Y
(@ =1,2) and Weingarten equations p,V, xpsY = 0 (a # b) are obtained for
both M,, where V denotes the Riemannian connection with respect to g. The condi-
tion [p, X, p,Y] =0 for X, Y e (M, x M,) implies that p, are parallel, Vp, = 0,
and V, xY = p,VyY = p,V, xp, Y. Accordingly, we can write the covariant deriva-

2
tive Vi Y of Y with respect to X in the form: V, Y = Z PaVp xpa Y. It follows that
a=1

the Riemannian curvature tensor field R is expressible as
2
R(X) Y)Z = ZpaR(pa X, PaY)sz,
a=1

2
which is equivalent to R(X,Y,Z, W)= 3, R(p.X,p.Y,P.Z, p,W). Denote by
a=1

R, the Riemannian curvature tensor fields with respect to g, on M,. Since g = o(g,) +
+0(g,), we get R = o(R,)+0o(R;) and, hence, the scalar fields

R X, o Y, Rpe Z, e W) o 1,
coincide with
R(paX, paY, paZ, pa W)
on M, xM,.

THEOREM 6.2. The product manifold M, x M, of two Kdhler manifolds M,(J,, ga)
(a = 1, 2) of constant holomorphic sectional curvatures x, is a Kéhler manifold on
which the Riemannian curvature tensor field R has the form:

2
R(X,Y,Z, W) = ) 2 Dygo+Kew )X, Y, Z, W)
a=1

Jor any vector fields X, Y, Z and W on M, x M,.

Proof. The curvature tensor fields R, on M, are written as
-Ra(Xtu Yo,Zo, Wy = (”a/4) (Dg,+KD.)(Xn, Yasza’ Wa)

for any X,, Y,, Z,, W, € Z(M,). Any vector field X, on M, can be regarded as the
projection m,+ X of a vector field X on M, x M, by n.. Since g.(X,, Y,) o7,
= (s X, ApeY) o, = (Q(ga)) (X,Y) and Q(X,, Y)) o, = (Q(Qn)) (X’ Y), we
come to the desired expression. =
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In like manner, we can easily obtain the following results.

THEOREM 6.3. The product manifold M, x M, of two quasi-Sasakian manifolds

M (f,, E., %, g2) of constant curvatures », is an Hermitian manifold on which the
Riemannian curvature tensor field R has the form:

2
RX, Y, Z, W) = D #.Degn) (X, ¥, Z, W)

a=1
Jor any vector fields X, Y, Zand Won M, x M,.

The product manifolds S27*+! x R%*! and $?P+!x $29*! are typical examples
of Theorem 6.3.

THEOREM 6.4. The product manifold M, x M, of two Sasakian (resp. cosymplectic)
manifolds M,(f., E,, 1°, g.) of constant f,-sectional curvatures x, is an Hermitian

(resp. Kdhler) manifold on which the Riemannian curvature tensor field R has the
form:

2
%,+3e Ha— €
RX,Y,Z, W)= Z (aT Dyga+ —7— Ko(F.l-e(v:‘») X.Y,Z, W)

a=1
for any vector fields X, Y, Z and W on M, x M,, where ¢ = 1 (resp., ¢ = Q).

THEOREM 6.5. The product manifold M, x M, of a cosymplectic manifold
M,(f1, E,, n', g,) of constant f\-sectional curvature », and a Sasakian manifold
M,(f2, E;, n?, g2) of constant f,-sectional curvature x, is an Hermitian manifold
on which the Riemannian curvature tensor field R has the form:

® %+3
R(X’ Y’ Z’ W) = {—4_L (D9(31)+K0(F|)-9(ﬂl))+ »i4——_' Dl?‘l’z) +

x,—1
+ ""2_4'1' Ke(h).o(n’)} X, 7,2, W)

Jor any vector fields X, Y, Z and W on M, x M, .
THEOREM 6.6. The product manifold M, x M, of a quasi-Sasakian manifold
M,(f:, E,, n', g) of constant curvature x, and a Kdhler manifold M,(f,, g.) of

constant holomorphic sectional curvature », is a quasi-Sasakian manifold on which
the Riemannian curvature tensor field R has the form:

.
'R(Xs Y; Za W) = {xlDe(g|)+ ‘41 (De(g,)+Kg(F,))} (X’ Y! Z: W)

Jor any vector fields X, Y, Z and W on M, x M.

THEOREM 6.7. The product manifold M, x M, of a Sasakian (resp. cosymplectic)
manifold M,(fy, E,, n', g,) of constant f,-sectional curvature x, and a Kahler mani-
Jold M,(f,, g,) of constant holomorphic sectional curvature x, is a guasi-Sasakian
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manifold (resp. a cosymplectic manifold) on which the Riemannian tensor field R
has the form:

%, +3¢ #, — & x
R(X,Y,Z,W)= =’—14——Dg(gl)+ "lr KotFpotn t —f'(Do(gz)+Ko(F,))}(X, Y, Z W)

for any vector fields X, Y, Z and W on M, x M,, where ¢ = 1 (resp. € = 0).

Theorems 6.2-6.7 have been obtained by making use of the formula

2
-R(X; Ys Z, W) = ZR(PaX’ PnY’paz’ paW)

on the Riemannian direct product manifold M; x M,.

(7) A hypersurface N of a Kiihler manifold P(J, G)

We consider a hypersurface N in a Kéhler manifold P(J, G) with the imbedding
map i: N— P and identify N with the image i(¥) of N. Let { denote the unit normal
vector field defined over the hypersurface N. Then we obtain the decomposition
law:

Jiy X = i,..fX+17(X)C, JO = —iE
and
g(Xs Y) = G(ler I#Y)

for any vector fields X and Y on N, where f'is a linear transformation ficld, » a 1-form,
E a global vector field, g the induced metric and i, denotes the differential of i.
The condition that (J, G) is an almost Hermitian structure on P implies that the
set (f, E, n, g) of the induced tensor fields defines an almost contact metric structure
on N. We have Gauss equation: V; xi, Y = i, Vy Y+ (X, Y){ and the Weingarten
equation: V, vl = —i, HX, in this case, V appearing in the right-hand side of the
former equation denotes the induced Riemannian connection with respect to g,
and h and H are called the second fundamental tensor fields of type (0, 2) and (1, 1),
respectively, with respect to {. Both satisfy A(X, Y) = g(HX, Y) and A is symmetric.
It follows from the condition: (V; xJ)i, Y = 0 that (Vx )Y = n(Y)HX—g(HX, Y)E
and (Vyxn)(Y) = g(fHX, Y). Therefore, the torsion tensor field satisfies

[, F)X, V) +dn(X, Y)E = n(X) (fH~H)Y-n(Y)(fH—- Hf)X.

Thus we have

THEOREM 7.1. A4 necessary and sufficient condition for the induced almost contact
metric structure (f, E, 1, g) on a hypersurface N in a Kdhler manifold P(J, G) to be
quasi-Sasakian is that f commutes with the second fundamental tensor field H.

More precisely we obtain that (i) if H has the form H = I+ An® E for some
scalar field A on N, then the induced structure is a Sasakian structure, and (i) if H

has the form H = An® E for some A on N, then the induced structure is a cosymplectic
structure on N.
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(8) A submanifold M of codimension 2 of a quasi-Sasakian manifold

Let M(5) be an almost contact metric manifold with a structure & = (f, E, N, 8)
and let M be a submanifold of codimension 2 of l'f!(&) with the imbedding map i:
M — M. We identify M with i(M) in M. We assume that there exists a normal frame
{€1, €} defined globally over the submanifold M. Then we obtain the decomposition
law for E, fi, X, fta (@ =1, 2):

~

8.1) E = iyEo+al; +bL,,
(8.2) JixX = ixpX+7' (01 +0* (0L,
(8.3) fti = —iyEy+cty,
(8.4) ft, = —igE;—ct,

with respect to {{,, {,}, where ¢ denotes a linear transformation field, E, (@ = 1, 2)

vector fields, #* (@ = 1, 2) 1-forms, q, b, c scalar fields on M. The induced metric g
on M is given by

(8.5) g(X,Y) =g (i.X, i,Y)
for any vector fields X and Y on M, and we define a 1-form 7® by
(8.6) 7°(X) = (i X)

for any X € ¥ (M). It follows from (8.1), (8.5) and (8.6) that n°(X) = g(X, E,).
Since g(fiu X, L) = =3l X, ft) (@ =1,2), then by (8.2)-(8.5) we have 7°(X)
= g(X, E,). By means of fE = 0 the relations ¢pE, = aE, +bE,, g(E,, E,) = bc,
g(E,, E;) = —ac are valid. Applying f to both sides of (8.2), we attain to

¢ = "I+”)°®Eo+7ll®E1 +712®Ezs 771(¢X) = an°(X)+c1)1(X),
| 7*(¢X) = by°(X)—cn*(X).
Since
8DX, Y) = §(i,bX, i,Y) = §(fi X, ,Y) = —E(iX, fi,Y) = —g(X,$Y),

then #°(¢pX) = —g(X, ¢E,) (a = 0,1, 2). Applying f to (8.3) and to (8.4), we get
OE, = —aEy—cE,, n'(E)) =1-c*—-a* n'(E)) = —ab; ¢E, = —bE;+cE,,
72(E;) = 1—-b*—c2. Since E is a unit vector field, it follows from (8.1) that 7°(E,)
= 1—a?—b?. Thus we have obtained

(8.7) ¢? = ~I+n°RE+ 7' ®E +7*®E,,
®E, = aE,+bE,, 7°(pX) = —ant(X)—bn*(X),
(8.8) QE; = —aFEy—cE,, n'(¢X) = an®(X)+cen*(X),
¢E; = —bEs+cE;, n*(¢X) = bn°(X)—cn'(X),
(8.9) g(¢X,Y) = —g(X,¢Y)
[Eol? = 1—a*—b%, g(E,, E,) = bc,
(8.10) |Ey|? = 1—c*—a?,  g(E;, E;) = —ab,

[E;|? = 1-b*—c?,  g(E;, Eg) = —ca.
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THEOREM 8.1. Let x be a scalar field defined by x = V/ a* +:bi +¢? on a submani-
fold M of codimension 2 of an almost contact metric manifold M(G). % is independent
of a choice of the normal frame {(,,(,} and satisfies 0 < % < 1.

Proof. The Cauchy-Schwarz inequalities are applied to E,, namely,

|Eol?- 1E,1*— (g(Eo, ED))* = (1—a®)(1-%%) > 0
|E;|* |Eol? — (8(Ez, Eo))? = (1-b*)(1—%%) >
|Ey|? - |E,|*— (S(En Ez))z = (1-c)(l-%%) 2
by (8.10). Since g is a positive definite metric, then a?+56% < 1, b2 +c¢? < 1, *+
+a® < 1 are valid. Suppose that x> > 1. It follows that @2 > 1, b2 > 1, ¢2 > 1
from which %2 > 3. On the other hand, 2%? < 3 holds. This is a contradlctlon. Let

{¢31, 3} be another normal frame defined globally over M. The decomposition
law for E, f{, are written with respect to {{7, {3} as

H

>

0
0

(8.11) E=iEy+ali+bts,
(8.12) o1 = —iyEj+c'ts,
(8.13) fty = —i Es—c't)

for scalar fields a’, b, ¢’ and vector fields E,. There exists a certain scalar field 0
on N such that
(8.14) £, =sinBli+cosOt;, ;= —cosBl +sinbl;.

Accordingly, we obtain a = a'sinf+b'cosf, b = —a'cosf+b'sinf by (8.1), (8.11)

and (8.14), and ¢ = ¢’ by (8.3), (8.12), (8.13) and (8.14), which imply that a?+ b2+
+c2 =a*+b%*+c¢? n

Now we define a vector field E and a 1-form 7 on M by
(8.15) E = cEy+bE, —akE,, 7 = e+ byt —an.

Then we can verify that the following relations hold on M in ]l?(&) by (8.7)-(8.10)
and (8.15).

7(E) = x%, 7(X) =g(X,E), ¢E=0, n($X)=0,
(8.16) ¢ X+dX =n°(¢X)PE, +n' (¢ X)E, +772(¢f)¢E2 ,
PN+ (2 +1)p2X+ %X = 7(X)E,
X+ 2+ 13X+ %X =0
for any vector field X on M.

THEOREM 8.2. In order that an almost contact metric structure can be induced

on a submanifold M of codimension 2 of an almost contact metric manifold M(0),
it is sufficient that a condition

eitherr =0 on M o O0<x<l on M
holds.

By this assertion we can see that if the scalar field » is constant on M, then an
almost contact metric structure can always be induced on M.
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Proof. Suppose that » vanishes identically on M. This implies a = b = ¢ = 0.
The set {E,, E,, E,} of vector fields E, is orthonormal at every point of M and
¢E, = 0 by means of (8.8) and (8.10). We put

=0+t @E, —*RE)+t,(n*RE;, —n°®E;)+1,(n°®E, —n' @ E,),
E = t0E0+tlE]_+t2E2,
7= 1ton’+in' +t,9?

for an arbitrarily chosen and fixed direction ratio #4:¢,:¢; such that t3+¢3+¢7 = 1.
Then we can verify that the set (f, E, 5, g) of tensor fields f, E, 1, g defines an almost
contact metric structure on M. In this case, when we denote by @ the associated
2-form with ¢ relative to the metric g, the fundamental 2-form F is written as

F=0+ton A2+t AP +8,7°Ant

Suppose that » satisfies a condition: 0 < » < 1 on M. Now we put

f=— {7+ (P +x+ D},

x(x+1
(8.17) ( 1) )
E = 7E, n=-_"

It enables us to see that the set (f, E, 7, g) of tensor fields f, E, 7, g defines an almost
contact metric structure on the submanifold M. In fact,

S2X = (e (412 ) {oOX + 20" + %+ D)X + (2 + x +1)’9>X }
=" 2 {p*N+ (x> +1)¢2X} = —X+n(X)E

by virtue of (8.15) and (8.16). =

Next we consider the submanifold M in a quasi-Sasakian manifold M(5).
We denote by A the indicator tensor field of the quasi-Sasakian structure . The
decomposition law for 4i, X with respect to {y, {5} is written as

(8.18) Ai X = i, 0X+ 0" (X) &, + 42 (X)L,

for any vector field X on M, where O denotes a linear transformation field and
q' (i = 1, 2) are 1-forms on M. Furthermore, we have the equations

VixixY = L, Vx Y+h(X, Y}, +k(X, Y),,
Vt.xCl = —i*HX"‘w(X)Cz, V:.xtz = _itKX—w(X)CI’

where h and k (resp., H and K) are the second fundamental tensor fields of type
(0, 2) (resp., (1, 1)) and o the third fundamental 1-form with respect to {£,, {,}.
hand k are symmetric and satisfy A(X, Y) = g(HX, Y), k(X,Y) = g(KX, Y) for
any X, Y € Z(M). Since the equation

(VixDNiY = 7V Adi X —-§(di, X, i, NE

(8.19)
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holds by means of Theorem 3.1, then the left-hand side of this reduces to

(VexNisY = Vixfis Y =V xia¥

= Vix(ind Y+ (N + 02 (N )~ fixVxY +h(X, V), +k(X, 1))

= iy Vyd Y +h(X, p V)1 + k(X, o V) Ea +{X (7' (1)) Ly + 0 (N — i HX +0(X) L2} +
+(X(’72(Y))) L+ (N = ih KX ~0(X) {1} = ind Vi Y = (Vi V) L =2 (Vi V) £ —
—h(X, Y){—isEs+cla}~k(X, Y){—ip E; — 4}

= iy {(Vx) Y= ' (D HX—* (N KX +h(X, N E, +k(X, Y)E, }+
+{A(X, $ V) + (Vx ") (V) —0(X) 72 (V) +ck(X, D}, +
+HEX, $ D)+ (e (N +o (X0 (V) - ch(X, 1)},

by using (8.2)-(8.4) and (8.19). and the right-hand side of the above equation reduces
to

(s V) Aix X=E(AisX, i, N E = n° (D (i QX +4' (X)L +47 (0 3}~
—-g(QX, Y){i, Eo+al; +bL5)
= iy {1°(V)QX—-g(QX, V) Eo }+ {g' (X)n°(1) -
—ag(QX, )}, + {g*(X)n°(Y)-bg(QX, )},
by using (8.18). Comparing the tangential parts to M of both sides of quantities
mentioned above we obtain the covariant derivative Vx¢ of ¢
(8200 (Vxd)Y = n°(MNQX +7' (N HX+n*(V)KX~g(QX, Y) Eo~
—g(HX, Y)E,—g(KX, Y) E,
for any X, Y € Z(M).
We would like to close our discussion here by showing the following assertion.

THEOREM 8.3. Suppose that » = 1 on a submanifold M of codimension 2 of a
quasi-Sasakian manifold M(5). If the fundamental tensor field f of the induced almost
contact metric structure (f, E, n, gy on M commutes with cQ+bH—aK, then (f,E,n, 8)
is a quasi-Sasakian structure.

Proof. The assumption: » = 1 implies that |E,|- |E,| = g(Eq, E1), |E|" |E,|
= g(E,, E,), |E;|* |E,| = g(E,, E,), which show that E,, E,, E, are linearly
dependent to one another. By a simple calculation we may obtain E, = cE, E,
= bE, E, = —aE for a unit vector field E and 7° = ¢n, ' = by, n* = —an for
its associated 1-form 7 and, in addition, /' = ¢ by means of (8.16) and (8.17). Hence,
(8.20) reduces to

(VxNY = n(NypX—g(pX, Y)E,
where we have put
v = cQ+bH-akK.
Since

gOX, Y) = F(aQX, i,Y) = §(Ai X, i, Y) = §(i X, 4i,Y) = g(X, QY),
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w is symmetric and commutes with f. By Theorem 3.1 we can conclude that (/, £, n, g)
is quasi-Sasakian. ®

A submanifold M is called f-invariant if fT,(M) is contained in T.(M) at every
point x of M, namely, if fz',..X = i,¢X holds identically. Hence, a = b = 0 and
¢* = 1 (accordingly, » = 1) are valid on the finvariant submanifold M, on which f
must necessarily commute with y by using the condition fAi X = Afi X.

COROLLARY 8.4. An foinvariant submanifold M of codimension 2 of a quasi-

Sasakian (resp. Sasakian, cosymplectic) manifold M(5) admits a quasi-Sasakian
(resp. Sasakian, cosymplectic) structure.
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