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In [1] the author observed that the notion of a Bott connection ([3]) and, more
generally, of a connection adapted to a flat partial connection ([7]) gives rise to
a number of (primary and secondary) characteristic invariants of the foliated bundle.
In particular, for any g-codimensional (smooth) foliation F of a manifold M
there exist well-defined invariants p;(F)e H*'(If), i=1,...,q, and s;;,,(F)
€ HA Y (A (M)/IF*Y), j=1,...,[g—1/2], Ir c A*(M) being the ideal of all the
smooth differential forms on M vanishing on leaves of F. These elements (the author
called them respectively the Pontryagin classes and the secondary Pontryagin classes
of F) play the role of elementary blocks for the exotic characteristic classes of F.
In the present paper we construct a larger family of characteristic invariants with
values in H(I2/I}), 0 < a < b. The elements of that family cover the derived charac-.
teristic classes constructed by Kamber and Tondeur ([6], [7]; §4.50) and, under
some natural algebraic conditions, can be described in terms of the primary and
secondary characteristic invariants. In conclusion, the Pontryagin classes together
with the secondary Pontryagin classes fully determine not only the exotic classes,
and the holonomy ring of any leaf ([1];§ 3.23, [4], [8]) but also all the derived
characteristic classes.

Throughout this paper all manifolds, bundles, foliations, etc. will be smooth,
i.e. of class C=,

§ 1. Preliminaries

For any foliation F of a manifold M we accept the following notation:
Qr—the normal bundle, Q7—the dual normal bundle of F;
LOF—the manifold of all frames in QF;
I} ¢ A*(M)—the ideal of forms which locally can be described as

th‘l/\ e APREAYL s

where the forms ¢’ are local sections of F, k = 0, 1, ... Theideals Jf, k = 0,1, ...

[
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form a decreasing, consistent with the differential 4, filtration of the algebra
I? = A*(M). Obviously, I¥ = 0 if k > codimF.

By definition ([1], [7]), a foliated bundle with a reduction of structure group
(shortly, RF-bundle) is a collection (P(M, G), E, H, £), where P(M, G) is a principal
bundle, E < TP a flat partial connection (an involutive G-invariant subbundle
containing no nonzero vertical vectors), H a closed subgroup of G, and £ an isotopy
class of global sections M — P/H.

Let us note that any section s: M — P/H yields a unique H-reduction P, < P
of P(M, G) such that s(p) = uH for ue (P,),, p€ M; we have

P, = {ueP; s(n(w) = uH},

where n: P — M is the projection.

Any g-codimensional foliation F of a manifold M gives rise to a canonical
RF-bundle B(F) composed of the frame bundle LQF(M, Gl(q)), the Bott partial
connection E, the orthogonal subgroup O(g) = Gl(g), and of the isotopy class
of all sections M — LQOF/O(q). Similarly, if F is equipped with an isotopy class ¢
of trivializations of QF, then one considers also the RF-bundle

B(F, 1) = (LQ}(M, Gl(g)), E, {e}, 1).

In general, any flat partial connection projects onto the tangent bundle of some
foliation of the base manifold. Such a foliation will be referred to as the projected
one,

Following [7], let us consider a principal bundle P(M, G) foliated by a flat
partial connection E. A connection w € A'(P)®g on P(M, G), g being the Lie
algebra of G, is said to be adapted to E if w|E = 0. If this is the case, then the curvature
2 e A2(P)®Q lies in Il.;®g, where n: P - M denotes the projection and =n*F
is the induced foliation of P. Consequently, the canonical G-DG-homomorphism

k(w) of the Weil algebra W(G) = /\ g*®Sg* into A*(P), defined by the equality
k(@)(x'A ... AX*®y'- ... )
= (X'ow)A ... A(X® o )A(Y o DA ... A(}P D),
a,b=20,1, ..., has the very important property:

k(w) (FEW(G)) = Iy
for

F'WG) = @ N\ g*®Se*, k=0,1,..
bk
The filtration W(G) = F°® o F! 5 ... is preserved by the G-DG-structure mappings
d, i(x), 0(x), and o(g) (x€ g, geG).

LEMMA 1. The filtration A*(P) = IS¢ > I}y o ... is preserved by the canonical
G-DG-structure mappings in A*(P).

Proof. Let us observe that ¢ € I¥.,nA"(P) if and only if @, (¥(, ..., Vhoks1s "> -
...»*) = 0 whenever all the vectors v,, ..., %_x+; € T, P, u€ P, project into a
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tangent space of F, for h,k = 0,1, ..., h > k. In view of this the asserted in-
clusions

i(X)(I%r) = Buop  and @@ (I%p) € Ifer, Xx€8, g€G,
k=0,1, ..., follow from the identities
(VP (V1 oo Vhoks "5 -oos* ) = PLunXes Uys vy Opois 5 vy * )y
where 77, (L, x.) = 0 and i(x)p € A"~1(P),
(@ P @1y s Vnorrgs s ooos”) = (REPa (Vs ooy Vhmipts s ooes )
= Ry (@ug(Reays - s RewOhoisrs s ooen )

where n,(Rpyvr) = mav; for i=1,...,h—k+1. Here L,: G—> Pand R,: P> P
denote the mappings induced from the standard G-action on P.

For any Lie subgroup H of G one defines H-basic elements of any G-DG-algebra
A, in particular, of W(G) and of A*(P), as those w € 4 which satisfy the conditions

egw=w for heH,
and
ixyw=0 for xeb
(the Lie algebra of H). The H-basic elements in 4 constitute a DG-algebra Ay.
In particular, A*(P)y € A*(P) coincides with the image of the monomorphism
nh: A(PIH) - A*(P),

where zy: P — P/H denotes the projection. Consequently, there is a canonical
isomorphism

A*(P)y = A%(P/H).
LeMMA 2. The above isomorphism transfers

(I:’:*F)H c A*(P Mu
onto

I}"F c A*(P/H), k=0,1, ..,
where 7 denotes the projection P[H — M, and n*F is the induced foliation of P[H.
Proof. As n = 7 o my, there is nj(A*F) = a*F and so
(L) < Thug.
To prove the converse let us take an arbitrary form
@ € (Isap)unA*"(P), h=k,k+1, ...

There exists y € A"(P/H) such that ¢ = nfjy. Consequently, whenever the first
h—k+1 of vectors vy, ..., vy € T,g(P/H), u € P, are tangent to 7*F (that means
that m,v;, i=1,...,hA—k+1, are tangent to F) there is

Vur(©15 05 Op) = @u(Wy, ..., Wy)
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for any wy, ..., wy € T, P such that =y, w; = v;, and thus

Per(®1s o s Upoigns s ooes’ ) =0
as for all i’s mr, w; = 7, v;. In conclusion we get p € 1%, .
To end the preliminary section let us consider any filtered differential algebra
A= F°4 > F'4> ..
with a differential d; by definition, there is
d(F*4) c F*'A and F*4-F'A c F**'4
for every k and /. We shall accept the abbreviation
FlA:= F°A[F’4 for 0<a<hb.

It is convenient to consider F°A4 as F% 4, F*A := 0, Each F{ 4, a < b, is a differential

space and the direct sum
@ H(F{A)

a<bh

carries a canonical structure of an algebra over R. Namely, the multiplication in 4
induces linear mappings

u = pupi: HEFSAQH(F;A) - H(FRt°A), m = min(@a+d,b+o),
such that the classical commutativity property is fulfilled.
It is easy to observe that any homomorphism between two filtered differential

algebras induces a homomorphism of the homology algebras described above.
The induced homomorphism commutes with the canonical mappings

H(Fy A) » H(F§ 4),
defined for a > c and b > d, and
de: H(Ff A) - H(F°A).
To denote elements of H(Fy A) we shall be writing
[z} := [z+F®4] for zeF°And '(FA4).

§ 2. The characteristic homomorphism

THEOREM 1. For any RF-bundle B = (P(M,G), E, H,£) with a projected
Joliation F the canonical algebra homomorphism

@(B): GBb H(F;W(G)y) — @b H(I§[T})
induced from the superposition
D(B,w,5): W(G)y—~2> A*(P)y = A*(P[H) "> A*(M)
is independent of w, a connection in P(M, G) adapted to E, and of s € &.

Remark. The above characteristic homomorphism @(B) cannot be a mono-
morphism. If g = codim F, then

HFiW(@y)cker® for a>gq.
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Moreover, for a € ¢ < b, @} coincides with the superposition
H(FsW(G)) ~ H(F3 W(G)n) > HUP).
The domain of @(B) divided by the above relations is linearly isomorphic with
® H(FW(Ga)-

Oga<b<gqg

For comparing with each other two adapted connections or two isotopic sec-
tions we introduce the trivial extension B of any RF-bundle B = (P(M,G),E, H, &)
through the projection R x M — M. That is a particular case of the general procedure
of inducing RF-bundles by smooth mappings ([1]). B consists of the principal
G-bundle 7: Rx P — R x M equipped with the trivial extensions E of E and & of &
(E is the inverse image of E under the projection T(R x P) - TP; £ is the isotopy
class of sections idegxs: RxM —» RxP[/H, se ). If F is the projected foliation
of B, then the projected foliation F of B has leaves of the form Rx L, L e F.

Let dt denote the differential of the appropriate one of the projections R x P,
Rx M — R. For the proof of Theorem 1 we shall need the following two lemmas:

LEMMA 3. If a form ¢, +dt A @, on R x P is H-basic and neither ¢, nor @, involves
dt, then both these forms are H-basic.

Proof. Applying the mappings i(x), x€h, and o(h), he H, to ¢ = @, +dt A p,,
we get

iX)p = i(xX)p,—dtni(x)g,,

e(Mp = e(hyp,+dtre(h)p,.

Thus, the lemma follows from uniqueness of the decomposition of forms on R x P
into forms not-involving dt.

and

LEMMA 4. Let ¢ be any form in I;, k=1,2,..

() If @ decomposes into @, +dt A p,, where both ¢, and ¢, do not involve dt,
then @, ¢, € IY.

(iiy The form
| ¢earon

0,1]
obtained by integration of ¢ along the unit segment is an element of If.

Proof. (i): Thi unit vector field T tangent to the lines R x {p}, p € M, is tangent
to the folia_tion F. Consequently, if degg = 4 and v,, ..., v,_; are any vectors
tangent to F at a common point, then

0 = q)(T, v]_, R 7 PO A ') = 972(7)1, ...,!J,,_,,, Ty oseay” ).

Thus ¢, € If and so ¢, = p—dtag, € IL.
(i): If degp = h, then for any vectors v,, ..., v, € T, M, p € M, there is

(S (p)p(v,,...,v,,)= S vy, ..., v (t, P),

[0, 1] LEFES]



14 G. ANDRZEJCZAK

where
@),y = (On v) e ,RO®T, M = T, ,,(Rx M)

for teR, i=1,...,h If, moreover, the vectors v;, ..., ¥y_4,, are tangent to F,
then for all t's (v, ..., Vh_ks1,', ---»* )¢, P) is equal to zero and so

( S ?) (YJI, cory Upa kg1 "9 vovs ') = 0.

(0.1]
This concludes the lemma.

Proof of Theorem 1. It follows from Lemma | and Lemma 2 that the differential
algebras A*(P)y = A*(P/H) are canonically filtered and that the homomorphisms
composing P(B,w, s) (and so D(B, w, s) itself) preserve the filtrations, for any
adapted connection w and any section s. Let us consider any two connections wg, @,

adapted to E and any two isotopic sections sq, $,: M — P/H, 54,5, €§. Fort e R,
we put

w, = (1-we+tw,.
The 1-parameter collection {w,; r€ R} of connections in P(M, G) determines
a connection w in the induced G-bundle #: RxP - Rx M,
O¢,uw) = (W) ° Plag.wy» Pri RxP— P;
roughly speaking,
w=w, over {t}xP for teR.

Since wy, t € R, are all adapted to E, w is adapted to E.

Similarly, any smooth isotopy R 3t s, € £ determines a section s: Rx M
— RxP[H, (t,p)— (¢, s:(p)) which, being isotopic with idgx s, is an element
of £.

For any nonnegative integer a the connections and sections constructed above
yield the family of homomorphisms of differential spaces,

(B, w, s): F*W(G)y - I,
and
(B, w,, 5,): F*W(G)y - If, teR.
Starting from the equalities
w = w‘,

Q = Q4 diA (- w), over {t}xP,teR,

where Q, £, are the curvature forms of w and w,, respectively, we get for any
ze F°W(Q)y
m k(@)(2) = g1 +dtng,,
where ¢, , ¢, € A*(R x P) do not involve dt,
p; = k(w)(z) over {t}xP, teR,
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and both ¢, and ¢, are H-basic (Lemma 3). In view of Lemma 4 (i), if we apply
the mapping s* o (75)~* to both sides of formula (1), then we conclude

2 W(Esw,s)(z)= 1/’1+th'/’2’
where the forms y,, y, do not involve df and belong to I3, and there is
&) v = P°(B,w,,5)(z) over {t}xM, teR,
for z e FPW(G)y.
Let us now consider any positive integer b > a (possibly b = o0) and let
z+ FPPW(G)y € F;W(G)y

be any cycle. Since z € F°W(G)y and dz € FPW(G)y, there is
dP*(B, w, 5)(z) = D*(B, w, 5)(dz) e IL.
Consequently, for the forms y,, y, introduced by (2), we have
dy,—dtady, € I-:‘;
and so, detaching the form dt from dy, and dy,, we get
dy+dtn(Lry, —dy) e &,
where d’ is the partial exterior derivative with respect to M, and Ly is the Lie deri-
vation in direction 7. By Lemma 4(i), there is
(4) Lry,—dy, e,
The integration of the above form along the unit segment gives us
it y1—igyr = S Lry,=d S 17 S (Lry,—d'y),
[0,1] [0, 1] 10,13
where i,;: M — {t}xM < RxM, t=0,1, are the injections. In view of (3),
(4) and Lemma 4(ii), this means
(B, w,, 5,)(2) ~ D°(B, 0o, 50)(2) (modl}),
for z € F*W(G)ynd~'F*W(G)g. Hence the induced mappings

d)g(B, Wo, 50)u, DPH(B, @y, §1)a: H(FI‘;W(G)H) - H(Ig/lf,)
coincide.

Looking through the characteristic invariants of B that constitute the image
of @(B) one can easily find all the characteristic classes of B ([6], [7]) among them.
These are given by the restriction @2,, of ®(B) to the algebra H(FZ,, W(G)n),
q = codimF,

For the induced filtration of the algebra

I(G) = W(G)

of G-invariant polynomials on g there is a canonical injection

& FI(G) - o H (FSW(Gx)-
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The appropriate restriction of @(B) is completely determined by the primary charac-
teristic homomorphism

®,(B): I(G) - ® H(ly)

that is equal to the superposition

@ I°(G) » @ F2 I(G) -2 @ H(I?)

(compare with [1]). The algebra homomorphism P,(B) does not depend on the
H-reduction structure of B.

In [1] the author introduced also a notion of secondary characteristic invariants
of RF-bundles. Those (precisely, the “left” of them) are homology classes

() w'(2) = [Mwo, w)) (D) +T¢] € H*~(Ip/Ip),

defined for z € ker(I*(G) — I*(H)), k = 1,2, ..., where A(wo, w,): I(G) —» A*(M)
is the difference homomorphism ([3]) and w,, @, are any two connections in P(M, G)
such that w, is reducible through some H-reduction P, < P, s€ £, and w, is adapted
to the flat partial connection. It is necessary to compare the above secondary
invariants with characteristic invariants constructed in the present paper.

PROPOSITION 1. Let B= (P(M,G), E, H, §) be an arbitrary RF-bundle. For
any G-invariant polynomial z € I*(G), k = 1,2, ..., if there exists z' e W(G)y such
that z = dz’, then the secondary invariant w'(z) corresponding to z is equal

1o B(B)([z']})-
Proof. If
(6) i: W(G) - W(G)®W(G)
denotes the universal homotopy ([7]),
Aody+dygw o4 = 1Qid—id®1,

and u: W(G)® W(G) - W(G) is the multiplication, then for any two connections
wq, w; in P(M, G) there is

Mwo,w() = (E*)" 1 op o (k(wo)®k(ﬂ)1)) o A e -

Let zeIYG), k = 1,2, ..., and z' € W(G)y satisfy z = dz’. There is A(z)+dA(Z")
= I®z'—z'®1 and thus
Mwo, 0}z = 5* o (75;)_1 o k(wy)z' —s* o (“:l)—l o k(wo)z' —
—d(s* o (a)? o p o (k(wo)®k(w,)) ° A(2)),

for any section s: M — P/H. The fact that the degree of z’ is odd implies that the
restriction homomorphism W(G)y — I(H) maps z' to 0. On the other hand, if w,

is reducible through the inclusion 5: P, < P, then 5*w, is a connection in the reduced
H-bundle. Hence, there is

s* o (ag)™' o k(wo)z’ = ((n|P)*) ™! o k(5*wo)z = 0.
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Consequently, we get

Mo, 1)z ~ s* o (2R) ! o k(w))Z,
which concludes the proposition.
Remark. Let us observe that the ideal
)] G, H) :={z € I(G); z = dz’ for some z’' e W(G)y4}

is only a subspace of ker(J(G) — I(H)). It is possible that (in general) there are
secondary characteristic invariants which are not covered by @(B). Such a situation
is impossible in the case of foliations (see § 3).

For the sake of completeness, let us also note that the homomorphism
D% : H(W(G)y) -» H*(M) factors into H(W(G)y) — I(H) and the Chern-Weil
homomorphism I(H) - H*(M) of any of the H-bundles P, » M, seé.

F. W. Kamber and Ph. Tondeur ([6], [7]) have observed that since the homomor-
phisms @7, (B, w, s) are filtration preserving, they induce mappings (independent
of w and s) on all levels of the spectral sequences associated with the corresponding
filtered complexes,

A,(B)y: Et(FqOH W(G)H)—’ EI(A*(M)), i=1,2,..
We are now able give another description of derived characteristic—the invariants
given by the above homomorphism of spectral sequences.

PROPOSITION 2. For each i = 1,2, ... there exist canonical surjective algebra
homomorphisms

@ H(F;fu W(G)H) - E; (Ft?+1 W(G)H),
p

and
@ H(IE/IE*) — E(A%(M))
4

that make commutative the diagram

@ H(F2,: W(G)w) 27> & HUBITZ*)
P P

E((F,1 W(G)y) P Ei(4*(M))
whenever F, codimF = g, is the projected foliation of B = (P(M,G), E, H, ).

Proof. Let us observe that for any filtered differential algebra 4 = F°4 > F'A4
O ... there is a canonical surjection

H(Fp,,4) > Ef(4)
which coincides with the projection
ZP|d(FP)+FP* — ZP|ZPH + D},
where Zf = FPnd-'(FP+Y), FP*' < ZPH! = FPYind-1(F?P*Y), and d(FP) = D7_,
= FPnd(FP-'*Y), i>1,p=0,1, ... gQver, for any g > O the terms EP of the

2 Banach Center t. 12 BWU
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spectral sequence corresponding to the induced filtration FQ,, o F},, o ... are
equal to

Ef = ZP+FYZPr + DY+ F** = ZP|ZPH 4+ DP_y + ZP nFi+!
and so there are canonical surjections
H(FS. )~ EF, iz 1.

To end the proof it now suffices to apply the above results to the filtrations of
A*(M) and W(G)4, respectively.

§ 3. Computations and a structure theorem

Let us assume that the homogeneous space G/H is reductive. Equivalently, there
exists an H-equivariant projection #: g - ) of the corresponding Lie algebras.
Any such projection determines an algebraic H-connection in W(G) and extends
to a2 unique H-DG-algebra homomorphism

k(8): W(H) - W(G).
This homomorphism yields a homotopy equivalence
k(@u: I(H) > W(G)u

with homotopy inverse W(i), i: H < G, § < g. In particular, the mapping (k($)u )«
being equal to (W(i)u)x': I(H) » H(W(G)y) is independent of #. Moreover,

there is
I(G, H) = ker (I(G) - KH))
(see (7). The universal homotopy (6) yields us a direct description of a linear mapping
do: 1(G, H) » W(G)x
satisfying d o d; = id. Namely, we may put
ds = p o (k(® - W(i)®id)  A|I(G, H).

Let us observe that for any 0 # z € I*(G, H), k > 1, 8,z determines a nonzero
element of H(F{W(G)y). Moreover, the mapping

d: I"(G, H)3 z+ [8,2] € H¥*~ 1 (FPW(G)y)

is independent of the choice of # and, by Proposition 1, for any RF-bundle B the
superposition @(B) o § coincides with the secondary characteristic homomorphism
(5).

The above constructions may be applied to the linear group Gl(g) and its
orthogonal and identity subgroups, O(q) and {e}. In particular, among the invariants
of any foliation F we can find the Pontryagin classes and the secondary Pontryagin
classes of F ([1]). By the definition and by Proposition 2, if we put

det(/+yA) = ‘ZJ"}?E’"(A) for A egl(g),
>0

q = codimF, y € R, then:
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the (primary) Pontryagin classes of F, p;(F) e H*(1}), are equal to
D, (B(F)) (o) = 2 (BIF)) [P1")g+ 1

fori=0,1,...;

the (secondary) Pontryagin classes of F, s, ,(F) € H*+L(I2/I}i+1), are equal
to ®(B(F))dp§),,, for j=0,1,...; and, if F is equipped with a trivialization ¢
of its (dual) normal bundle,

the (secondary) Pontryagin classes of (F, t), s;(F, t) € H*-1(I8/I}), are equal
to @(B(F, 1)) 8p{®, fori =1, 2, ...

Recall the well-known fact that there is

I(Gl(g)) = R[pP, ..., P\ |

and that 7(Gl(g), O(g)) is the ideal generated by the p{®’s with / odd. It is also worth
noticing that there is

$2941(F, 1) = S2;4,(F) for all j’s.

The importance of the (primary and secondary) Pontryagin classes of foliations
lies in their multiplicative properties (cf. [1], [2]) and in the fact that they generate
all the characteristic invariants of foliations. To show this (see the Corollary of

Theorem 2) we shall recall and slightly modify a construction described in [7];
Ch.V.

Throughout the rest of this section we shall assume that the Lie groups G, H
satisfy the following additional conditions:

(8) (i) I(G) = I(G,) = I(g) for the connected component G, of G;
(ii) H has finitely many components;
(iii) (@, b) is a reductive special Cartan pair; (compare [7]; Ch.V-VI).
Under the above restrictions on G and H one can find invariant polynomials
€15 .-y ¢, € G), dege, < ... < dege,
such that /(G) = Rl[c,, ..., ¢]] and (G, H) = ker(I(G) — I(H)) is the ideal generated

bysomec,, i=1,..,7, ay < .. <a,.. Let y E(/\ g*)'ﬂ denote the suspension
of ¢;;, i = 1, ..., r'. Following Kamber and Tondeur ([5], [7]), let us consider the
differential filtered algebra

A = /\ (yl EBCEEE yr)®I(G);
dy,=c, for i=1,..,r, dIG)=0,
Fd =\ Oy, . y)OFKG).
For any H-equivariant projection 9: g — b there is a unique algebra homomorphism

¢ A W(G)y
such that
(y) = 8sCay, i=1,..,r0,
and
|I(G) is the inclusion.
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Since « preserves the filtrations and commutes with the differentials, it determines
canonically a graded homorphism of algebras

w: @ HFSA) > © H(E{W(G)y).

a<h

Kamber and Tondeur proved that for any & > 1 the algebra homomorphism

p o (L@ (k(®)n)s): HELARIH) » H(EEW(G)y),

4 being the multiplication, is surjective. In fact, they observed that the above mapping
factors through an isomorphism

H(F )@ 1 I[(H) = H(F W(G)y).
We shall generalize slightly the above result.
LEMMA 5. Under assumptions (8) the graded homomorphism of algebras
PRI Y(IC MNE ebH(F:2)®I(H)—» ® H(FW(G)n)
a< a<
is Surjective.

Proof. Let a < b be any two positive integers. There is a commuting diagram
of differential spaces

0-F W(G)H_ - FyW(G)y — F;W(G)y - 0

f -~
.g] X 4 9| X
0 >FA-—->FPA ——FlA - >0

with exact (and canonical) rows. Multiplying the corresponding long exact sequence
by the single column

H(W(G)x)

I(k(ﬂ)").
I(H),
we get the following diagram

eee = H(Fao) _ 4, H(F:) - H(F,?) - ...
1 1 T
= HEDRHF®) — » HF)@HF®) » HF))®H(F®) — ...
1 1 ot
o HEDRIH) -2 HFE)RIE) - HEDQIH) - ..,
which commutes and has exact rows. In the above, we accepted the abbreviations
F} := F; W(GW, F}:= F} A.
By the well-known “five lemma”, surjectivity of g o (ted@(k(H)n)s) follows
from surjectivity of p o (.s) @(k(H)a)e), i = a, b.
Let us remind the R-basis of H(Fﬁ’/f), k =1,2, .., distinguished in [5], [7].
The basis consists of the homology classes of

Vin®cCy) = Yi A oo AY®CT G
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such that for 2p = degcy;, there is
9 MoK p<k;
!l <i, <...<ig<r;
(iii) degy; +1 2 2(k—p) i () # 9;
(iV)jo, =0 for I <i, if ()#9F and j, =0 for all /if (i)=9
The property dy; = ca, states that there are well-defined homology classes
i = [y, € HFS, ),

where degy; = 2h;—1, i = 1, ..., . Similarly, for each ¢; such that 2k, = degc;
< 2k, there is a homology class

[e]e = [c ]kt € H(Fl 4).

If the monomial y,,®c, fulfils conditions (9), then we have

(10) yiJ--- ] ([e, 1Y ... ([ek ir= [J’(i)®c(n]5“

wherem = kif (j) # B andm = hy 2 kif (j) =
In any case the canonical mapping H(F”A) - H(F,, A) transfers the above
product to the eclement of the distinguished basis. . .
Let us observe that for a < b the homomorphism H(F?A) -+ H(F?A) maps
o®cihlh to zero if 2a < dege;, < 2b and to the element [y, ®c¢;,]5 of the distin-
guished basis of H(F°A) if dege(;, < 2a. Thus, the linear space

ker (H(FP A) » H(F? A))

is freely spanned by [y, ®c¢;]§ with 2a < degc(,, < 2b. Taking adventage of the

long exact homology sequence that involves H(FgA), H(F_ °A) and H(F,?A) we finally
get

LeMMA 6. For any positive integers a, b, a < b, there is
H(F§ A) = im (dy: H(F? A) - H(F2 A))®
®Lin{[y,y®cli; 2a < degey, < 2b and degy;, +1 > 2b—degc,}-

We are now able to prove that under the algebraic conditions (8) all the charac-

teristic invariants of an RF-bundle can be constructed from its primary and secondary
characteristic invariants.

THEOREM 2. Let G be a Lie group and H = G, a closed subgroup such that con-
ditions (8) hold. For any RF-bundle B = (P(M, G), E, H, £) with a projected foliation
F, the characteristic homomorphism ©®(B) is completely determined by

B(B)I(G)VIH)VBIG, H).

Precisely, if I(G) = Rlc,, ..., ¢,] and the ideal I(G, H) = ker(I(G) —» I(H))
is generated by c,, i =1, ...,r', then ®(B) is determined by the collection:

S,(B)(c)) = D(B)([c]") € H* (1Y), where 2h=degc, i=1.....,r;
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the characteristic homomorphism ©(B) o (k(%)u)y: I(H) » H*(M) of any of the
isomorphic H-reductions P, -+ M, s € &; and

D(B)8cy, € H 1 (A*(M)[I}), where 2h=dege,, i=1,..,r.

Proof. In view of Lemma 5, @ = ®@(B) is uniquely determined by the superpo-
sition

Poupo (L,..@(k('ﬁ)")*) =p-° ((D °Lu@P o (k(ﬂ)ﬂ’)t)-

Consequently, we may restrict ourselves to the mapping @ o 1,, which is induced
from a filtered algebra homomorphism A4 — 4*(M). By Lemma 6, the Theorem
follows from (10) and general properties of the maps induced from homomorphisms
of filtered differential algebras.

COROLLARY. For any foliation F (resp., any framed foliation (F, t)) its Pontryagin
classes together with its secondary Pontryagin classes completely determine the charac-
teristic homomorphism @ (B(F)) (resp., D(B(F, 1))).

In particular, the Pontryagin classes and the secondary Pontryagin classes
of a foliation generate the ring of exotic classes, and all the derived characteristic
classes.
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